| 研究生: |
許晉維 Hsu, Chin-Wei |
|---|---|
| 論文名稱: |
高韌性纖維混凝土改良傳統磚砌建築灰縫材料之研究 Feasibility of using ECC for improving the bond strength between bricks |
| 指導教授: |
洪崇展
Hung, Chung-Chan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 144 |
| 中文關鍵詞: | 高韌性纖維混凝土 、飛灰 、水淬高爐石 、砌體 、灰縫砂漿 、黏結強度 |
| 外文關鍵詞: | Engineered cementitious composite, Fly ash, Blast-furnace slag powder, Masonry, Bed Joint, Masonry prisms |
| 相關次數: | 點閱:116 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究為改良高性能纖維混凝土(Engineered Cementitious Composites,簡稱ECC),透過使用兩種不同含量的飛灰作為礦物摻料(M16與F20)以及使用水淬高爐石粉作為礦物摻料(B36)的ECC配比,嘗試改變水膠比以及強塑劑的含量使其可適用於填充磚牆灰縫砂漿,並對改良後的ECC砂漿進行抗壓以及抗拉的力學性質測試,試驗結果顯示改良後的砂漿具有傳統ECC的高力學強度以及高韌性的特性,利用改良後的ECC砂漿改造磚造建築的灰縫,對其進行灰縫剪力試驗、撓曲黏結試驗以及磚墩抗壓試驗,探討材料組成變化對力學性質的影響。
試驗結果顯示,使用ECC改良傳統磚砌建築用的灰縫材料,可有效的改善紅磚與砂漿交界面的黏結力;PVA纖維的添加使灰縫砂漿具有較高的韌性,纖維可以抑制裂縫的產生,灰縫砂漿提供磚墩圍束的效果,可使磚墩在到達最大峰值破壞時,具有較大的變形量,並且在磚墩在達到破壞強度時可保持完整;且由於ECC高力學強度的特性,可以使磚墩的抗壓強度上升。
Masonry walls brittle and presents low mechanical strength. And the main disadvantage of the mortar used in the masonry wall is that the compressive strength is low and it is a brittle material. In the past research, if the bond and mechanical properties of the mortar can be strengthened. The seismic performance of the brick wall can be effectively improved. On the other hand, ECC (Engineered cementitious composite) is a class of HPFRCC (High-performance fiber-reinforced cementitious composites) that exhibits high ductility, a strain hardening response in direct tension and multiple cracking. In order to improve the performance of masonry walls, this study aims of the feasibility of using ECC for improving the bond strength between bricks. And improve the fluidity of ECC which has a high percentage of fly ash or slag.
The mechanical properties of the three mixtures design were studied, which has different aggregates of silica sand and river sand, and different PVA fiber volume fraction from 0 to 1.5 %. And used it to do prism for investigating the mechanical properties. The compressive and tensile strength of specimens which used three types of ECC are better than the specimens that used traditional cement mortar. And the compressive and ductility of specimens which used silica sand are better than river sand. The shear bond strength, flexural bond strength and compressive strength of prism specimens which used three types of ECC are better than the specimens that used traditional cement mortar. And the fiber in ECC contributes to increase bond strength and compressive strength.
[1] Alecci, V., Fagone, M., Rotunno, T., & De Stefano, M. (2013). Shear strength of brick masonry walls assembled with different types of mortar. Construction and Building Materials, 40, 1038-1045.
[2] Amran, Y. M., Alyousef, R., Rashid, R. S., Alabduljabbar, H., & Hung, C. C. (2018). Properties and applications of FRP in strengthening RC structures: A review. In Structures. Elsevier.
[3] Asteris, P. G., Kakaletsis, D. J., & Chrysostomou, C. (2011). Failure modes of in-filled frames.
[4] ASTM International. (2015) ASTM E518/E518M-15 Standard Test Methods for Flexural Bond Strength of Masonry. West Conshohocken, PA.
[5] ASTM International. (2016) ASTM C109/C109M-16a Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens). West Conshohocken, PA.
[6] ASTM International. (2016) ASTM C1314-16 Standard Test Method for Compressive Strength of Masonry Prisms. West Conshohocken, PA.
[7] ASTM International. (2018) ASTM C67/C67M-18 Standard Test Methods for Sampling and Testing Brick and Structural Clay Tile. West Conshohocken, PA.
[8] Awang, H., Aljoumaily, Z. S., Noordin, N., & Al-Mulali, M. Z. (2014). The Mechanical Properties of Foamed Concrete containing Un-processed Blast Furnace Slag. In MATEC Web of Conferences ,Vol. 15, p. 01034. EDP Sciences.
[9] Billington, S. L., Kyriakides, M. A., Blackard, B., Willam, K., Stavridis, A., & Shing, P. B. (2009). Evaluation of a sprayable, ductile cement-based composite for the seismic retrofit of unreinforced masonry infills. In Proc., ATC & SEI Conf. on Improving the Seismic Performance of Existing Buildings and Other Structures.
[10] BS EN (2002) BS EN 1052-3 Methods of test for masonry - Part 3: Determination of initial shear strength.
[11] Bureau of Indian Standards (BIS). (1989). “Code of practice for structural use of unreinforced masonry (third revision).” IS 1905:1987, New Delhi, India.
[12] Dehghan, S. M., Najafgholipour, M. A., Baneshi, V., & Rowshanzamir, M. (2018). Mechanical and bond properties of solid clay brick masonry with different sand grading. Construction and Building Materials, 174, 1-10.
[13] European Committee of Standardization . (1996). ENV 1996-1-1, Eurocode 6 “Design of masonry structures. Part 1-1: General rules for buildings—Reinforced and unreinforced masonry.”, Brussels, Belgium.
[14] Gumaste, K. S., Rao, K. N., Reddy, B. V., & Jagadish, K. S. (2007). Strength and elasticity of brick masonry prisms and wallettes under compression. Materials and structures, 40(2), 241-253.
[15] Hung, C. C., & Chen, Y. S. (2016). Innovative ECC jacketing for retrofitting shear-deficient RC members. Construction and building materials, 111, 408-418.
[16] Hung, C. C., & Chueh, C. Y. (2016). Cyclic behavior of UHPFRC flexural members reinforced with high-strength steel rebar. Engineering Structures, 122, 108-120.
[17] Hung, C. C., & El-Tawil, S. (2010). Hybrid Rotating/Fixed-Crack Model for High-Performance Fiber-Reinforced Cementitious Composites. ACI Materials Journal, 107(6).
[18] Hung, C. C., & El-Tawil, S. (2011). Seismic behavior of a coupled wall system with HPFRC materials in critical regions. Journal of Structural Engineering, 137(12), 1499-1507.
[19] Hung, C. C., & Hu, F. Y. (2018). Behavior of high-strength concrete slender columns strengthened with steel fibers under concentric axial loading. Construction and Building Materials, 175, 422-433.
[20] Hung, C. C., & Li, S. H. (2013). Three-dimensional model for analysis of high performance fiber reinforced cement-based composites. Composites Part B: Engineering, 45(1), 1441-1447.
[21] Hung, C. C., & Lu, W. T. (2018). Tall hybrid coupled structural walls: seismic behavior and design suggestions. International Journal of Civil Engineering, 16(5), 567-582.
[22] Hung, C. C., & Su, Y. F. (2013). On modeling coupling beams incorporating strain-hardening cement-based composites. Computers and Concrete, 12(4), 565-583.
[23] Hung, C. C., & Su, Y. F. (2016). Medium-term self-healing evaluation of Engineered Cementitious Composites with varying amounts of fly ash and exposure durations. Construction and Building Materials, 118, 194-203.
[24] Hung, C. C., & Yau, W. G. (2017). Vulnerability evaluation of scoured bridges under floods. Engineering Structures, 132, 288-299.
[25] Hung, C. C., & Yen, W. M. (2014). Experimental evaluation of ductile fiber reinforced cement-based composite beams incorporating shape memory alloy bars. Procedia Engineering, 79, 506-512.
[26] Hung, C. C., Hu, F. Y., & Yen, C. H. (2018). Behavior of slender UHPC columns under eccentric loading. Engineering Structures, 174, 701-711.
[27] Hung, C. C., Lee, H. S., & Chan, S. N. (2019). Tension-stiffening effect in steel-reinforced UHPC composites: Constitutive model and effects of steel fibers, loading patterns, and rebar sizes. Composites Part B: Engineering, 158, 269-278.
[28] Hung, C. C., Li, H., & Chen, H. C. (2017). High-strength steel reinforced squat UHPFRC shear walls: cyclic behavior and design implications. Engineering Structures, 141, 59-74.
[29] Hung, C. C., Su, Y. F., & Hung, H. H. (2017). Impact of natural weathering on medium-term self-healing performance of fiber reinforced cementitious composites with intrinsic crack-width control capability. Cement and Concrete Composites, 80, 200-209.
[30] Hung, C. C., Su, Y. F., & Su, Y. M. (2018). Mechanical properties and self-healing evaluation of strain-hardening cementitious composites with high volumes of hybrid pozzolan materials. Composites Part B: Engineering, 133, 15-25.
[31] Hung, C. C., Su, Y. F., & Yu, K. H. (2013). Modeling the shear hysteretic response for high performance fiber reinforced cementitious composites. Construction and Building Materials, 41, 37-48.
[32] Hung, C. C., Yen, W. M., & Yu, K. H. (2016). Vulnerability and improvement of reinforced ECC flexural members under displacement reversals: experimental investigation and computational analysis. Construction and Building Materials, 107, 287-298.
[33] Jennings, H. M. (2000). A model for the microstructure of calcium silicate hydrate in cement paste. Cement and concrete research, 30(1), 101-116.
[34] Kaushik, H. B., Rai, D. C., & Jain, S. K. (2007). Stress-strain characteristics of clay brick masonry under uniaxial compression. Journal of materials in Civil Engineering, 19(9), 728-739.
[35] Kyriakides, M. A., & Billington, S. L. (2014). Behavior of unreinforced masonry prisms and beams retrofitted with engineered cementitious composites. Materials and structures, 47(9), 1573-1587.
[36] Li, M., & Li, V. C. (2006). Behavior of ECC/concrete layered repair system under drying shrinkage conditions.
[37] Li, V. C., T. Kanda. (1998). Engineered cementitious composites for structural applications, Journal of Materials in Civil Engineering, 10 66-69.
[38] Li, V. C., Wang, S., & Wu, C. (2001). Tensile strain-hardening behavior of polyvinyl alcohol engineered cementitious composite (PVA-ECC). ACI Materials Journal-American Concrete Institute, 98(6), 483-492.
[39] McNary, W. S., & Abrams, D. P. (1985). Mechanics of masonry in compression. Journal of Structural Engineering, 111(4), 857-870.
[40] Neville, A. M. (1981). Properties of concrete 3rd edition. Pitman, London.
[41] Pavía, S., & Hanley, R. (2010). Flexural bond strength of natural hydraulic lime mortar and clay brick. Materials and structures, 43(7), 913-922.
[42] Prakash, S. S., Aqhtarudin, M., & Dhara, J. S. (2016). Behaviour of soft brick masonry small assemblies with and without strengthening under compression loading. Materials and Structures, 49(7), 2919-2934.
[43] Rasheed, M. A. (2018). Experimental Study on Compression Behavior of Fiber-Reinforced Cellular Concrete Stack Bonded Masonry Prisms. ACI Materials Journal, 115(1), 149-160.
[44] Ravula, M. B., & Subramaniam, K. V. (2017). Experimental investigation of compressive failure in masonry brick assemblages made with soft brick. Materials and Structures, 50(1), 19.
[45] Sathiparan, N., & Rumeshkumar, U. (2018). Effect of moisture condition on mechanical behavior of low strength brick masonry. Journal of Building Engineering, 17, 23-31.
[46] Thaickavil, N. N., & Thomas, J. (2018). Behaviour and strength assessment of masonry prisms. Case studies in construction materials, 8, 23-38.
[47] Turnšek, V., & Čačovič, F. (1971). Some experimental results on the strength of brick masonry walls. In Proc. of the 2nd International Brick Masonry Conference (pp. 149-156).
[48] Wood, R. H. (1978). “Plasticity, composite action and collapse design of unreinforced shear wall panels in frames.” Proc., Instn. Civ. Engrs., Part 2, 65, 381-411.
[49] 林育瑄(2016),RC構架內含偏心開口不同構法磚牆面內側向加載試驗,國立成功大學建築所碩士論文
[50] 林紀嚴. (2015),灰縫厚度與砂等對磚牆面外撓曲握裹強度之影響.,中興大學土木工程學系所碩士論文
[51] 林韋岑(2008),傳統磚砌建築灰縫材料可逆性之研究,國立成功大學土木工程所所碩士論文
[52] 洪崇展,戴艾珍,顏誠皜,溫國威,張庭維(2017),新世代多功能性混凝土材料-高性能纖維混凝土,土木水利.第44卷第1期,頁33-51。
[53] 洪暄惠(2016),高爐石高韌性纖維混凝土(ECC)之開發與自癒合研究,國立中央大學土木工程研究所碩士論文
[54] 莊宗樺(2007),RC構架內填磚牆面外振動台試驗分析,國立成功大學建築所碩士論文
[55] 陳奕信(2003),含磚牆RC建築結構之耐震診斷,國立成功大學建築所博士論文
[56] 曾凱瀚(1994),磚墩與磚牆基本力學性質試驗研究,國立成功大學建築所碩士論文
[57] 趙彥棻(2015),RC構架內含填入式開口磚牆面內側向試驗與分析,國立成功大學建築所碩士論文
[58] 戴艾珍(2018),高韌性泡沫纖維混凝土,國立成功大學土木工程研究所碩士論文
[59] 薛凱元(2008),RC構架內填高型磚牆面內受力行為,國立成功大學建築所碩士論文
[60] 羅婷頤(2010),RC構架內填高型磚牆面內側向加載試驗與分析,國立成功大學建築所碩士論文
[61] 蘇彥方(2014),綠色高韌性纖維混凝土(Green-ECC)本土化發展與自癒合能力之研究,國立中央大學土木工程研究所碩士論文