| 研究生: |
劉嘉楷 Liu, Jia-Kai |
|---|---|
| 論文名稱: |
利用角向捏縮作為EUV光源中氣體羽流之研究 Study of the gas puff in the EUV light source using a theta pinch |
| 指導教授: |
張博宇
Chang, Po-Yu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 太空與電漿科學研究所 Institute of Space and Plasma Sciences |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 英文 |
| 論文頁數: | 185 |
| 中文關鍵詞: | 極紫外光 、放電電漿 、角向捏縮 、氣體羽流 、收縮發散噴嘴 、Schlieren系統 |
| 外文關鍵詞: | Extreme ultraviolet (EUV), Discharge-produced plasma (DPP), Theta pinch, Gas puff, Convergent-divergent nozzle, Schlieren system |
| 相關次數: | 點閱:200 下載:17 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要是產生氬氣羽流,將用於產生極紫外光光刻所需的光源。極紫外光光刻技術被認為是這一代半導體工藝中最先進的技術之一,我們想藉由角向捏縮電漿羽流來產生極紫外光光刻光源,當電漿羽流的溫度到達約30 eV,就會輻射出極紫外光。為了驅動角向捏縮,我們建造了一個1 kJ的脈衝功率系統,該系統可以提供峰值135±1 kA的電流、1592±3 ns的上升時間和大約600 MW的輸出功率,然後,藉由小型脈衝功率系統驅動電弧放電,使氬氣游離產生氬氣電漿羽流。因此,我們使用裝有不同氣壓的緩衝氣瓶的脈衝氣閥產生氬氣羽流,並且使用紋影系統(Schlieren system)拍攝氣體羽流,探討在不同情況下的流動變化。在實驗中,我們使用了24 V和12 V的脈衝氣閥,並且以不同的實驗設計對兩者分別進行測試。在24 V脈衝氣閥的實驗中,結果顯示,脈衝氣閥設置在距離凸透鏡前20 cm、垂直於桌面的紋影遮光刀鋒、25°C 的氣體溫度、V5A的收縮發散噴嘴以及5 atm氣壓差的實驗設置下,成效最好;在12 V脈衝氣閥的實驗中,結果顯示,無收縮發散噴嘴以及5 atm氣壓差的實驗設計下,成效最好。除此之外,12 V的脈衝氣閥出口直徑為5.5 mm,比24 V的大,所以12 V的影像對比程度大於24 V的影像。因此,如果我們想要透過紋影影像清楚觀察到氣體羽流或電漿羽流的流動變化,較大的脈衝氣閥的出口直徑是比較好的。
In this thesis, we are working on generating the gas puff which will be used in an extreme ultraviolet (EUV) light source for EUV lithography. EUV lithography is considered as one of the most advanced technology in this generation of semiconductor process. We would like to generate the EUV lithography light source by compressing the plasma plume with a theta pinch. The temperature of the plasma plume potentially reaches ~30 eV and radiates the EUV light. To drive the theta pinch, we have built a 1-kJ pulsed-power system which can provide a pulsed current with a peak current of 135 ± 1 kA, a rise time of 1592 ± 3 ns, and a peak power of ~600 MW. And then, a plasma plume will be generated by a plasma gun which ionized an Argon gas puff via arc discharge driven by a small pulsed-power system. The gas puff was generated by a pulsed valve with a gas reservoir with different gas pressure. Images of the gas puff were taken by a Schlieren system. We studied how gas puff propagated differently with different conditions. The gas puff was generated by either a 24-V pulse valve or a 12-V pulse valve. Then, we have tested many experimental setups with both of them. We found that the condition of the pulse valve set at 20 cm from the convex lens, the vertical knife-edge in Schlieren system, the 25°C gas temperature, the V5A Convergent-divergent nozzle (CDN), and the 5-atm pressure difference was the best in experiments using the 24-V pulse valve. Furthermore, the condition without Convergent-divergent nozzle (CDN) and the 5-atm pressure difference was the best in experiments using the 12-V pulse valve. However, the output diameter of the 12-V pulse valve is 5.4 mm, which is larger than that of the 24-V pulse valve. Therefore, the contrast of the image in the 12-V pulse valve was higher than in the 24-V pulse valve. It shows that the larger output diameter of the pulse valve is better if we would like to observe either the gas puff or the plasma plume clearly through the schlieren images.
[1] https://case.ntu.edu.tw/blog/?p=33519.
[2] Po-Yu Chang. Proposal aec most euv.
[3] https://www.engapplets.vt.edu/?uids/cdnozzle/cdinfo.html.
[4] https://zh.wikipedia.org/zh-tw/
[5] Wen-long Yang Wen-yue Wang, Dong Ruige. Sensitivity investigation of schlieren imaging
system. Laser Optoelectronics Progress, 2018.
[6] Vivek Bakshi. Euv sources for lithography. SPIE, 2006.
[7] Gordon E. Moore. Cramming more components onto integrated circuits. reprinted from
electronics, 1965.
[8] https://www.tsmc.com/english/dedicatedfoundry/technology.
[9] Martyn Leenders Vadim Banine, Jos P. Benschop and Roel Moors. Relationship between
an euv source and the performance of an euv lithographic system. Emerging Lithographic
Technologies IV, 2000.
[10] Igor V. Fomenkov William N. Partlo and Daniel L. Birx. Euv (13.5-nm) light generation
usinga dense plasma focus device. Emerging Lithographic Technologies III, 1999.
[11] G. S. Settles. Schlieren And Shadowgraph Techniques. Springer, 2001.
[12] Ming-Cheng Jheng. Development of a 400 mw pulsed-power system. National Cheng Kung
University Institute of Space and Plasma Sciences, 2019.
[13] R.S. Rawat Paul Lee Sing Lee, Sor Heoh Saw. Measurement and processing of fast pulsed
discharge current in plasma focus machines. Journal of Fusion Energy, 2011.
[14] Chieh-Jui Hsieh. Generation of plasma jets using a conical-wire array driven by a pulsedpower system. National Cheng Kung University Institute of Space and Plasma Sciences,
2020.