| 研究生: | 翁慕理 Weng, Mu-Li | 
|---|---|
| 論文名稱: | 純彎曲鬆弛負載下圓孔管之行為 Response of Round-hole Tubes under Pure Bending Relaxation | 
| 指導教授: | 潘文峰 Pan, Wen-Feng | 
| 學位類別: | 碩士 Master | 
| 系所名稱: | 工學院 - 工程科學系 Department of Engineering Science | 
| 論文出版年: | 2020 | 
| 畢業學年度: | 108 | 
| 語文別: | 中文 | 
| 論文頁數: | 73 | 
| 中文關鍵詞: | 6061-T6鋁合金圓孔管 、純彎曲鬆弛 、外徑壁厚比 、圓孔直徑 、鬆弛彎矩 、曲率 、橢圓化 | 
| 外文關鍵詞: | round-hole 6061-T6 aluminum alloy tubes, pure bending relaxation, diameter-to-thickness ratios, round-hole diameters, relaxation moment, curvature, ovalization | 
| 相關次數: | 點閱:93 下載:3 | 
| 分享至: | 
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 | 
本文主要針對不同外徑/壁厚比6061-T6鋁合金圓孔管進行純彎曲鬆弛負載的實驗,以探討相關的力學行為,而純彎曲鬆弛的負載是指將圓孔管彎曲至某個固定曲率後,維持該曲率一段長時間。實驗的圓孔管共有四種不同的外徑/壁厚比分別為:30、40、50與60,每種外徑/壁厚比的圓孔管各有不同的圓孔直徑分別為:2、4、6、8與10 mm。本研究以不同的控制曲率對圓孔管進行純彎曲鬆弛負載的實驗,並將實驗的結果繪成圖表包含有:彎矩-曲率、彎矩-時間及橢圓化-時間的關係。從彎矩-時間的關係圖中顯示,純彎曲鬆弛負載會使得彎矩快速的減少後便漸漸趨近於一穩定的量,而從橢圓化-時間的關係圖中顯示,純彎曲鬆弛負載會使得橢圓化些許的增加後便漸漸趨近於一穩定的量,由於橢圓化不會增加,所以圓孔管不會發生任何損壞。最後,本文根據實驗結果彙整後提出相關的理論來描述不同外徑/壁厚比6061-T6鋁合金圓孔管在不同曲率控制純彎曲鬆弛負載下彎矩與時間的關係,並與實驗結果相互比較後可發現,理論可以合理的描述實驗結果。
This paper presents the experiment and theoretical results of round-hole 6061-T6 aluminum alloy tubes under pure bending relaxation. Four different diameter-to- thickness ratio (D/t ratio) of 30, 40, 50, 60 and five different round-hole diameters of 2, 4, 6, 8 and 10 mm were considered. The pure bending relaxation is to bend the tube to a desired curvature and hold that curvature constant for a period of time. During the experiment of pure bending relaxation, the bending moment decreases rapidly with time and becomes a steady value after a short period of time. In addition, the amount of ovalization increases a little with time and becomes a steady value. Due to the constant ovalization caused by the constant curvature under pure bending relaxation, the round-hole 6061-T6 aluminum alloy tube does not break. Finally, a theoretical form was employed in this study in order to describe the relationship between the bending moment and time. Theoretical analysis is compared with the experimental finding, it is shown that the theoretical formulation can reasonably simulate the experimental results.
1.	W. F. Pan, T. R. Wang and C. M. Hsu, A curvature-ovalization measurement apparatus for circular tubes under cyclic bending, Experimental Mechanics, Vol. 38, No. 2, pp. 99-102 (1998).
2.	W. F. Pan and Y. S. Her, Viscoplastic collapse of thin-walled tubes under cyclic bending, Journal of Engineering Materials and Technology, Vol. 120, No. 4, pp. 287-290 (1998).
3.	W. F. Pan and C. H. Fan, An experimental study on the effect of curvature-rate at preloading stage on subsequent creep or relaxation of thin-walled tubes under pure bending, JSME International Journal, Series A, Vol. 41, No. 4, pp. 525-531 (1998).
4.	K. L. Lee, W. F. Pan and J. N. Kuo, The influence of the diameter-to-thickness ratio on the stability of circular tubes under cyclic bending, International Journal of Solids and Structures, Vol. 38, No. 14, pp. 2401-2413 (2001).
5.	W. F. Pan and K. L. Lee, The effect of mean curvature on the response and collapse of thin-walled tubes under cyclic bending, JSME International Journal, Series A, Vol. 45, No. 2, pp. 309-318 (2002).
6.	K. L. Lee and W. F. Pan, Pure bending creep of SUS304 stainless steel tubes, Steel and Composite Structures, Vol. 2, No. 6, pp. 461-474 (2002).
7.	K. L. Lee, W. F. Pan and C. M. Hsu, Experimental and theoretical evaluations of the effect between diameter-to-thickness ratio and curvature-rate on the stability of circular tubes under cyclic bending, JSME International Journal, Series A, Vol. 47, No. 2, pp. 212-222 (2004)
8.	K. H. Chang, W. F. Pan and K. L., Mean moment effect on circular thin-walled tubes under cyclic bending, Structural Engineering and Mechanics, Vol. 28, No. 5, pp. 495-514 (2008).
9.	K. H. Chang and W. F. Pan, Buckling life estimation of circular tubes under cyclic bending, International Journal of Solids and Structures, Vol. 46, No. 2, pp. 254-270 (2009).
10.	K. L. Lee, C. Y. Hung and W. F. Pan, Variation of ovalization for sharp-notched circular tubes under cyclic bending, Journal of Mechanics, Vol. 26, No. 3, pp. 403- 411 (2010).
11.	K. L. Lee, C. M. Hsu and W. F. Pan, The influence of mean curvatures on the collapse of sharp-notched circular tubes under cyclic bending, Journal of Chinese Society of Mechanical Engineering, Vol. 34, No. 5, pp. 461-468 (2013).
12.	K. L. Lee, C. M. Hsu and W. F. Pan, Response of sharp-notched circular tubes under bending creep and relaxation, Mechanical Engineering Journal, Vol. 1, No. 2, pp. 1-14 (2014).
13.	K. L. Lee, C. C. Chung and W. F. Pan, Growing and critical ovalization for sharp-notched 6061-T6 aluminum alloy tubes under cyclic bending, Journal of Chinese Institute of Engineers, Vol. 39, No. 8, pp. 926-935 (2016).
14.	C. C. Chung, K. L. Lee and W. F. Pan, Collapse of sharp-notched 6061-T6 aluminum alloy tubes under cyclic bending, International Journal of Structural Stability and Dynamics, Vol. 16, No. 7, 1550035 [24 pages] (2016).
15.	K. L. Lee, K. H. Chang and W. F. Pan, Effect of notch depth and direction on stability of local sharp-notched circular tubes subjected to cyclic bending, International Journal of Structural Stability and Dynamics, Vol. 18, No. 7, 1850090 [23 pages] (2018).
16.	K. L. Lee, M. L. Weng and W. F. Pan, On the failure of round-hole tubes under cyclic bending, Journal of Chinese Society of Mechanical Engineering, Vol. 40, No. 6, pp. 663-673 (2019).