簡易檢索 / 詳目顯示

研究生: 石承和
Shih, Cheng-Ho
論文名稱: 選擇性雷射燒熔Ti6Al4V多道次掃描數值分析與實驗驗證
Numerical Analyses and Experimental Verifications for the Multi-Track Scannings Made in the Selective Laser Melting with Ti6Al4V powders
指導教授: 林仁輝
Lin, Jen-Fin
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 143
中文關鍵詞: 選擇性雷射燒熔熱流耦合模型相場法仿真粉末分布最佳化參數
外文關鍵詞: selective laser melting, heat-fluid coupling model, phase field method, random particle deposition, optimization parameters
相關次數: 點閱:125下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究首先以工業技術研究院雷射與積層製造科技中心提供之選擇性雷射燒熔(Selective laser melting, SLM)單、多道次列印試件為基礎,分析各加工參數的熔融區域與單、多道次列印凝固後之表面形貌。隨後以COMSOL Multiphysics多重物理量耦合模擬軟體建立選擇性雷射燒熔的理論分析模型。我們試圖透過模擬的方式尋找出最佳化參數,節省實驗大量的成本及時間花費。
    在本研究中,使用工業上常用的Ti6Al4V做為實驗以及模擬的對象,
    建立多道次熱流耦合模型,藉由相場法模擬雷射燒熔時熔池的聚合現象(Fusion),並進行熔池形貌與加工參數間關係的研究,結果顯示越小的雷射間距會使得重複燒熔區間越大,同時重複燒熔次數也會增加。而重複燒熔將會導致原有的熔池與新熔池進行重新聚合,使得最終熔池形貌更加平滑。同時,我們透過仿真粉末分布模型分析金屬粉末粒徑對於熔池形貌的影響,並且與實驗及等粒徑模型進行結果比較。在熔池寬度的驗證比對中,誤差有明顯的下降。對於熔池尺寸的理論值與實驗值的誤差百分比皆落在20%以內。因此說明了真實粉末粒徑以及孔隙率設定的重要性。
      我們藉由奈米壓痕機針對熔池剖面進行微硬度及楊氏模數的量測。結果顯示,微硬度會隨雷射能量密度增加而上升;楊氏模數則會隨著雷射能量密度增加而下降。這與Ti6Al4V金相變態過程有密切關聯,並藉由X光繞射儀實驗量測結果驗證我們的說法。
      最後,我們以模擬結果中熔池的燒熔及聚合情況區分成四種型態,並將其繪製成工藝參數圖,提供未來在製程上的最佳化參數選擇。

    In this research, we first did the analysis of melting region and surface profile on single track and multi-track experiment samples by selective laser melting (SLM) from ITRI for Ti6Al4V. After the analysis of experimental sample, we built the numerical model for SLM with COMSOL Multiphysics to simplify the analysis process in selective laser melting. And we tried to find the optimal parameters to save time and reduce cost through the simulation way. In this study, we used Ti6Al4V, which is commonly used in industry, as the object of experiment and simulation material. We built up a multi-track and heat-fluid coupling model. We simulated the fusion of the melting pool for laser melting with Phase field method, and we study on the relationship between the melting pool morphology and processing parameters. The results show that the smaller the hatch distance, the larger remelting area. And the remelting times also increase. The remelting pool will rebuild the geometry with new melting pool and make it smoother. Simultaneously, the effect of the particle size of the metal powder on the morphology was analyzed by the random particle deposition model and compared with the experimental results. The results show that the error of melting pool width had apparently decline. Also, the other error persentage for melting pool sizes between theoretic and experimental values were under 20%. Therefore, it’s explained that the importance of random particles setting and powder porosity. We used nanoindenter to measure the microhardness and Young’s modulus of the melting pool profile. The results show that the microhardness will increase with the increase of laser energy density and the Young’s modulus will decrease with the increase of laser energy density, which were closely related to Ti6Al4V metallurgical transformation process. Conseqently, we verified our statement with the experiment by X-ray diffractometer. Finally, we categorized the parameters into four types based on the simulation results. And we plotted a process parameter diagram to provide the optimization parameters for the process.

    摘要 I Extended Abstract III 誌謝 VIII 表目錄 XII 第一章 緒論 1 1-1 前言 1 1-2 文獻回顧 2 1-3 研究動機 5 1-4 研究架構 6 第二章 基本理論 9 2-1 雷射理論 9 2-1-1雷射製程介紹 9 2-1-2 雷射與材料之交互性質 10 2-1-3 雷射熱傳模式 11 2-1-4 選擇性雷射燒熔之加工參數 12 2-2 選擇性雷射燒熔數值理論 13 2-2-1統御方程式 14 2-2-2相變化方程式 15 2-2-3雷射移動體積熱源方程式 17 2-2-4相場法 19 2-3 表面粗糙度 22 2-3-1 表面粗糙度定義 22 2-3-2 表面粗糙度量測方法 23 2-3-3 表面粗糙度表示法 24 第三章 實驗規劃 31 3-1 實驗方法 31 3-2 實驗試件之簡介與特性 32 3-3 實驗設備與流程 33 3-3-1 選擇性雷射燒熔列印實驗 33 3-3-2 表面形貌量測實驗 34 3-3-3 顯微組織觀察實驗 35 3-3-4 奈米壓痕機械性質實驗 36 3-3-5 X光繞射儀晶體特性量測實驗 37 第四章 數值模擬方法 47 4-1 數值模擬軟體簡介 47 4-2 材料性質設定 48 4-2-1 金屬粉體之孔隙率 48 4-2-2 金屬流體之材料性質 49 4-2-3 相變化材料性質 49 4-3 多道次熱流耦合模型 49 4-3-1 理論模型設定 50 4-3-2 模型幾何與網格建立 50 4-3-3 邊界條件與初始條件 52 4-4 多道次熱流耦合模型仿真粉末分布 54 4-4-1 金屬粉末粒徑分布 54 4-4-2 金屬粉末孔隙率及分布位置 55 4-4-3 模型幾何與網格建立 55 第五章 結果與討論 65 5-1 單/多道次選擇性雷射燒熔(SLM)實驗結果分析 66 5-1-1單 / 多道次截面實驗結果分析 66 5-1-2 單 / 多道次俯視圖結果分析 69 5-1-3 熔池截面奈米壓痕機械性質分析 70 5-1-4 單層列印面-XRD分析 73 5-2 單 / 多道次熱流耦合數值模型模擬結果分析 74 5-3 單/多道次熱流耦合數值模擬與實驗結果比較 77 5-4 單/多道次熱流耦合仿真粉末分布數值模型結果分析 80 5-4-1仿真粉末分布之金屬粉末粒徑尺寸分析 80 5-4-2仿真粉末分布數值模擬結果分析 81 5-4-3仿真粉末分布數值模擬與實驗值比較 82 5-5 單層列印面表面粗糙度實驗結果分析 83 5-6模型最佳化參數預測 86 第六章 結論與未來展望 136 6-1 結論 136 6-2未來展望 137 參考文獻 139

    [1] ASTM(American Society for Testing and Materials),2009.
    [2] W. E. Frazier, "Metal additive manufacturing: a review," Journal of Materials Engineering and Performance, vol. 23, no. 6, pp. 1917-1928, 2014.
    [3] W. O. Soboyejo and T. Srivatsan, Advanced structural materials: properties, design optimization, and applications. CRC press, 2006.
    [4] F. Bartolomeu, M. Costa, N. Alves, G. Miranda, and F. Silva, "Additive manufacturing of NiTi-Ti6Al4V multi-material cellular structures targeting orthopedic implants," Optics and Lasers in Engineering, vol. 134, p. 106208, 2020.
    [5] H. Gu, H. Gong, D. Pal, K. Rafi, T. Starr, and B. Stucker, "Influences of energy density on porosity and microstructure of selective laser melted 17-4PH stainless steel," in 2013 Solid Freeform Fabrication Symposium, 2013, p. 474.
    [6] J. Li and Z. Wei, "Process optimization and microstructure characterization of Ti6Al4V manufactured by selective laser melting," Materials Science and Engineering, vol. 269, p. 012026, 2017.
    [7] K. G. Prashanth, S. Scudino, T. Maity, J. Das, and J. Eckert, "Is the energy density a reliable parameter for materials synthesis by selective laser melting?," Materials Research Letters, vol. 5, no. 6, pp. 386-390, 2017.
    [8] J. Ciurana, L. Hernandez, and J. Delgado, "Energy density analysis on single tracks formed by selective laser melting with CoCrMo powder material," The International Journal of Advanced Manufacturing Technology, vol. 68, no. 5-8, pp. 1103-1110, 2013.
    [9] R. Li, J. Liu, Y. Shi, L. Wang, and W. Jiang, "Balling behavior of stainless steel and nickel powder during selective laser melting process," The International Journal of Advanced Manufacturing Technology, vol. 59, no. 9-12, pp. 1025-1035, 2011.
    [10] H. Gong, K. Rafi, N. Karthik, T. Starr, and B. Stucker, "Defect morphology in Ti–6Al–4V parts fabricated by selective laser melting and electron beam melting," in 24rd Annual International Solid Freeform Fabrication Symposium—An Additive Manufacturing Conference, Austin, TX, Aug, 2013, pp. 12-14.
    [11] K. R. Haijun Gong, Thomas Starr, Brent Stucker, "The Effects of Processing Parameters on Defect Regularity in Ti-6Al-4V Parts Fabricated By Selective Laser Melting and Electron Beam Melting," 2013.
    [12] C. Qiu, N. J. Adkins, and M. M. Attallah, "Microstructure and tensile properties of selectively laser-melted and of HIPed laser-melted Ti–6Al–4V," Materials Science and Engineering: A, vol. 578, pp. 230-239, 2013.
    [13] L. Dong, A. Makradi, S. Ahzi, and Y. Remond, "Finite element analysis of temperature and density distributions in selective laser sintering process," in Materials science forum, 2007, vol. 553: Trans Tech Publ, pp. 75-80.
    [14] J. Yin et al., "A finite element model of thermal evolution in laser micro sintering," The International Journal of Advanced Manufacturing Technology, vol. 83, no. 9-12, pp. 1847-1859, 2015.
    [15] J. Romano, L. Ladani, and M. Sadowski, "Thermal Modeling of Laser Based Additive Manufacturing Processes within Common Materials," Procedia Manufacturing, vol. 1, pp. 238-250, 2015.
    [16] R. Andreotta, L. Ladani, and W. Brindley, "Finite element simulation of laser additive melting and solidification of Inconel 718 with experimentally tested thermal properties," Finite Elements in Analysis and Design, vol. 135, pp. 36-43, 2017.
    [17] D. Dai and D. Gu, "Tailoring surface quality through mass and momentum transfer modeling using a volume of fluid method in selective laser melting of TiC/AlSi10Mg powder," International Journal of Machine Tools and Manufacture, vol. 88, pp. 95-107, 2015.
    [18] Y. Li and D. Gu, "Thermal behavior during selective laser melting of commercially pure titanium powder: Numerical simulation and experimental study," Additive Manufacturing, vol. 1, pp. 99-109, 2014.
    [19] J. Tan, C. Tang, and C. Wong, "Study and modeling of melt pool evolution in selective laser melting process of SS316L," MRS Communications, vol. 8, no. 3, pp. 1178-1183, 2018.
    [20] C. Chen, G. Lian, J. Jiang, and Q. Wang, "Simplification and experimental investigation of geometrical surface smoothness model for multi-track laser cladding processes," Journal of Manufacturing Processes, vol. 36, pp. 621-628, 2018.
    [21] W. Pei, W. Zhengying, C. Zhen, L. Junfeng, Z. Shuzhe, and D. Jun, "Numerical simulation and parametric analysis of selective laser melting process of AlSi10Mg powder," Applied Physics A, vol. 123, no. 8, p. 540, 2017.
    [22] W. M. Steen and J. Mazumder, Laser material processing. Springer Science & Business Media, 2010.
    [23] C. Walsh, "Laser welding–literature review," Materials Science and Metallurgy Department, University of Cambridge, England, 2002.
    [24] C. Li, C. Fu, Y. Guo, and F. Fang, "A multiscale modeling approach for fast prediction of part distortion in selective laser melting," Journal of materials processing technology, vol. 229, pp. 703-712, 2016.
    [25] K. Zeng, D. Pal, and B. Stucker, "A review of thermal analysis methods in Laser Sintering and Selective Laser Melting," in Proceedings of Solid Freeform Fabrication Symposium Austin, TX, 2012, pp. 796-814.
    [26] J.-Q. Li, T.-H. Fan, T. Taniguchi, and B. Zhang, "Phase-field modeling on laser melting of a metallic powder," International Journal of Heat and Mass Transfer, vol. 117, pp. 412-424, 2018.
    [27] COMSOL, "Heat Transfer Module," 2015.
    [28] Z. F. a. F. Liou, "Numerical Modeling of the Additive Manufacturing (AM) Processes of Titanium Alloy," 2012.
    [29] H. Hu and S. A. Argyropoulos, "Mathematical modelling of solidification and melting: a review," Modelling and Simulation in Materials Science and Engineering, vol. 4, no. 4, p. 371, 1996.
    [30] E. Olsson and G. Kreiss, "A conservative level set method for two phase flow," Journal of Computational Physics, vol. 210, no. 1, pp. 225-246, 2005.
    [31] X. Wang, T. Laoui, J. Bonse, J.-P. Kruth, B. Lauwers, and L. Froyen, "Direct selective laser sintering of hard metal powders: experimental study and simulation," The International Journal of Advanced Manufacturing Technology, vol. 19, no. 5, pp. 351-357, 2002.
    [32] M. Rombouts, L. Froyen, A. V. Gusarov, E. H. Bentefour, and C. Glorieux, "Photopyroelectric measurement of thermal conductivity of metallic powders," Journal of Applied Physics, vol. 97, no. 2, p. 024905, 2005.
    [33] A. Streek, P. Regenfuss, and H. Exner, "Fundamentals of Energy Conversion and Dissipation in Powder Layers during Laser Micro Sintering," Physics Procedia, vol. 41, pp. 858-869, 2013.
    [34] COMSOL, "CFD Module UsersGuide," 2017.
    [35] P. Sahoo, T. DebRoy, and M. McNallan, "Surface tension of binary metal—surface active solute systems under conditions relevant to welding metallurgy," Metallurgical transactions B, vol. 19, no. 3, pp. 483-491, 1988.
    [36] P. Yue, J. J. Feng, C. Liu, and J. Shen, "A diffuse-interface method for simulating two-phase flows of complex fluids," Journal of Fluid Mechanics, vol. 515, pp. 293-317, 2004.
    [37] M. Tsai and S. Kou, "Marangoni convection in weld pools with a free surface," International Journal for Numerical Methods in Fluids, vol. 9, no. 12, pp. 1503-1516, 1989.
    [38] N. Moelans, B. Blanpain, and P. Wollants, "An introduction to phase-field modeling of microstructure evolution," Calphad, vol. 32, no. 2, pp. 268-294, 2008.
    [39] ASME(American Society of Mechanical Engineers), 1995.
    [40] M. Sedlaček, P. Gregorčič, and B. Podgornik, "Use of the roughness parameters S sk and S ku to control friction—A method for designing surface texturing," Tribology Transactions, vol. 60, no. 2, pp. 260-266, 2017.
    [41] V. Griffiths, J. P. Scanlan, M. H. Eres, A. Martinez-Sykora, and P. Chinchapatnam, "Cost-driven build orientation and bin packing of parts in Selective Laser Melting (SLM)," European Journal of Operational Research, vol. 273, no. 1, pp. 334-352, 2019.
    [42] 工業技術研究院雷射與積層製造科技中心, 2018.
    [43] C. Chan, J. Mazumder, and M. Chen, "A two-dimensional transient model for convection in laser melted pool," Metallurgical Transactions A, vol. 15, no. 12, pp. 2175-2184, 1984.
    [44] K. C. Mills, Recommended values of thermophysical properties for selected commercial alloys. Woodhead Publishing, 2002.
    [45] A. Mahrle and E. Beyer, "Theoretical evaluation of radiation pressure magnitudes and effects in laser material processing," Physica Scripta, vol. 94, no. 7, p. 075004, 2019.
    [46] V. Gunenthiram et al., "Experimental analysis of spatter generation and melt-pool behavior during the powder bed laser beam melting process," Journal of Materials Processing Technology, vol. 251, pp. 376-386, 2018.
    [47] I. V. Zhirnov, P. A. Podrabinnik, M. Tokbergenov, A. A. Okunkova, and I. Y. Smurov, "Optical monitoring and diagnostics of SLM processing for single track formation from Co-Cr alloy," in Materials Science Forum, 2015, vol. 834: Trans Tech Publ, pp. 51-60.
    [48] S. Ly, A. M. Rubenchik, S. A. Khairallah, G. Guss, and M. J. Matthews, "Metal vapor micro-jet controls material redistribution in laser powder bed fusion additive manufacturing," Scientific reports, vol. 7, no. 1, pp. 1-12, 2017.
    [49] T. Majumdar, T. Bazin, E. Massahud Carvalho Ribeiro, J. E. Frith, and N. Birbilis, "Understanding the effects of PBF process parameter interplay on Ti-6Al-4V surface properties," PLOS ONE, vol. 14, no. 8, p. e0221198, 2019.
    [50] S. Pal, G. Lojen, V. Kokol, and I. Drstvensek, "Evolution of metallurgical properties of Ti-6Al-4V alloy fabricated in different energy densities in the Selective Laser Melting technique," Journal of Manufacturing Processes, vol. 35, pp. 538-546, 2018.
    [51] H. Matsumoto, S. Watanabe, and S. Hanada, "α′ Martensite Ti–V–Sn alloys with low Young's modulus and high strength," Materials Science and Engineering: A, vol. 448, no. 1-2, pp. 39-48, 2007.
    [52] R. Pederson, "Microstructure and phase transformation of Ti-6Al-4V," Luleå tekniska universitet, 2002.
    [53] Z. Li, I. Kucukkoc, D. Z. Zhang, and F. Liu, "Optimising the process parameters of selective laser melting for the fabrication of Ti6Al4V alloy," Rapid Prototyping Journal, 2018.

    無法下載圖示 校內:立即公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE