| 研究生: |
石柏宇 Shih, Bo-Yu |
|---|---|
| 論文名稱: |
離子液滴在電場下的形變與力學關係 Shape Deformation and Mechanical Relationship of Ionic Liquid Droplet under An Electric Field |
| 指導教授: |
胡宣德
Hu, Hsuan-Teh |
| 共同指導教授: |
羅友杰
Lo, Yu-Chieh 胡琪怡 Hu, Alice |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 83 |
| 中文關鍵詞: | 離子液體 、分子動力學 、電場 |
| 外文關鍵詞: | Ionic liquid, molecular dynamics, electric field |
| 相關次數: | 點閱:94 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
離子液體是液態時的離子化合物,由有機陽離子和無機或有機陰離子藉由庫倫靜電吸引力組成,具有低揮發性、高熱穩定性,在生物、化工等領域做為溶劑使用減少有機溶劑對於環境的污染,因此離子液體也被稱為綠色溶劑,近年來環保意識的提升,對於離子液體的研究量也逐年上升,離子液體是具有前瞻性的新科技。
目前離子液體的研究多數針對特定的實驗現象或物理、化學性質,少有在奈米尺度下針對力學行為的研究,在液體變形行為過大和尺度過小時現有的電流體動力學理論不足夠解釋變形的現象,實驗方面由於尺度過小難以精確的在奈米尺度下控制液體。
為了瞭解離子液體在奈米尺度下的大變形行為,本研究用分子動力學模擬液滴在電場下的拉伸行為,建立簡單且較為通用的高分子離子液體模型,分析施加不同外加電場下受拉伸時的流場變化、液體變形與其中的力學行為。並改變溫度和透過統計力學得到液體的表面張力、黏度,探討離子液體受拉伸至極限細度時的變化與表面張力、黏度的關係。
Ionic liquid is an ionic compound in liquid state. It consists of organic cations and inorganic or organic anions by Coulomb electrostatic attraction. It has low volatility and high thermal stability. It is used as a solvent in biological and chemical fields to reduce organic solvents for the environment. Pollution, so ionic liquids are also known as green solvents. In recent years, environmental awareness has increased, and research on ionic liquids has increased year by year. Ionic liquids are forward-looking new technologies.
At present, the research of ionic liquids is mostly directed to specific experimental phenomena or physical and chemical properties. There are few studies on mechanical behavior at the nanometer scale. The current electrohydrodynamics theory is not enough to explain the deformation when the liquid deformation behavior is too large and the scale is too small. In the experimental aspect, it is difficult to accurately control the liquid at the nanometer scale because the scale is too small.
In order to understand the large deformation behavior of ionic liquids at the nanometer scale, this study used molecular dynamics to simulate the tensile behavior of droplets under electric field, and established a simple and more general polymer ionic liquid model to analyze the application of different applied electric fields. Flow field changes during stretching, liquid deformation and mechanical behavior therein. The temperature and the surface tension and viscosity of the liquid were obtained by statistical mechanics. The relationship between the change of the ionic liquid and the surface tension and viscosity was studied.
[1] Mutiscale Modeling, from http://lammm.epfl.ch/Research/Multiscale-Modeling.
[2] 化學中心 綠色/永續化學網路資源共享網http://gc.chem.sinica.edu.tw/new-no-ionic.html ,2018
[3] 张锁江,刘晓敏,姚晓倩,董海峰,张香平,2009,离子液体的前沿、进展及应用.
[4] Taylor, G. I. Disintegration of Water Droplets in an Electric Field, Proc. R. Soc. London, Ser. A, 280(1382), 383-397, (1964).
[5] Taylor, G. I. Studies in electrohydrodynamics. I. The circulation produced in a drop by an electric field. Proc. R. Soc. London, Ser. A, 291 (1425), 159-166, (1966).
[6] Melcher, J. R. and Taylor, G. I., Electrohydrodynamics: A Review of the Role of Interfacial Shear Stresses. Annu. Rev. Fluid Mech., 1(1), 111-145, (1969).
[7] Park, J. U., Hardy M., Kang S. J., et al, High-resolution electrohydrodynamic jet printing. Nat. Mater., 6, 782-789, (2007).
[8] Park, J. U., Lee, J. H., Paik, U., Lu, Y., Rogers, J. A., Nanoscale patterns of oligonucleotides formed by electrohydrodynamic jet printing with applications in biosensing and nanomaterials assembly. Nano Lett., 8(12), 4210-4216, (2008).
[9] Ferraro, P., Coppola, S., Grilli, S., Paturzo, M., Vespini, V., Dispensing nano–pico droplets and liquid patterning by pyroelectrodynamic shooting. Nature Nanotech., 5, 429-435, (2010).
[10] Fenn, J. B., Mann, M., Meng, C. K., Wong, S. F., Whitehouse, C. M., Electrospray ionization for mass spectrometry of large biomolecules. Science, 246(4926), 64-71, (1989).
[11] 電泳,維基百科,出自https://zh.wikipedia.org/wiki/电泳,2018
[12] 靜電紡絲,維基百科,出自https://zh.wikipedia.org/zh-tw/靜電紡絲 ,2018
[13] Ahn, M. M., et al. (2017). "Selective cation depletion from an ionic liquid droplet under an electric field." Journal of Molecular Liquids 244: 117-123.
[14] Zong, D., et al. (2017). "Wettability of a nano-droplet in an electric field: A molecular dynamics study." Applied Thermal Engineering 122: 71-79.
[15] Wang, B.-B., et al. (2014). "Molecular dynamics simulation on evaporation of water and aqueous droplets in the presence of electric field." International Journal of Heat and Mass Transfer 73: 533-541.
[16] Zhao, Y., et al. (2012). "Structure of ionic liquids under external electric field: a molecular dynamics simulation." Molecular Simulation 38(3): 172-178.
[17] 黏度,維基百科,出自https://zh.wikipedia.org/zh-tw/黏度 ,2018
[18] Florian Mu¨ller-Plathe,1998,Reversing the perturbation in nonequilibrium molecular dynamics: An easy way to calculate the shear viscosity of fluids.
[19] 表面張力,維基百科,出自https://zh.wikipedia.org/zh-tw/表面張力 ,2018
[20] R. C. Tolman, J. Chem. Phys., 16, 758–774 (1948).
[21] J. G. Kirkwood and F. P. Buff, J. Chem. Phys., 17, 338–343 (1949).
[22] Ahmed E. Ismail, Gary S. Grest, and Mark J. Stevens(2008), Capillary waves at the liquid-vapor interface and the surface tension of water models, Sandia National Laboratories, Albuquerque, NM 87185.
[23] Peng, T., et al. (2016). "Quantitative analysis of surface tension of liquid nano-film with thickness: Two stage stability mechanism, molecular dynamics and thermodynamics approach." Physica A: Statistical Mechanics and its Applications 462: 1018-1028.
[24] Sinha, N. and J. K. Singh (2017). "Effect of nanoparticles on vapour-liquid surface tension of water: A molecular dynamics study." Journal of Molecular Liquids 246: 244-250.
[25] Werth, S., et al. (2017). "Molecular simulation of the surface tension of 33 multi-site models for real fluids." Journal of Molecular Liquids 235: 126-134.
[26] Lennard-Jones, J. E. Cohesion. Proceedings of the Physical Society 1931, 43, 461-482.
[27] Lennard-Jones,維基百科,出自https://zh.wikipedia.org/wiki/ Lennard-Jones ,2018
[28] 張躍, 谷景華, 尚家香, 馬岳(民96),計算材料基礎,北京航空航天大學出版社,pp. 83-135。
[29] 齊智科技股份有限公司, http://www.fusol-material.com.tw/a/metal/Quarternary_ammonium_Ionic_Liquids/2010/0517/84.html ,2018
[30] Posch, Harald A. (1986-01-01). "Canonical dynamics of the Nosé oscillator: Stability, order, and chaos". Physical Review A. 33 (6): 4253–4265.
[31] Atkinson, Kendall E. (1989), An Introduction to Numerical Analysis (2nd ed.), New York.
[32] M.P. Allen (2004), “Introduction to Molecular Dynamics Simulation”, NIC Series, vol.23, pp.1-28.
校內:2022-09-01公開