| 研究生: |
吳承諺 Wu, Cheng-Yen |
|---|---|
| 論文名稱: |
迴轉式工具機液靜壓導軌最佳化設計應用灰關聯式田口基因法之研究 A Study on Optimal Design of a Hydrostatic Guideway by using HTGA/Gray method on Rotary machine tool |
| 指導教授: |
施明璋
Shih, Ming-Chang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 67 |
| 中文關鍵詞: | 液靜壓導軌系統 、灰關聯田口基因 |
| 外文關鍵詞: | hydrostatic rail system, HTGA/Gray |
| 相關次數: | 點閱:113 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
工具機產業是一個國家的樞紐工業,工具機產業與製造業存著密不可分的關係,工具機精益求精的發展,帶動製造業在生產效能及產品精度的表現,使工具機產業培養了最專業的人才與最密集的技術,工具機產業的發展帶動國家對外競爭力的影響不容忽視,也因此工具機產業被視為國家工業化程度的指標。台灣工具機產業憑藉彈性製造及應變的能力,以擅於為客戶訂製產品且物美價廉見長,具有組裝產能迅速及零件取得容易的優勢。因此為提升國內工具機產業於國際舞台之能見度並邁向高精度的趨勢,導軌的最佳化設計成為一大重點。
本研究將設計一壓力均勻分佈之液靜壓導軌運用於中小型迴轉式工具機,透過具快速收斂、最少參數組合、多品質特性與全域性搜尋之灰關聯田口基因整合型最佳化法及有限差分數值計算方法,進行電腦模擬設計最佳的導軌構形,包括各油腔、回油槽尺寸參數與油腔數量配置,尋求具壓力均勻分佈的液靜壓導軌,有別於傳統液靜壓導軌油腔僅單一進油孔容易造成油腔內最高壓力集中於進油孔以及各油腔間回油槽尺寸間隔太大導致壓力分佈不均影響導軌性能。藉此獲得具高承載力、高剛性、高阻尼性及高平穩性之液靜壓導軌系統,並透過實驗的方式來驗證此系統的可行性及實用性。
The machine tool is the hub of industry in a country, the machine tool industry and the manufacturing affect eachother. manufacturing has make progress because the excellence in the development of the machine tool that cultivated the most professional people with the most intensive technical. Led to the development of the machine tool industry, the impact of the country's competitiveness can not be ignored, therefore the machine tool industry is regarded as indicators of the degree of industrialization of the country, Taiwan's machine tool industry with flexible manufacturing and adaptability, good at customized products and known of inexpensive price, get advantage of assembled quickly and gain parts easily. For the visibility in the international, enhancing the domestic of machine tool trend towards high-precision rail optimized design has become a major focus. This study will design a uniform distribution of pressure hydrostatic rails apply to small and medium-sized rotary machine tool, with fast convergence, the least parameter combination of multiple quality characteristics and the global search, HTGA/Gray method and finite difference numerical methods, then simulation to design the best rail configuration. Different from the traditional hydrostatic rail, the maximum pressure of the oil chamber focused on a single into the hole and back to the sump size the interval too big lead into the hole, make the oil cavity pressure uneven distribution of impact rail performance. Get to take this with a high load capacity, high rigidity, high damping capacity and high stability of hydrostatic rail system through experimental way to verify the feasibility and practicality of this system.
[1] Telingater, V. S., “Hydrostatic Slideways Using
Standard Bearings,”Machines and Tooling, Vol. 43,
No. 2, pp. 15-20, 1972.
[2] Bushuyev, V. V., “Angular Stiffness of Hydrostatic
Slides,” Machines and Tooling, Vol. 124, No. 10, pp.
26-29, 1973.
[3] O’Donoghue J. P., Rowe W. B. and Hooke, C. J.,
“Design of Hydrostatic Using An Operating
Parameter,” Wear, Vol. 14, pp. 355-362, 1969.
[4] Rowe, W. B., O’Donoghue, J. P., and Cameron, A.,
“Optimization of Externally Pressurized Bearings for
Minimum Power and Low Temperature Rise,” Tribology,
Vol. 3, No. 3, pp. 153-157, 1970.
[5] Sharma, S. C., Jain, S. C., and Bharuka, D. K., “
Influence of Recess Shape on the Performance of a
Capillary Compensated Circular Thrust Pad
Hydrostatic Bearing, ” Tribology International, Vol.
35, pp. 347-365, 2002.
[6] Rohde, S. M. and Ezzat, H. A., “ On the Dynamic
Behavior of Hybrid Journal Bearings, ” Journal of
Lubrication Technology, Transactions of the ASME,
Vol. 98, No. 1, pp. 90-94, 1976.
[7] Malanoski, S. B. and Loeb, A. M., “The effect of the
method compensation on hydrostatic bearing
stiffness," Transaction of the ASME, Journal of
Basic Engineering, Vol. 83, No. 2, pp. 179-187,
1961.
[8] Rippel, H. C., “Design of Hydrostatic Bearings:Part
2-Controlling Flow with Restrictors", Machine
Design, August 15, pp. 122-126, 1963.
[9] Rippel, H. C., “Design of Hydrostatic Bearings:Part
3-Influence of Restrictors on Performance",
Machine Design, August 29, pp. 132-138, 1963.
[10] Jackson, J. D. and Symmos, G. R., “Characteristics
of Multipad Hydrostatic under Rotation,“ Wear,
Volume 93, Issue 2, 16 Junuary, pp. 219-231, 1984.
[11] Prabhu, T. J. and Ganesan, N., “ Finite Element
Application to the Study of Hydrostatic Thrust
Bearings, “ Wear, Volume 97, Issue 2, August,
pp.139-154, 1984.
[12] Houpert, L. G. and Hamrock, B. J., “Fast Approach
for Calculating Film Thickness and Pressure in
Elastohydrodynamically Lubricated Contacts at High
Loads,” ASME Journal of Tribology, Vol. 108, pp.
411-419, 1986.
[13] Khonsari, M. M. and Wang, S. H., “On The Fluid-Solid
Interaction in Reference to Thermoelastohydrodynamic
Analysis of Journal Bearings,” ASME Journal of
Tribology, Vol. 113, pp. 398-403, 1991.
[14] Guo, T., Dai, Q. and Cai, L., “Research On Effect Of
Temperature On Carrying Capacity Of Heavy-Duty
Hydrostatic Rotary Table,” Advanced Materials
Research, Vols. 317-319, pp 1902-1907, 2011.
[15] Li, L., “Research on Employing Constant Flow
Delivery Oil Hydrostatic Guideway for the Table
Guideways of XK2125`s Milling Machine Bed,”Machine
Tools and Hydraulic, No.10, pp. 64-66, 2006.
[16] Zhou, K., Xiong, W., Lv, L., and Yang, X., “Review
on key technology of hydrostatic rotary
table,”Maunfacturing technology and machine tools,
No 4, pp.22-29, 2011.
[17] 胡竟湘,“φ1.6米圓台立式磨床採用恒流静壓導轨的研制,” MACHINE
TOOL & HYDRAULICS, No.3 1999.
[18] 陳建佑, “含溝槽液體動壓頸軸承之動態分析,”國立臺灣大學機械工程
學研究所碩士論文,2004.
[19] 盧佳崴,“新型主動式補償液靜壓軸承設計及實驗驗證,”國立清華大學動
力機械工程學系碩士論文,2010.
[20] 黃韋倫, “精密工具機液靜壓導軌簡介與設計分析,”國立彰化師範大學
機電所簡報,2010.
[21] 趙家成,“開式靜壓滑軌之特性分析與驗證,”中原大學機械工程研究所碩
士論文,2004.
[22] 李祺富, “閉式靜壓滑軌之特性分析與最佳化,”中原大學機械工程研究
所碩士論文,2004.
[23] 蘇雅玲,“氣靜壓軸承式氣壓缸及定位平台設計與控制之研究,” 國立成
功大學機械工程學系碩士論文,2005.
[24] 林雨夔,“氣靜壓平面軸承之參數最佳化設計分析,” 國立成功大學機械
工程學系碩士論文,2009.
[25] 國科會一般型研究計畫, “高性能液靜壓軸承與導軌系統之設計與液壓油
膜厚度控制,”(2011.8~2012.7).
[26] 黃華志, “精密工具機液靜壓導軌之設計與分析,” 機械工業雜誌, 288
期, 2007.
[27] 黃冠維,以灰關聯分析方法求解多屬性決策問題,成功大學製造工程研究
所碩士論文,2006