| 研究生: |
林耕緯 Lin, Keng-Wei |
|---|---|
| 論文名稱: |
靜電紡絲奈米碳纖維應用於膠態高分子電解質鋰離子電池負極和超級電容器電極 Electrospun carbon nanofibers as an anode for gel polymer electrolyte-based Li-ion battery and supercapacitor electrodes. |
| 指導教授: |
羅介聰
Lo, Chieh-tsung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 113 |
| 中文關鍵詞: | 膠態高分子電解質 、鋰離子電池 、超級電容器 、氮摻雜 、靜電紡絲奈米碳纖維 、水熱法 、電漿 |
| 外文關鍵詞: | gel polymer electrolyte, lithium-ion battery, supercapacitor, nitrogen doping, electrospun carbon nanofibers, hydrothermal treatment, nitrogen plasma |
| 相關次數: | 點閱:114 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究將靜電紡絲奈米碳纖維應用於膠態高分子電解質鋰離子電池,並探討奈米碳纖維和膠態高分子電解質的協同效應,以及因製備程序的不同所產生的差異。膠態高分子電解質中的triethylene glycol diacetate-2-propenoic acid butyl ester (TEDGA-BA)交聯網狀共聚物結構和polyvinylidene fluoride (PVdF)形成的物理糾纏,能提供足夠的機械性質,使得膠態高分子電解質複合奈米碳纖維在經過凹折後,仍保持其完整性;此外,交聯網狀共聚物結構上的醚官能基和電解質溶劑產生溶劑化作用,增加對電解質的親和性,並且產生自由體積有助於離子的移動。奈米碳纖維對膠態高分子電解質的吸收率高達1335 %,優於對液態電解質的吸收率473 %;而膠態高分子電解質的鋰離子遷移數高達0.91,優於液態電解質的0.43。搭配膠態高分子電解質複合奈米碳纖維的離子電池在電流密度150 mA/g時有著344 mAh/g的比電容值,以及優於液態電解質鋰離子電池之鋰離子擴散係數(7.5×10-11 cm2/g),並且在300 mA/g下經過250圈充放電後,比電容值達313 mAh/g,優於液態電解質鋰離子電池的293 mAh/g。
本論文亦利用不同改質法製備氮摻雜靜電紡絲奈米碳纖維,作為超級電容器之電極,並且探討相異的改質法如何影響氮摻雜靜電紡絲奈米碳纖維之表面化學和電容特性。將尿素和tetra-2-pyridinylpyrazine作為氮源並以水熱法處理後,碳纖維的氮含量明顯上升。然而,水熱法處理使得碳纖維之比表面積和孔洞體積大幅下降,抵銷由吡啶氮和吡喀氮所貢獻的擬電容,導致比電容值下降;相較之下,經由氮電漿法處理後的碳纖維氮含量些微減少,吡啶氮和吡喀氮的含量亦減少,但氧含量大幅增加,也增加了quinone oxygen的含量,提升了擬電容質和彌補因為吡啶氮和吡喀氮減少所導致的擬電容損失。因此,利用氮電漿法處理的氮摻雜靜電紡絲奈米碳纖維在掃描速率2 mV時具有比電容值286 F/g,優於以水熱法處理的氮摻雜靜電紡絲奈米碳纖維的202 F/g(以尿素作為氮源)、197 F/g(以tetra-2-pyridinylpyrazine作為氮源)。
In this study, electrospun carbon nanofibers were assembled with the gel polymer electrolyte for lithium-ion batteries. The synergistic effects of the carbon nanofibers and gel polymer electrolyte as well as the preparation procedures on the battery performance were discussed. The physical entanglement formed by the triethylene glycol diacetate-2-propenoic acid butyl ester (TEDGA-BA) crosslinked copolymer structure and polyvinylidene fluoride (PVdF) in the gel polymer electrolyte provided favorable mechanical properties. The carbon fiber/gel polymer electrolyte battery maintained its integrity after folding. The ether functional groups on the crosslinked copolymer structure induced solvation with the electrolyte solvent, which increased the fiber affinity with the electrolyte and provided free volume for ion transfer. The electrolyte uptake of carbon nanofibers for the gel polymer electrolyte was 1335%, which was higher than that of carbon nanofibers for the liquid electrolyte (473%). The lithium-ion transfer number in the gel polymer electrolyte was 0.91, which was higher than that in the liquid electrolyte (0.43). The lithium-ion battery composed of carbon nanofibers and the gel polymer electrolyte delivered a specific capacity of 344 mAh/g at a current density of 150 mA/g. Additionally, the lithium-ion diffusion coefficient in the battery composed of the gel polymer electrolyte (7.5×1011 cm2/g) was superior to that in the battery composed of the liquid electrolyte. After repeated charging and discharging at 300 mA/g for 250 cycles, the battery composed of the gel polymer electrolyte exhibited the specific capacity of 313 mAh/g, which was better than the specific capacity of 293 mAh/g for the battery composed of the liquid electrolyte.
This study also investigated use of different modification methods to prepare nitrogen-doped electrospun carbon nanofibers as electrodes for supercapacitors. The effects of different modification approaches on the surface chemistry and capacitive properties of the nitrogen-doped carbon nanofibers were discussed. When carbon nanofibers were subjected to hydrothermal treatments using urea or tetra-2-pyridinylpyrazine (TPPZ) as nitrogen sources, the nitrogen content in the carbon nanofibers increased considerably. However, the hydrothermal treatments greatly reduced the specific surface area and pore volume of the carbon nanofibers, which offset the pseudocapacitance contributed by pyridinic nitrogen and pyrrolic nitrogen, resulting in a decrease in the specific capacitance. By contrast, the nitrogen content in the carbon nanofibers after nitrogen plasma treatment slightly reduced, and the contents of pyridinic nitrogen and pyrrolic nitrogen decreased. However, the oxygen content increased considerably, which simultaneously increased the content of quinone oxygen. The large amount of quinone oxygen compensated the decreased contributions of pyridinic and pyrrolic nitrogen, resulting in an increase in the pseudocapacitance. The carbon nanofibers treated with nitrogen plasma delivered the specific capacitance of 286 F/g at a scan rate of 2 mV/s. The performance was more favorable than the specific capacitance of the nitrogen-doped carbon nanofibers modifed with hydrothermal treatments (202 and 197 F/g using urea and TPPZ as nitrogen sources, respectively).
[1] Chen, Li-Feng; Zhang, Xu-Dong; Liang, Hai-Wei; Kong, Mingguang; Guan, Qing-Fang; Chen, Ping; Wu, Zhen-Yu; Yu, Shu-Hong. Synthesis of nitrogen-doped porous carbon nanofibers as an efficient electrode material for supercapacitors. ACS nano, 6 (8), 7092-7102, 2012.
[2] Libich, Jiří; Máca, Josef; Vondrák, Jiří; Čech, Ondřej; Sedlaříková, Marie. Supercapacitors: Properties and applications. Journal of Energy Storage, 17, 224-227, 2018.
[3] Na, Wonjoo; Jun, Jaemoon; Park, Jin Wook; Lee, Gyeongseop; Jang, Jyongsik. Highly porous carbon nanofibers co-doped with fluorine and nitrogen for outstanding supercapacitor performance. Journal of Materials Chemistry A, 5 (33), 17379-17387, 2017.
[4] Tan, Yongtao; Meng, Lei; Wang, Yanqin; Dong, Wenju; Kong, Lingbin; Kang, Long; Ran, Fen. Negative electrode materials of molybdenum nitride/N-doped carbon nano-fiber via electrospinning method for high-performance supercapacitors. Electrochimica Acta, 277, 41-49, 2018.
[5] Hussain, Shahzad; Amade, Roger; Jover, Eric; Bertran, Enric. Nitrogen plasma functionalization of carbon nanotubes for supercapacitor applications. Journal of Materials Science, 48 (21), 7620-7628, 2013.
[6] Chang, Wei-Min; Wang, Cheng-Chien; Chen, Chuh-Yung. Plasma treatment of carbon nanotubes applied to improve the high performance of carbon nanofiber supercapacitors. Electrochimica Acta, 186, 530-541, 2015.
[7] Han, Li-Na; Wei, Xiao; Zhu, Qian-Cheng; Xu, Shu-Mao; Wang, Kai-Xue; Chen, Jie-Sheng. Nitrogen-doped carbon nets with micro/mesoporous structures as electrodes for high-performance supercapacitors. Journal of Materials Chemistry A, 4 (42), 16698-16705, 2016.
[8] Yamaki, Jun-ichi; Tobishima, Shin-ichi; Hayashi, Katsuya; Saito, Keiichi; Nemoto, Yasue; Arakawa, Masayasu. A consideration of the morphology of electrochemically deposited lithium in an organic electrolyte. Journal of Power Sources, 74 (2), 219-227, 1998.
[9] Besenhard, JO. The electrochemical preparation and properties of ionic alkali metal-and NR4-graphite intercalation compounds in organic electrolytes. Carbon, 14 (2), 111-115, 1976.
[10] 劉素琴, 黃可龍 王兆翔, 鋰離子電池原理與技術. 2010.
[11] Evalue-電動車專業網站.
[12] Global Trend in Renewable Energy. (KPMG), 2016.
[13] Rahner, D; Machill, S; Siury, K; Kloß, M; Plieth, W, Intercalation materials for lithium rechargeable batteries. In New Promising Electrochemical Systems for Rechargeable Batteries, Springer: 1996; pp 35-61.
[14] Tarascon, J-M; Armand, Michel, Issues and challenges facing rechargeable lithium batteries. In Materials for sustainable energy: a collection of peer-reviewed research and review articles from Nature Publishing Group, World Scientific: 2011; pp 171-179.
[15] 洪為民. 鋰離子二次電池原理, 特性與應用. 小型二次電池市場與技術專輯, 工業材料系列叢書, (7), p58-63, 1996.
[16] 林素琴, 大好前景-鋰電池材料發展分析. 工研院電子報: 2009.
[17] Scrosati, Bruno; Garche, Jürgen. Lithium batteries: Status, prospects and future. Journal of Power Sources, 195 (9), 2419-2430, 2010.
[18] 賴世榮. 智慧型鋰離子電池殘存電量估測之研究. 國立中山大學, 高雄市, 2004.
[19] Exnar, I; Kavan, L; Huang, SY; Grätzel, M. Novel 2 V rocking-chair lithium battery based on nano-crystalline titanium dioxide. Journal of power sources, 68 (2), 720-722, 1997.
[20] Toprakci, Ozan; Toprakci, Hatice AK; Ji, Liwen; Zhang, Xiangwu. Fabrication and electrochemical characteristics of LiFePO4 powders for lithium-ion batteries. KONA Powder and Particle Journal, 28, 50-73, 2010.
[21] Vetter, J.; Novák, P.; Wagner, M. R.; Veit, C.; Möller, K. C.; Besenhard, J. O.; Winter, M.; Wohlfahrt-Mehrens, M.; Vogler, C.; Hammouche, A. Ageing mechanisms in lithium-ion batteries. Journal of Power Sources, 147 (1-2), 269-281, 2005.
[22] Eshetu, Gebrekidan Gebresilassie; Diemant, Thomas; Grugeon, Sylvie; Behm, R Jürgen; Laruelle, Stephane; Armand, Michel; Passerini, Stefano. In-depth interfacial chemistry and reactivity focused investigation of lithium–imide-and lithium–imidazole-based electrolytes. ACS applied materials & interfaces, 8 (25), 16087-16100, 2016.
[23] Gao, Yue; Yan, Zhifei; Gray, Jennifer L; He, Xin; Wang, Daiwei; Chen, Tianhang; Huang, Qingquan; Li, Yuguang C; Wang, Haiying; Kim, Seong H. Polymer–inorganic solid–electrolyte interphase for stable lithium metal batteries under lean electrolyte conditions. Nature materials, 18 (4), 384-389, 2019.
[24] Franklin, Rosalind E. Crystallite growth in graphitizing and non-graphitizing carbons. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 209 (1097), 196-218, 1951.
[25] Dahn, Jeff R; Zheng, Tao; Liu, Yinghu; Xue, JS. Mechanisms for lithium insertion in carbonaceous materials. Science, 270 (5236), 590-593, 1995.
[26] Winter, Martin; Besenhard, Jürgen O; Spahr, Michael E; Novak, Petr. Insertion electrode materials for rechargeable lithium batteries. Advanced materials, 10 (10), 725-763, 1998.
[27] Rahaman, Muhammad Syukri Abdul; Ismail, Ahmad Fauzi; Mustafa, Azeman. A review of heat treatment on polyacrylonitrile fiber. Polymer degradation and Stability, 92 (8), 1421-1432, 2007.
[28] Li, Yangxing; Fitch, Brian. Effective enhancement of lithium-ion battery performance using SLMP. Electrochemistry communications, 13 (7), 664-667, 2011.
[29] Wu, Yongzhi; Bobba, Chowdari VR; Ramakrishna, Seeram. Research and application of carbon nanofiber and nanocomposites via electrospinning technique in energy conversion systems. Current Organic Chemistry, 17 (13), 1411-1423, 2013.
[30] Xu, Kang. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chemical reviews, 104 (10), 4303-4418, 2004.
[31] Xu, Kang; von Wald Cresce, Arthur. Li+-solvation/desolvation dictates interphasial processes on graphitic anode in Li ion cells. Journal of Materials Research, 27 (18), 2327-2341, 2012.
[32] Campion, Christopher L; Li, Wentao; Lucht, Brett L. Thermal decomposition of LiPF6-based electrolytes for lithium-ion batteries. Journal of The Electrochemical Society, 152 (12), A2327-A2334, 2005.
[33] Wang, Qingsong; Ping, Ping; Zhao, Xuejuan; Chu, Guanquan; Sun, Jinhua; Chen, Chunhua. Thermal runaway caused fire and explosion of lithium ion battery. Journal of power sources, 208, 210-224, 2012.
[34] Tsao, Chih-Hao; Su, Hou-Ming; Huang, Hsiang-Ting; Kuo, Ping-Lin; Teng, Hsisheng. Immobilized cation functional gel polymer electrolytes with high lithium transference number for lithium ion batteries. Journal of membrane science, 572, 382-389, 2019.
[35] Liu, Ming; Zhou, Dong; He, Yan-Bing; Fu, Yongzhu; Qin, Xianying; Miao, Cui; Du, Hongda; Li, Baohua; Yang, Quan-Hong; Lin, Zhiqun. Novel gel polymer electrolyte for high-performance lithium–sulfur batteries. Nano Energy, 22, 278-289, 2016.
[36] Meyer, Wolfgang H. Polymer electrolytes for lithium‐ion batteries. Advanced materials, 10 (6), 439-448, 1998.
[37] Baskakova, Yu V; Ol'ga, V Yarmolenko; Efimov, Oleg N. Polymer gel electrolytes for lithium batteries. Russian Chemical Reviews, 81 (4), 367, 2012.
[38] Ngai, Koh Sing; Ramesh, S; Ramesh, K; Juan, Joon Ching. A review of polymer electrolytes: fundamental, approaches and applications. Ionics, 22 (8), 1259-1279, 2016.
[39] Yu, Dan; Li, Xinyue; Xu, Jialiang. Safety regulation of gel electrolytes in electrochemical energy storage devices. Science China Materials, 1-18, 2019.
[40] Zhu, Ming; Wu, Jiaxin; Wang, Yue; Song, Mingming; Long, Lei; Siyal, Sajid Hussain; Yang, Xiaoping; Sui, Gang. Recent advances in gel polymer electrolyte for high-performance lithium batteries. Journal of Energy Chemistry, 37, 126-142, 2019.
[41] Wright, Peter V. Electrical conductivity in ionic complexes of poly (ethylene oxide). British polymer journal, 7 (5), 319-327, 1975.
[42] Quartarone, Eliana; Mustarelli, Piercarlo. Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives. Chemical Society Reviews, 40 (5), 2525-2540, 2011.
[43] Kuo, Ping-Lin; Wu, Ching-An; Lu, Chung-Yu; Tsao, Chin-Hao; Hsu, Chun-Han; Hou, Sheng-Shu. High performance of transferring lithium ion for polyacrylonitrile-interpenetrating crosslinked polyoxyethylene network as gel polymer electrolyte. ACS applied materials & interfaces, 6 (5), 3156-3162, 2014.
[44] Liu, Jiuqing; Wu, Xiufeng; He, Junying; Li, Jie; Lai, Yanqing. Preparation and performance of a novel gel polymer electrolyte based on poly (vinylidene fluoride)/graphene separator for lithium ion battery. Electrochimica Acta, 235, 500-507, 2017.
[45] Choe, HS; Giaccai, J; Alamgir, M; Abraham, KM. Preparation and characterization of poly (vinyl sulfone)-and poly (vinylidene fluoride)-based electrolytes. Electrochimica acta, 40 (13-14), 2289-2293, 1995.
[46] Jiang, Z; Carroll, B; Abraham, KM. Studies of some poly (vinylidene fluoride) electrolytes. Electrochimica Acta, 42 (17), 2667-2677, 1997.
[47] Fan, Huanhuan; Li, Hongxiao; Fan, Li-Zhen; Shi, Qiao. Preparation and electrochemical properties of gel polymer electrolytes using triethylene glycol diacetate-2-propenoic acid butyl ester copolymer for high energy density lithium-ion batteries. Journal of Power Sources, 249, 392-396, 2014.
[48] Wang, Qiujun; Song, Wei-Li; Fan, Li-Zhen; Shi, Qiao. Effect of polyacrylonitrile on triethylene glycol diacetate-2-propenoic acid butyl ester gel polymer electrolytes with interpenetrating crosslinked network for flexible lithium ion batteries. Journal of Power Sources, 295, 139-148, 2015.
[49] Gray, Fiona M; Gray, Fiona M, Solid polymer electrolytes: fundamentals and technological applications. VCH New York: 1991.
[50] Zhao, Wenjia; Yi, Jin; He, Ping; Zhou, Haoshen. Solid-State Electrolytes for Lithium-Ion Batteries: Fundamentals, Challenges and Perspectives. Electrochemical Energy Reviews, 1-32, 2019.
[51] Elgrishi, Noémie; Rountree, Kelley J; McCarthy, Brian D; Rountree, Eric S; Eisenhart, Thomas T; Dempsey, Jillian L. A practical beginner’s guide to cyclic voltammetry. Journal of chemical education, 95 (2), 197-206, 2018.
[52] 許雅慧. 以電紡絲法製備奈米碳纖維及其電化學特性之研究. 成功大學化學工程學系學位論文, 1-110, 2013.
[53] Chen, Tao; Dai, Liming. Carbon nanomaterials for high-performance supercapacitors. Materials Today, 16 (7-8), 272-280, 2013.
[54] Besenhard, JO; Hess, M; Komenda, PJSSI. Dimensionally stable Li-alloy electrodes for secondary batteries. Solid State Ionics, 40, 525-529, 1990.
[55] Reneker, Darrell H; Chun, Iksoo. Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology, 7 (3), 216, 1996.
[56] Chen, Da-Ren; Pui, David YH; Kaufman, Stanley L. Electrospraying of conducting liquids for monodisperse aerosol generation in the 4 nm to 1.8 μm diameter range. Journal of Aerosol Science, 26 (6), 963-977, 1995.
[57] Cheng, Yongliang; Huang, Liang; Xiao, Xu; Yao, Bin; Yuan, Longyan; Li, Tianqi; Hu, Zhimi; Wang, Bo; Wan, Jun; Zhou, Jun. Flexible and cross-linked N-doped carbon nanofiber network for high performance freestanding supercapacitor electrode. Nano energy, 15, 66-74, 2015.
[58] Lee, KH; Kim, HY; Bang, HJ; Jung, YH; Lee, SG. The change of bead morphology formed on electrospun polystyrene fibers. Polymer, 44 (14), 4029-4034, 2003.
[59] Zong, Xinhua; Kim, Kwangsok; Fang, Dufei; Ran, Shaofeng; Hsiao, Benjamin S; Chu, Benjamin. Structure and process relationship of electrospun bioabsorbable nanofiber membranes. Polymer, 43 (16), 4403-4412, 2002.
[60] Buchko, Christopher J; Chen, Loui C; Shen, Yu; Martin, David C. Processing and microstructural characterization of porous biocompatible protein polymer thin films. Polymer, 40 (26), 7397-7407, 1999.
[61] He, Tieshi; Fu, Yiran; Meng, Xiangling; Yu, Xiaodong; Wang, Xiuli. A novel strategy for the high performance supercapacitor based on polyacrylonitrile-derived porous nanofibers as electrode and separator in ionic liquid electrolyte. Electrochimica Acta, 282, 97-104, 2018.
[62] Clingerman, Matthew Lee. Development and modelling of electrically conductive composite materials. Michigan Technological University Houghton, 2001.
[63] Fitzer, Erich; Frohs, Wilhelm; Heine, Michael. Optimization of stabilization and carbonization treatment of PAN fibres and structural characterization of the resulting carbon fibres. Carbon, 24 (4), 387-395, 1986.
[64] Mittal, J; Bahl, OP; Mathur, RB. Single step carbonization and graphitization of highly stabilized PAN fibers. Carbon (New York, NY), 35 (8), 1196-1197, 1997.
[65] Zhu, Dan; Xu, Chunye; Nakura, Norie; Matsuo, Masaru. Study of carbon films from PAN/VGCF composites by gelation/crystallization from solution. Carbon, 40 (3), 363-373, 2002.
[66] Kim, Chan; Yang, Kap Seung; Kojima, Masahito; Yoshida, Kazuto; Kim, Yong Jung; Kim, Y Ahm; Endo, Morinobu. Fabrication of electrospinning‐derived carbon nanofiber webs for the anode material of lithium‐ion secondary batteries. Advanced Functional Materials, 16 (18), 2393-2397, 2006.
[67] Ito, Yukio; Kanehori, Keiichi; Miyauchi, Katsuki; Kudo, Tetsuichi. Ionic conductivity of electrolytes formed from PEO-LiCF 3 SO 3 complex low molecular weight poly (ethylene glycol). Journal of materials science, 22 (5), 1845-1849, 1987.
[68] Rodriguez, Jassiel R; Jokhakar, Deep; Rao, Harsha; Lin, Keng-Wei; Lo, Chieh-Tsung; Aguirre, Sandra B; Pol, Vilas G. Freestanding polyimide fiber network as thermally safer separator for high-performance Li metal batteries. Electrochimica Acta, 377, 138069, 2021.
[69] Cao, Jiang; Wang, Li; Fang, Mou; Shang, Yuming; Deng, Lingfeng; Yang, Juping; Li, Jianjun; Chen, Hong; He, Xiangming. Interfacial compatibility of gel polymer electrolyte and electrode on performance of Li-ion battery. Electrochimica acta, 114, 527-532, 2013.
[70] Huang, Li-Yu; Shih, You-Chao; Wang, Shih-Hong; Kuo, Ping-Lin; Teng, Hsisheng. Gel electrolytes based on an ether-abundant polymeric framework for high-rate and long-cycle-life lithium ion batteries. Journal of Materials Chemistry A, 2 (27), 10492-10501, 2014.
[71] Stephan, A Manuel. Review on gel polymer electrolytes for lithium batteries. European polymer journal, 42 (1), 21-42, 2006.
[72] Ryu, Won-Hee; Shin, Jungwoo; Jung, Ji-Won; Kim, Il-Doo. Cobalt (II) monoxide nanoparticles embedded in porous carbon nanofibers as a highly reversible conversion reaction anode for Li-ion batteries. Journal of Materials Chemistry A, 1 (10), 3239-3243, 2013.
[73] Wang, Chunsheng; Appleby, A John; Little, Frank E. Irreversible capacities of graphite anode for lithium-ion batteries. journal of electroanalytical chemistry, 519 (1-2), 9-17, 2002.
[74] Pandey, Gaind P; Klankowski, Steven A; Li, Yonghui; Sun, Xiuzhi Susan; Wu, Judy; Rojeski, Ronald A; Li, Jun. Effective infiltration of gel polymer electrolyte into silicon-coated vertically aligned carbon nanofibers as anodes for solid-state lithium-ion batteries. ACS applied materials & interfaces, 7 (37), 20909-20918, 2015.
[75] Shih, Guang-Hao; Liu, Wei-Ren. A facile microwave-assisted approach to the synthesis of flower-like ZnCo 2 O 4 anode materials for Li-ion batteries. RSC advances, 7 (67), 42476-42483, 2017.
[76] Goodenough, John B; Kim, Youngsik. Challenges for rechargeable Li batteries. Chemistry of materials, 22 (3), 587-603, 2010.
[77] Zhang, HP; Zhang, P; Li, ZH; Sun, M; Wu, YP; Wu, HQ. A novel sandwiched membrane as polymer electrolyte for lithium ion battery. Electrochemistry communications, 9 (7), 1700-1703, 2007.
[78] 黃莉玉. 聚丙烯腈結合多醚基高分子為主架構之膠態電解質在鋰離子電池之應用. 2014.
[79] Lu, Yingying; Tu, Zhengyuan; Archer, Lynden A. Stable lithium electrodeposition in liquid and nanoporous solid electrolytes. Nature materials, 13 (10), 961-969, 2014.
[80] Malmgren, Sara; Ciosek, Katarzyna; Hahlin, Maria; Gustafsson, Torbjörn; Gorgoi, Mihaela; Rensmo, Håkan; Edström, Kristina. Comparing anode and cathode electrode/electrolyte interface composition and morphology using soft and hard X-ray photoelectron spectroscopy. Electrochimica Acta, 97, 23-32, 2013.
[81] Leroy, S; Blanchard, F; Dedryvere, R; Martinez, Hervé; Carré, B; Lemordant, D; Gonbeau, Danielle. Surface film formation on a graphite electrode in Li‐ion batteries: AFM and XPS study. Surface and Interface Analysis: An International Journal devoted to the development and application of techniques for the analysis of surfaces, interfaces and thin films, 37 (10), 773-781, 2005.
[82] Pal S áBadyal, Jas. Surface modification of poly (vinylidene difluoride)(PVDF) by LiOH. Journal of the Chemical Society, Chemical Communications, (14), 958-959, 1991.
[83] Cho, Jinhyun; Jung, Yun-Chae; Lee, Yun Sung; Kim, Dong-Won. High performance separator coated with amino-functionalized SiO2 particles for safety enhanced lithium-ion batteries. Journal of Membrane Science, 535, 151-157, 2017.
[84] Chodankar, Nilesh R; Ji, Su-Hyeon; Kim, Do-Heyoung. Surface modified carbon cloth via nitrogen plasma for supercapacitor applications. Journal of The Electrochemical Society, 165 (11), A2446, 2018.
[85] Miao, Fujun; Shao, Changlu; Li, Xinghua; Wang, Kexin; Liu, Yichun. Flexible solid-state supercapacitors based on freestanding nitrogen-doped porous carbon nanofibers derived from electrospun polyacrylonitrile@ polyaniline nanofibers. Journal of Materials Chemistry A, 4 (11), 4180-4187, 2016.
[86] Wang, Keliang; Xu, Ming; Gu, Yan; Gu, Zhengrong; Liu, Jun; Fan, Qi Hua. Low-temperature plasma exfoliated n-doped graphene for symmetrical electrode supercapacitors. Nano Energy, 31, 486-494, 2017.
[87] Naito, Kazuya; Tachikawa, Takashi; Fujitsuka, Mamoru; Majima, Tetsuro. Single-molecule fluorescence imaging of the remote TiO2 photocatalytic oxidation. The Journal of Physical Chemistry B, 109 (49), 23138-23140, 2005.
[88] Lota, Grzegorz; Tyczkowski, Jacek; Kapica, Ryszard; Lota, Katarzyna; Frackowiak, Elzbieta. Carbon materials modified by plasma treatment as electrodes for supercapacitors. Journal of Power Sources, 195 (22), 7535-7539, 2010.
[89] Shao, Yuyan; Zhang, Sheng; Engelhard, Mark H; Li, Guosheng; Shao, Guocheng; Wang, Yong; Liu, Jun; Aksay, Ilhan A; Lin, Yuehe. Nitrogen-doped graphene and its electrochemical applications. Journal of Materials Chemistry, 20 (35), 7491-7496, 2010.
[90] Wang, Ying; Shao, Yuyan; Matson, Dean W; Li, Jinghong; Lin, Yuehe. Nitrogen-doped graphene and its application in electrochemical biosensing. ACS nano, 4 (4), 1790-1798, 2010.
[91] Seredych, Mykola; Hulicova-Jurcakova, Denisa; Lu, Gao Qing; Bandosz, Teresa J. Surface functional groups of carbons and the effects of their chemical character, density and accessibility to ions on electrochemical performance. Carbon, 46 (11), 1475-1488, 2008.
[92] Hulicova‐Jurcakova, Denisa; Seredych, Mykola; Lu, Gao Qing; Bandosz, Teresa J. Combined effect of nitrogen‐and oxygen‐containing functional groups of microporous activated carbon on its electrochemical performance in supercapacitors. Advanced functional materials, 19 (3), 438-447, 2009.
[93] Wang, Haibo; Maiyalagan, Thandavarayan; Wang, Xin. Review on recent progress in nitrogen-doped graphene: synthesis, characterization, and its potential applications. AcS catalysis, 2 (5), 781-794, 2012.
[94] Andreas, Heather A; Conway, Brian E. Examination of the double-layer capacitance of an high specific-area C-cloth electrode as titrated from acidic to alkaline pHs. Electrochimica Acta, 51 (28), 6510-6520, 2006.
[95] Raymundo‐Piñero, Encarnacion; Leroux, Fabrice; Béguin, François. A high‐performance carbon for supercapacitors obtained by carbonization of a seaweed biopolymer. Advanced Materials, 18 (14), 1877-1882, 2006.
[96] Montes-Morán, MA; Suárez, D; Menéndez, JA; Fuente, E. On the nature of basic sites on carbon surfaces: an overview. Carbon, 42 (7), 1219-1225, 2004.
[97] Frackowiak, Elzbieta. Carbon materials for supercapacitor application. Physical chemistry chemical physics, 9 (15), 1774-1785, 2007.
[98] Lee, Ying-Hui; Chang, Kuo-Hsin; Hu, Chi-Chang. Differentiate the pseudocapacitance and double-layer capacitance contributions for nitrogen-doped reduced graphene oxide in acidic and alkaline electrolytes. Journal of Power Sources, 227, 300-308, 2013.
校內:2026-08-19公開