| 研究生: |
蔡翊家 Chai, Yi-Jia |
|---|---|
| 論文名稱: |
微藻類於微型生物反應器之培養及分析 Cultivation and Analysis of Microalgae in Microfluidic Bioreactor |
| 指導教授: |
王翔郁
Wang, Hsiang-Yu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 97 |
| 中文關鍵詞: | 微藻培養 、微流體裝置 、碳源 、電場 |
| 外文關鍵詞: | Microalgae cultivation, Microfluidic bioreactor, Carbon source, Electric field |
| 相關次數: | 點閱:160 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究探討小球藻及柵藻在不同培養條件下於微型生物反應器裡進行連續式培養,並利用微量盤分光光譜儀對培養在微型生物反應器內的小球藻及柵藻進行掃描,以光學密度(Optical Density, O.D.)在波長為440 nm及682 nm的吸收度結果來探討微藻於微型生物反應器培養的反應變化。
一般傳統對微藻培養條件最適化不但耗時及步驟複雜,而且測試微藻所需的樣品量較大,加上微藻測試樣品需經傳統實驗室培養方式數天後才可使用,因此本研究利用微型生物反應器進行小球藻及柵藻的培養,並可在同時段進行色素及細胞數(葉綠素)的O.D.掃描及分析。實驗首先證明微流體裝置可適用於微藻掃描分析,我們利用不同微藻濃度為測試樣品,接著使用一般UV分光光度儀及微量盤分光光譜儀進行色素及細胞數的O.D.吸收值的比較。實驗結果發現這兩台儀器測出來的吸收值與微型生物反應器得到的結果呈現好的回歸性(R2>0.95),代表微型生物反應器可適於在檢測微藻的分析,並可利用O.D.對色素及細胞數的檢量線進行推算,以比較微型生物反應器與傳統實驗生物培養方式內微藻的細胞數及色素含量。
本研究接著探討微藻於微型生物反應器培養的可行性,我們利用起始O.D.682值為0.1的微藻放入微型生物反應器進行4天的培養,並在每24小時將微型生物反應器移至微量盤分光光度儀進行掃描觀察其生長。經由4天之後,小球藻細胞數(O.D.682)的吸收度增加至0.72,證明了微藻於微型生物反應器里進行培養的可行性,另外本實驗也觀察小球藻的色素(O.D.440)吸收度由0.11增加為0.58。
本研究接著施加不同電場及不同碳源種類作為不同培養條件來觀察微藻在微型生物反應器內其色素及細胞數的變化情況。實驗中各各別加入10 g/L的葡萄糖、蔗糖及醋酸鈉為不同碳源進行實驗,結果發現醋酸鈉及葡萄糖各別為小球藻和柵藻的最佳培養碳源,小球藻色素(O.D.440)及細胞數(O.D.682)在120小時的培養下,吸收值各別大約從初始值0.11及0.1升到2.67及2.48;至於柵藻的色素及細胞數的吸收度也各別大約從初始值0.11及0.1各增加至1.69及1.41。另外添加10 V/cm電場的情況下,微藻的生長況更好,小球藻的色素及細胞數在連續培養下的吸收值最高可達到2.70及2.56,生物量的產量為2.71 g/L;柵藻的色素及細胞數吸收度則為2.25及1.91,生物量的產量為2.22 g/L。此實驗結果由於是因為在電場的刺激下不僅刺激微藻的生長,微藻內的色素不斷被外加電子引發的氧化反應消耗,微藻為了不讓本身的色素被耗盡而增強自身色素的生產。
以上實驗結果我們可以證實微藻可在微型生物反應器中培養,並且可以透過微量盤分光光度儀利用O.D.值進行對微藻色素及細胞數的掃描。不僅可以提供快速及少量樣品的檢測方法,而且可同時間進行多種培養條件的篩選。另外,微藻培養中各別加入醋酸鈉及葡萄糖為小球藻及柵藻碳源且添加電場可提升微藻的生長及速率,相對於無添加任何條件的微藻培養高出約2~3倍。
This study presents the cultivation and monitoring of Chlorella vulgaris and Scenedesmus abundans GH-D11 on a microfluidic platform, which is compatible to commercially and readily available plate readers. The properties of cell, including microalgae cell density (O.D.682) and total pigment (O.D.440), were determined by absorbance read by a plate reader during cultivation. Conventional screening methods for optimization of microalgae culture are time-consuming and complicated. Therefore, this research aims for developing prompt culture and rapid quantification of microalgae cellular contents using microfluidic bioreactor. In this study, the effects of carbon source and electric field on microalgae cultivation are investigated. The results show microalgae were cultivated better, indicated by more abundant pigment and cell density, by applying suitable carbon source and electric field. Chlorella vulgaris had high cell density (O.D.682=2.57, biomass = 2.71 g/L) and abundant pigment (O.D.440=2.71) after 120 hour of cultivation with sodium acetate as carbon source and 10 V/cm electric field. Scenedesmus abundans had the absorbance value of 2.25 and 1.92 in pigment and cell density after 120 hour of cultivation with glucose and 10 V/cm electric field and the biomass was 2.23 g/L. In summary, our microfluidic platform provides not only fast and convenient way to determining microalgae cellular contents but also considerably decreases the amount of microalgae cell culture size for screening cultivation parameters.
[1] J. C. Montanez, J. R. Benavente-Valdés, C. N. Aguilar and A. Méndez-Zavala, "Effect of electric field in chlorophyll and carotenoids production by Chlorella vulgaris under photoeterotrophic culture," American Institute of Chemical Engineers Annual Meeting, 2014.
[2] V. Gokmen, S. Bahçeci, and J. Acar, "Liquid chromatographic method for the determination of chlorophylls, carotenoids, and their derivatives in fresh and processed vegerables," Journal of Liquid Chromatography & Related Technologies, vol. 25, pp. 1201-1213, 2005.
[3] P. Spolaore, C. Joannis-Cassan, E. Duran, and A. Isambert, "Commercial applications of microalgae," Journal of Bioscience and Bioengineering, vol. 101, pp. 87-96, 2006.
[4] M. J. Griffiths, C. Garcin, R. P. van Hille, and S. T. L. Harrison, "Interference by pigment in the estimation of microalgal biomass concentration by optical density," Journal of Microbiological Methods, vol. 85, pp. 119-123, 2011.
[5] R. F. C. Mantoura and C. A. Llewellyn, "The rapid determination of algal chlorophyll and carotenoid pigments and their breakdown products in natural waters by reverse-phase high-performance liquid chromatography," Analytica Chimica Acta, vol. 151, pp. 297-314, 1983.
[6] G. Sievers and P. H. Hynninen, "Thin-layer chromatography of chlorophylls and their derivatives on cellulose layers," Journal of Chromatography A, vol. 134, pp. 359-364, 1977.
[7] J.-Y. An, S.-J. Sim, J. Lee, and B. Kim, "Hydrocarbon production from secondarily treated piggery wastewater by the green alga Botryococcus braunii," Journal of Applied Phycology, vol. 15, pp. 185-191, 2003.
[8] M. M. Bahi, M. N. Tsaloglou, M. Mowlem, and H. Morgan, "Electroporation and lysis of marine microalga Karenia brevis for RNA extraction and amplification," Journal of the Royal Society Interface, vol. 8, pp. 601-608, 2011.
[9] S.-Y. Chiu, C.-Y. Kao, C.-H. Chen, T.-C. Kuan, S.-C. Ong, and C.-S. Lin, "Reduction of CO2 by a high-density culture of Chlorella sp. in a semicontinuous photobioreactor," Bioresource Technology, vol. 99, pp. 3389-3396, 2008.
[10] C.-H. Hsieh and W.-T. Wu, "Cultivation of microalgae for oil production with a cultivation strategy of urea limitation," Bioresource Technology, vol. 100, pp. 3921-3926, 2009.
[11] H. Linschitz and K. Sarkanen, "The absorption spectra and decay kinetics of the metastable states of chlorophyll a and b1," Journal of the American Chemical Society, vol. 80, pp. 4826-4832, 1958.
[12] G. T. Roman and R. T. Kennedy, "Fully integrated microfluidic separations systems for biochemical analysis," Journal of Chromatography A, vol. 1168, pp. 170-188, 2007.
[13] L. Y. Yeo, H. C. Chang, P. P. Chan, and J. R. Friend, "Microfluidic devices for bioapplications," Small, vol. 7, pp. 12-48, 2011.
[14] A. Manz, N. Graber, and H. á. Widmer, "Miniaturized total chemical analysis systems: a novel concept for chemical sensing," Sensors and actuators B: Chemical, vol. 1, pp. 244-248, 1990.
[15] N. Thaitrong, R. Charlermroj, O. Himananto, C. Seepiban, and N. Karoonuthaisiri, "Implementation of microfluidic sandwich ELISA for superior detection of plant pathogens," PLoS ONE, vol. 8, p. e83231, 2013.
[16] J. El-Ali, P. K. Sorger, and K. F. Jensen, "Cells on chips," Nature, vol. 442, pp. 403-411, 2006.
[17] J. Kim, M. Johnson, P. Hill, and B. K. Gale, "Microfluidic sample preparation: cell lysis and nucleic acidpurification," Integrative Biology, vol. 1, pp. 574-586, 2009.
[18] A. Han, H. Hou, L. Li, H. S. Kim, and P. de Figueiredo, "Microfabricated devices in microbial bioenergy sciences," Trends in Biotechnology, vol. 31, pp. 225-232, 2013.
[19] H. S. Lim, J. Y. H. Kim, H. S. Kwak, and S. J. Sim, "Integrated microfluidic platform for multiple processes from microalgal culture to lipid extraction," Analytical Chemistry, vol. 86, pp. 8585-8592, 2014.
[20] M. Marimuthu and S. Kim, "Pumpless steady-flow microfluidic chip for cell culture," Analytical Biochemistry, vol. 437, pp. 161-163, 2013.
[21] M. D. Guiry, "How many species of algae are there?," Journal of Phycology, vol. 48, pp. 1057-1063, 2012.
[22] J. Van Wagenen, S. L. Holdt, D. De Francisci, B. Valverde-Pérez, B. G. Plósz, and I. Angelidaki, "Microplate-based method for high-throughput screening of microalgae growth potential," Bioresource Technology, vol. 169, pp. 566-572, 2014.
[23] H. Pereira, L. Barreira, A. Mozes, C. Florindo, C. Polo, C. Duarte, et al., "Microplate-based high throughput screening procedure for the isolation of lipid-rich marine microalgae," Biotechnology for Biofuels, vol. 4, p. 61, 2011.
[24] K. Radzun, J. Wolf, G. Jakob, E. Zhang, E. Stephens, I. Ross, et al., "Automated nutrient screening system enables high-throughput optimisation of microalgae production conditions," Biotechnology for Biofuels, vol. 8, p. 65, 2015.
[25] R. S. C. Annamaria D. S. Vidotti, Liliana M. Franco, Telma T. Franco, "Miniaturized culture for heterotrophic microalgae using low cost carbon sources as a tool to isolate fast and economical strains," Chemical Engineering Transactions, vol. 38, p. 325, 2014.
[26] Á. González-Garcinuño, A. Tabernero, J. M. Sánchez-Álvarez, E. M. Martin del Valle, and M. A. Galán, "Effect of nitrogen source on growth and lipid accumulation in Scenedesmus abundans and Chlorella ellipsoidea," Bioresource Technology, vol. 173, pp. 334-341, 2014.
[27] D. Rego, L. M. Redondo, V. Geraldes, L. Costa, J. Navalho, and M. T. Pereira, "Control of predators in industrial scale microalgae cultures with pulsed electric fields," Bioelectrochemistry, vol. 103, pp. 60-64, 2015.
[28] M. Goettel, C. Eing, C. Gusbeth, R. Straessner, and W. Frey, "Pulsed electric field assisted extraction of intracellular valuables from microalgae," Algal Research, vol. 2, pp. 401-408, 2013.
校內:2017-09-01公開