簡易檢索 / 詳目顯示

研究生: 郭哲翔
Kuo, Che-Hsiang
論文名稱: 鋼筋混凝土柱在升溫與降溫段之熱變形數值分析
Numerical Analysis of Thermal Deformation of Reinforced Concrete Columns during Heating and Cooling Stages
指導教授: 方一匡
FANG, YI-KUANG
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 85
中文關鍵詞: ANSYS混凝土剝落暫態應變熱變形鋼筋混凝土柱
外文關鍵詞: Ansys, concrete spalling, transient-state strain, thermal strain, RC column
相關次數: 點閱:118下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 建築物受火害時,柱、梁、版等構件會因高溫產生變形,其中以柱的變形最為重要,本研究旨在探討鋼筋混凝土柱在火害升溫與降溫段之熱變形分析與預測;利用ISO 834標準升溫曲線、Eurocode 1降溫曲線模擬升降溫過程,使用ANSYS程式六面體的Solid 5元素分析熱-結構耦合問題,過程中考慮混凝土升溫剝落以及降溫劣化等現象,模擬實驗試體在升溫與降溫過程中鋼筋混凝土柱的行為。
    分析過程中,升溫段之材料組合律使用高溫中混凝土暫態彈性係數、修正後的升溫段之熱膨脹係數,在模擬過程中,使用ANSYS Element Birth and Death功能將大於500℃的混凝土去除,探討混凝土在高溫剝落對柱試體軸向變形造成的影響;降溫段使用高溫中混凝土穩態彈性係數、修正後降溫段之熱膨脹係數,本研究將降溫時混凝土的應變分為自由熱應變(ε_th)、暫態潛應變(ε_tr)以及瞬態應力相關應變(ε_σ),以考慮自由熱應變、暫態潛應變受熱後所產生的不可逆變化,以外,再配合本研究提出的兩個降溫模型及處理流程,用以預測降溫時柱的軸向變形。
    預測結果顯示,升溫段中加入剝落模擬的鋼筋混凝土柱模型之軸向變形預測趨勢和實測值非常接近。在降溫段中,本研究發現軸向位移在升溫之末、降溫之初變化非常快速,會在降溫末期達到最大值,因此,柱在升溫過程或最高溫時沒有發生破壞不能代表降溫過程中就不會發生破壞,此與救災人員在火災發生時進入火場之安全性有關,火害後建築物的危險評估也應考慮此特性。

    The behavior of RC columns in fire is determined by temperature directly. With ISO 834 curve and Eurocode decay rate, we can simulate the heating and cooling stages of RC columns by using regular hexahedron element as known as “Solid 5” in ANSYS. Consider Axial deformation of RC columns with concrete cover spalling at heating and irreversible strain at cooling stage, we can study the deformation of RC columns during fire precisely.
    By use of Eurocode defined transient-state elastic modulus of concrete to simulated the constitutive equation of concrete at heating stage. “Element birth and Death” was input to found and “killed” the element which was heated over 500℃ in ANSYS to simulated “the spalling” of concrete. Also, using Eurocode defined steady-state elastic modulus of concrete to simulated the constitutive equation of concrete at cooling stage, due to irreversible crack, duo-cooling model were took thermal strain(ε_th), instantaneous stress-related strain(ε_σ) and transient creep strain(ε_tr) into consider separately.
    At present, the prediction of axial deformation of RC columns during heating stage has been quite accurate after “the spalling” of concrete cover was simulated. We are discovered axial displacement of RC columns have significant decay at the initial stage of cooling, also the maximum variation of axial displacement was reached at the end of cooling stage. Over all, the predictions of axial deformation of fire damaged columns are quite accurate to the test.

    摘要 I 誌謝 X 目錄 XI 表目錄 XIII 圖目錄 XVI 符號表 XX 第一章、緒論 1 1-1研究動機與目的 1 1-2研究方法與範疇 1 第二章、文獻回顧 3 2-1材料熱性質 3 2-1-1高溫中鋼筋與混凝土的密度、比熱、熱傳導性質 4 2-1-2高溫中鋼筋與混凝土的熱膨脹性質 9 2-2材料力學性質 13 2-2-1高溫中混凝土強度折減曲線 13 2-2-2高溫中鋼筋彈性模數折減曲線 14 2-3 ANSYS 耦合場分析 16 2-3-1耦合場溫度、應力、應變關係 17 2-3-2模型基本假設與參數 19 第三章、數值模擬與驗證 30 3-1 升溫段柱軸向變形之數值模擬與驗證 30 3-1-1升溫段之材料組合 30 3-1-2無剝落影響的模型 34 3-1-3升溫段核心理論:混凝土剝落的模擬 35 3-1-4升溫段的分析流程與算例 38 3-1-5升溫段柱軸向變形分析之結果與討論 48 3-2降溫段柱軸向變形之數值模擬與驗證 56 3-2-1降溫段核心理論:混凝土降溫的應變模擬 57 3-2-2降溫段的分析流程與算例 66 3-2-3降溫段柱軸向變形分析之結果與討論 71 3-3數值模擬總流程 77 第四章、結論 80 第五章、參考文獻 82

    1.
    ANSYS Inc., “Coupled-Field Analysis Guide, Release 12.1,” (2009).
    2.
    ANSYS Inc., “Command Reference, Release 12.0,” (2009).
    3.
    ANSYS Inc., “Elements Reference, Release 5.5,” (1998).
    4.
    Eurocode 1, 1991-1-2: Actions on structures - Part 1-2: General actions -Actions on structures exposed to fire (2002).
    5.
    Eurocode 2, 1992-1-2: Design of concrete structures - Part 1-2: General rules - Structural fire design (1995).
    6.
    Eurocode 3, 1993-1-2: Design of steel structures - Part 1-2: General rules -Structural fire design (2005).
    7.
    Eurocode 4, 1994-1-2: Design of composite steel and concrete structures - Part 1-2 : General rules - Structural fire design (2005)
    8.
    Gernay, T., “Effect of Transient Creep Strain Model on the Behavior of Concrete Columns Subjected to Heating and Cooling,” Fire Technology, Vol. 48, pp. 313-329, (2011).
    9.
    Hassen, S., and Colina, H., “Effect of a heating–cooling cycle on elastic strain and Young’s modulus of high performance and ordinary concrete,” Materials and Structures, Vol. 45, pp. 1861-1875, (2012).
    10.
    Individual Constituents,” Magazine of Concrete Research, Vol. 37, No. 132, pp. 131-143, (1985).
    11.
    James, M.G., and Barry, J.G., “Mechanics of Materials, Seventh Edition (SI Edition),” Cengage Learning, 7th Edition, pp.454-478, (2009).
    12.
    Khoury, G. A., and Grainger, B. N., “Transient Thermal Strain of Concrete: Literature Review, Conditions within Specimen and Behavior of Individual Constituents,” Magazine of Concrete Research, Vol. 37, No. 132, pp. 131-143, (1985).
    13.
    Khoury, G. A., and Grainger, B. N., “Strain of Concrete During First Heating to 600˚C Under Load,” Magazine of Concrete Research, Vol. 37, No. 133, pp. 195-215, (1985).
    14.
    Lee, Yee-Ping, “Investigate the Safety Issues Based on the Results of Full-Scale Tunnel Fire Tests” Chinese Taipei Tunnelling Association, Taiwan, (2009)
    15.
    Lee, Chi-Chung, “Repair of Fire-Damaged Columns Using Self-Compacting Concrete with Polypropylene Fibres Subjected to Fire” TCI 2013 Conference on Concrete Engineering, Paper No. 47, Taiwan, (2013).
    16.
    Lee, Chi-Chung, “Study the Material Properties of Steel Reinforced Concrete after Fire: an Example of the Self-Compacting Concrete” Architecture and Building Research Institute, (2010).
    17.
    Youssef, M. A., and Moftah, M., “General stress-strain relationship for concrete at elevated temperature,” Engineering Structures, No.29, pp.2618-2634, (2007).
    18.
    Nielsen, C. V., and Pearce, C. J., “Theoretical Model of High Temperature Effects on Uniaxial Concrete Member under Elastic Restraint,” Magazine of Concrete Research, Vol. 54, No. 4, pp.239-249, (2002).
    19.
    Poon, L.S., “Predicting Time of Flashover,” AOFST Symposiums 3, (1988).
    20.
    Roberto, S., “Direct Coupled Thermal-Structural Analysis in ANSYS WorkBench,”2013 ESSS Conference & ANSYS Users Meeting, Atibaia, SP – Brasil, (2013).
    21.
    Schneider, U., and Schneider, M., “An Advanced Transient Concrete Model for the Determination of Restraint in Concrete Structures Subjected to Fire,” Journal of Advanced Concrete Technology, V.7, No. 3, pp. 403-413, (2009).
    22.
    T.T. Lie, and T.D. Lin, “Fire Test on Reinforced Concrete Columns Specimens NO. 10-12, Phase II,” National Research Council of Canada, Division of Building Research, DBR Internal Report NO.497, (1985).
    23.
    陳彥霖,「承受偏心載重鋼筋混凝土柱於高溫中之變形」,碩士論文,國立成功大學土木工程研究所,台南(2014)。
    24.
    王江倫,「承受無偏心載重鋼筋混凝土柱於高溫中之變形」,碩士論文,國立成功大學土木工程研究所,台南(2014)。
    25.
    劉彥汶,「鋼筋混凝土柱於高溫中之熱變形預測」,碩士論文,國立成功大學土木工程研究所,台南(2013)。
    26.
    謝承剛,「鋼筋混凝土梁承受火害之性能設計」,碩士論文,國立成功大學土木工程研究所,台南(2012)。
    27.
    王威鈞,「鋼筋混凝土梁承受高溫之強度分析」,碩士論文,國立成功大學土木工程研究所,台南(2012)。
    28.
    張君輔,「鋼筋混凝土梁柱複合構件受高溫之行為研究-普通混凝土梁之行為」,碩士論文,國立成功大學土木工程研究所,台南(2010)。
    29.
    黃瑞賢,「鋼筋混凝土梁柱複合構件受高溫之行為研究-普通混凝土梁之行為」,碩士論文,國立成功大學土木工程研究所,台南(2010)。
    30.
    施玟宇,「鋼筋混凝土梁柱複合構件受高溫之行為研究-自充填混凝土外柱之行為」,碩士論文,國立成功大學土木工程研究所,台南(2009)。
    31.
    陳舜田等人,「火害後鋼筋混凝土柱之補強研究」,國家科學委員會專題研究計畫報告NSC78-0410-E011-13,台北(1990)。

    無法下載圖示 校內:2020-08-25公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE