研究生: |
陳俊諺 Chen, Chune-Yan |
---|---|
論文名稱: |
以Roberta-BiLSTM-CNN及決策樹為基之顧客價值體驗優化方法與技術研究 Research on Customer Value Experience Optimization Methods and Technologies Based on Roberta-BiLSTM-CNN and Decision Trees |
指導教授: |
陳裕民
Chen, Yuh-Min |
共同指導教授: |
徐國宣
Hsu, Maxwell K. 陳育仁 Chen, Yuh-Jen |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 製造資訊與系統研究所 Institute of Manufacturing Information and Systems |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 中文 |
論文頁數: | 115 |
中文關鍵詞: | 顧客價值體驗 、行銷決策支援 、自然語言處理 、深度學習 、主題建模 |
外文關鍵詞: | customer value experience, marketing decision support, natural language processing, deep learning, topic modeling |
相關次數: | 點閱:59 下載:7 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
數位科技的迅速發展與社群媒體的普及,使得企業越發重視顧客價值體驗的管理。顧客價值體驗為顧客在與品牌互動過程中所獲得的價值感受,對提升顧客滿意度和忠誠度至關重要。
本研究提出一創新的顧客價值體驗優化方法,並進行實現技術之開發與驗證,相關研發項目包括: (1) 運用Qt Designer設計使用者介面,並結合爬蟲技術,開發資料處理技術,用於從社群媒體評論中進行資料擷取及前處理;(2) 整合Roberta、BiLSTM及CNN,開發一個混合式顧客價值體驗分析模型,以對社群媒體之評論分析評論者之消費體驗感受(情感)、消費動機;(3)運用BERTopic模型,開發評論主題分析技術,用以辨識顧客評論之主題;(4)運用階層式主題模型,開發消費情境分析技術,用以對社群媒體評論分析評論者之消費情境;(5)運用決策樹技術,開發顧客體驗感受整合與體驗優化規則擷取技術,從評論資料中提取有價值的顧客價值體驗訊息以及規則,以提供具體的、可操作的優化決策建議。
實驗結果顯示,結合上述技術的模型在分析及優化顧客價值體驗方面,均展現出顯著的效能提升。本研究設計的Roberta-BiLSTM-CNN模型在情感分析和動機分析的準確率分別達到93%和75%。同時,透過分層驗證,本研究所提出的Roberta-BiLSTM-CNN模型較過去文獻所提供的技術提升了模型的整體效能和穩定性,在消費情感分析(二分類)及消費動機分析(多分類)的任務中均至少提升了2%的準確率。
本研究提出之方法使用於台中糕餅業者Y公司的實際資料上進行驗證,結果顯示,透過這些技術,企業能夠即時捕捉和分析顧客對於品牌、商品以及服務的感受,迅速改善商品與服務,並調整行銷策略,有效提升顧客滿意度和忠誠度。這些成果為企業在快速變遷的市場環境中提供了一種持續優化顧客價值體驗的實用方法,幫助企業保持競爭優勢。
This study investigates methods and techniques to optimize customer value experience by integrating the Roberta-BiLSTM-CNN hybrid model with decision tree technology. In the digital age and with the rise of social media, managing customer value experiences has become increasingly important for companies' marketing strategies. Customer value experience, the perceived value during brand interactions, is crucial for customer satisfaction and loyalty.
The research proposes an innovative approach to analyze and optimize customer value experiences by combining Natural Language Processing (NLP) and deep learning models. Using the Roberta-BiLSTM-CNN model, we analyzed customer experiences and employed the BERTopic model to identify key topics in customer reviews. Additionally, decision tree technology was introduced to extract valuable information from reviews and provide actionable marketing insights.
Experimental results show that the integrated model significantly improves customer behavior prediction and value experience optimization. These technologies enable companies to quickly capture and analyze customer behavior changes, adjusting marketing strategies to boost satisfaction and loyalty.
The findings offer new theoretical and technical support for enterprises, aiding in maintaining a competitive edge and maximizing customer experience management.
高聖倫(2018)「以圖文特徵為基之消費者購買決策型態辨識方法研發」。碩士論文,國立成功大學製造資訊與系統研究所
蔡孟哲(2016)「探勘Facebook互動行為之自動化預測人格類型方法發展」。碩士論文,國立成功大學製造資訊與系統研究所
劉彥辰(2012)「虛擬社群之潛在顧客搜索機制研發-以食品業應用為例」。碩士論文,國立成功大學製造資訊與系統研究所
Abdelkader, O. A. (2023). ChatGPT’s influence on customer experience in digital marketing: Investigating the moderating roles. Heliyon, 9(8), e18770. https://doi.org/10.1016/j.heliyon.2023.e18770
Anshari, M., Almunawar, M. N., Lim, S. A., & Al-Mudimigh, A. (2019). Customer relationship management and big data enabled: Personalization & customization of services. AppliedComputingandInformatics,15(2), 94–101. https://doi.org/10.1016/j.aci.2018.05.004
Bariar, S. (2017). CUSTOMER ENGAGEMENT A TOOL FOR SOCIAL MEDIA BRANDING. TIJ’s Research Journal of Social Science & Management - RJSSM, 6. [Online]. Available: https://consensus.app/papers/customer-engagement-tool-social-media-branding-bariar/cfaee6b8d8ed50ec819398e34166fbfe/.
Bhandari, R., & Bansal, A. (2019). A study of characteristics of e-WoM affecting consumer's social media opinion behavior. JIMS8M: The Journal of Indian Management & Strategy.
Bryła, P., Chatterjee, S., & Ciabiada-Bryła, B. (2022). The impact of social media marketing on consumer engagement in sustainable consumption: A systematic literature review. International Journal of Environmental Research and Public Health, 19(24), 16637. https://doi.org/10.3390/ijerph192416637
Buckley, S., Ettl, M., Jain, P., Luss, R., Petrik, M., Ravi, R., & Venkatramani, C. (2014). Social media and customer behavior analytics for personalized customer engagements. IBM J. Res. Dev., 58. https://doi.org/10.1147/JRD.2014.2344515.
Cai, J., Li, J., & Li, W. (2018). Deep Learning Model Used in Text Classification. 2018 15th International Computer Conference on Wavelet Active Media Technology and InformationProcessing(ICCWAMTIP).https://doi.org/10.1109/ICCWAMTIP.2018.8632592
Cai, J., Li, J., Li, W., & Wang, J. (2018). Deep learning model used in text classification. 2018 15th International Computer Conference on Wavelet Active Media Technology and InformationProcessing(ICCWAMTIP),123–126. https://doi.org/10.1109/ICCWAMTIP.2018.8632592
Chauhan, R. (2023). Exploring the Role of Data Mining in Customer Relationship Management. NeuroQuantology. https://doi.org/10.48047/nq.2019.17.03.2015
Chen, Z., Gao, Z., Li, Z., Luo, J., & Li, X. (2021). Hierarchical neural topic modeling with manifold regularization. World Wide Web, 24. https://doi.org/10.1007/s11280-021-00963-7
Cheng, L., & Tsai, S. (2019). Deep Learning for Automated Sentiment Analysis of Social Media. 2019 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), 1001-1004. https://doi.org/10.1145/3341161.3344821
Chinnalagu, A., & Durairaj, A. K. (2022). Comparative Analysis of BERT-base Transformers and Deep Learning Sentiment Prediction Models. 2022 11th International Conference on System Modeling & Advancement in Research Trends (SMART), Moradabad, India: IEEE, 874–879. https://doi.org/10.1109/SMART55829.2022.10047651
Cui, Y., Che, W., Liu, T., Qin, B., Wang, S., & Hu, G. (2019). Pre-Training with Whole Word Masking for Chinese BERT. ArXiv, abs/1906.08101. [Online]. Available: https://consensus.app/papers/pretraining-whole-word-masking-chinese-BERT-cui/ad3163589c5a5acea5895443697d8ecc/
Cui, Y., Che, W., Liu, T., Qin, B., Wang, S., & Hu, G. (2020). Revisiting Pre-Trained Models for Chinese Natural Language Processing. ArXiv, abs/2004.13922. https://doi.org/10.18653/v1/2020.findings-emnlp.58
Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2018). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. 4171–4186. https://doi.org/10.18653/v1/N19-1423
Gao, Z., Li, Z., Luo, J., & Li, X. (2022). Short Text Aspect-Based Sentiment Analysis Based on CNN + BiGRU. Applied Sciences. https://doi.org/10.3390/app12052707
Gim, J. (2020). A Study on the Performance Analysis of Entity Name Recognition Techniques Using Korean Patent Literature. 10, 139-151. https://doi.org/10.14801/JAITC.2020.10.2.139
Gregoriades, A., Pampaka, M., Herodotou, H., & Christodoulou, E. (2021). Supporting digital content marketing and messaging through topic modelling and decision trees. Expert Systems with Applications, 184, 115546. https://doi.org/10.1016/j.eswa.2021.115546
Grootendorst, M. (2022). BERTopic: Neural topic modeling with a class-based TF-IDF procedure. arXiv, Mar. 11. https://doi.org/10.48550/arXiv.2203.05794
Gundapu, S., & Mamidi, R. (2021). Multichannel LSTM-CNN for Telugu Technical Domain Identification.
Hameed, Z., Garcia-Zapirain, B., & Ruiz, I. (2019). A computationally efficient BiLSTM based approach for the binary sentiment classification. 2019 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT), 1-4. https://doi.org/10.1109/ISSPIT47144.2019.9001781
He, W., Zhang, W., Tian, X., Tao, R., & Akula, V. (2019). Identifying customer knowledge on social media through data analytics. Journal of Enterprise Information Management, 32, 152–169. https://doi.org/10.1108/JEIM-02-2018-0031
Hu, Y., Xu, A., Hong, Y., Gal, D., Sinha, V., & Akkiraju, R. (2019). Generating Business Intelligence Through Social Media Analytics: Measuring Brand Personality with Consumer-, Employee-, and Firm-Generated Content. Journal of Management Information Systems, 36, 893 - 930. https://doi.org/10.1080/07421222.2019.1628908
Huang, Q., Chen, R., Zheng, X., & Dong, Z. (2017). Deep Sentiment Representation Based on CNN and LSTM. 2017 International Conference on Green Informatics (ICGI), 30-33. https://doi.org/10.1109/ICGI.2017.45
Iqbal, A., Amin, R., Iqbal, J., Alroobaea, R., Binmahfoudh, A., & Hussain, M. (2022). Sentiment Analysis of Consumer Reviews Using Deep Learning. Sustainability. https://doi.org/10.3390/su141710844
Jeong, B., Yoon, J., & Lee, J.-M. (2019). Social media mining for product planning: A product opportunity mining approach based on topic modeling and sentiment analysis. International Journal of Information Management, 48, 280–290.
Jin, N., Wu, J., Ma, X., Yan, K., & Mo, Y. (2020). Multi-Task Learning Model Based on Multi-Scale CNN and LSTM for Sentiment Classification. IEEE Access, 8, 77060-77072.
Jin, N., Wu, J., Ma, X., Yan, K., & Mo, Y. (2020). Multi-Task Learning Model Based on Multi-Scale CNN and LSTM for Sentiment Classification. IEEE Access, 8, 77060-77072.
Kaur, K., & Kaur, P. (2023). Improving BERT model for requirements classification by bidirectional LSTM-CNN deep model. Computers and Electrical Engineering, 108, 108699. https://doi.org/10.1016/j.compeleceng.2023.108699
Krishna, S. H., Sargunam, S., Kulkarni, N., Nandal, N., Chellam, V. V., & Praveenkumar, S. (2023). Application of Artificial Intelligence in E-Marketing. 2023 International Conference on Artificial Intelligence and Knowledge Discovery in Concurrent Engineering (ICECONF), 1–7. https://doi.org/10.1109/ICECONF57129.2023.10084011
Lauraitis, A., Maskeliūnas, R., Damaševičius, R., & Krilavičius, T. (2020). Detection of Speech Impairments Using Cepstrum, Auditory Spectrogram and Wavelet Time Scattering Domain Features. IEEE Access, 8, 96162–96172. https://doi.org/10.1109/ACCESS.2020.2995737
Ledro, C., Nosella, A., & Vinelli, A. (2022). Artificial intelligence in customer relationship management: literature review and future research directions. Journal of Business & Industrial Marketing, 37(13), 48–63. https://doi.org/10.1108/JBIM-07-2021-0332
Liu, K., & Feng, Y. (2018). Deep Learning in Question Answering. 185-217. https://doi.org/10.1007/978-981-10-5209-5_7
Lu, X., Li, Y., Zhang, Z., & Rai, B. (2014). Consumer Learning Embedded in Electronic Word of Mouth. Journal of Electronic Commerce Research, 15, 300.
Mattas, P. S. (2023). ChatGPT: A Study of AI Language Processing and its Implications. International Journal of Research Publication and Reviews. https://doi.org/10.55248/gengpi.2023.4218
Meaney, C., Escobar, M., Stukel, T., Austin, P., & Jaakkimainen, L. (2022). Comparison of Methods for Estimating Temporal Topic Models From Primary Care Clinical Text Data: Retrospective Closed Cohort Study. JMIR Medical Informatics, 10. https://doi.org/10.2196/40102
Mojumder, P., Hasan, M., Hossain, M., & Hasan, K. (2020). A Study of fastText Word Embedding Effects in Document Classification in Bangla Language, 441-453. https://doi.org/10.1007/978-3-030-52856-0_35
Mukherjee, K. (2019). Social media marketing and customers’ passion for brands. Marketing Intelligence & Planning. https://doi.org/10.1108/mip-10-2018-0440
Otter, D., Medina, J., & Kalita, J. (2020). A Survey of the Usages of Deep Learning for Natural Language Processing. IEEE Transactions on Neural Networks and Learning Systems, 32, 604-624. https://doi.org/10.1109/TNNLS.2020.2979670
Prakash, S. M., Babu, M., Kumar, P., Devi, S., Reddy, K. P., & Satish, M. (2023). Predicting Consumer Behaviour with Artificial Intelligence. 2023 IEEE 5th International Conference on Cybernetics, Cognition and Machine Learning Applications (ICCCMLA).
Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, I. (2019). Language Models are Unsupervised Multitask Learners.
Rehman, A., Malik, A. K., Raza, B., & Ali, W. (2019). A Hybrid CNN-LSTM Model for Improving Accuracy of Movie Reviews Sentiment Analysis. Multimedia Tools and Applications.
Reinartz, W., & Ulaga, W. (2008). How to sell services more profitably. Harvard Business Review, 86(5), 90–6129.
Rosario, A. B., de Valck, K., & Sotgiu, F. (2020). Conceptualizing the electronic word-of-mouth process: What we know and need to know about eWOM creation, exposure, and evaluation. Journal of the Academy of Marketing Science, 48, 422–448. https://doi.org/10.1007/s11747-019-00706-1
Samarah, T., Bayram, P., Aljuhmani, H., & Elrehail, H. (2021). The role of brand interactivity and involvement in driving social media consumer brand engagement and brand loyalty: the mediating effect of brand trust. Journal of Research in Interactive Marketing, ahead-of-print. https://doi.org/10.1108/JRIM-03-2021-0072
Shah, T. (2023). Data-Driven Decision-Making: Leveraging Analytics for Product Management. IJARSCT, 533–541. https://doi.org/10.48175/IJARSCT-14271
Sharma, S. (2020). Big Data Analytics for Customer Relationship Management: A Systematic Review and Research Agenda, 430-438. https://doi.org/10.1007/978-981-15-6634-9_39
Shukla, N., Hagenbuchner, M., Win, K., & Yang, J. (2018). Breast cancer data analysis for survivability studies and prediction. Computer methods and programs in biomedicine, 155, 199–208. https://doi.org/10.1016/j.cmpb.2017.12.011
Trozzi, F., Wang, X., & Tao, P. (2021). UMAP as a Dimensionality Reduction Tool for Molecular Dynamics Simulations of Biomacromolecules: A Comparison Study. The Journal of Physical Chemistry. B. https://doi.org/10.1021/acs.jpcb.1c02081
Torgunakova, E., & Torgunakov, E. (2023). The role of customer relationship management in the formation of a system of marketing communications. Economics and Management. https://doi.org/10.35854/1998-1627-2023-3-318-325.
Velkov, Y. (2019). Assessment of the business processes effectiveness in the corporate company. Knowledge International Journal. https://doi.org/10.35120/kij34010063v
Vijayan, D., & Aziz, I. (2022). Adaptive Hierarchical Density-Based Spatial Clustering Algorithm for Streaming Applications. Telecom. https://doi.org/10.3390/telecom4010001
Wang, T., Lu, K., Chow, K., & Zhu, Q. (2020). COVID-19 Sensing: Negative Sentiment Analysis on Social Media in China via BERT Model. IEEE Access, 8, 138162–138169. https://doi.org/10.1109/ACCESS.2020.3012595
Wibowo, A., Chen, S., Wiangin, U., Ma, Y., & Ruangkanjanases, A. (2020). Customer Behavior as an Outcome of Social Media Marketing: The Role of Social Media Marketing Activity and Customer Experience. Sustainability. https://doi.org/10.3390/su13010189
Yang, H., Luo, L., Chueng, L., Ling, D., & Chin, F. (2019). Deep Learning and Its Applications to Natural Language Processing. Cognitive Computation Trends. https://doi.org/10.1007/978-3-030-06073-2_4
Yue, W., & Lei, L. (2023). Sentiment Analysis using a CNN-BiLSTM deep model based on attention mechanism classification. Information
Yim, F. H.-K., Anderson, R. E., & Swaminathan, S. (2004). Customer Relationship Management: Its Dimensions and Effect on Customer Outcomes. The Journal of Personal Selling and Sales Management, 24(4), 263–278.
Zhang, Y., & Prebensen, N. K. (2024). Co-creating with ChatGPT for tourism marketing materials. Annals of Tourism Research Empirical Insights, 5(1), 100124. https://doi.org/10.1016/j.annale.2024.100124.
Zeng, Z. (2021). A comparative study of deep learning approaches for Chinese Sentence Classification. 2021 International Conference on Computer Engineering and Artificial Intelligence (ICCEAI), 230–234. https://doi.org/10.1109/ICCEAI52939.2021.00045