| 研究生: |
巫恩祺 Wu, En-Chi |
|---|---|
| 論文名稱: |
硫化亞鐵還原處理水中硝基苯之研究 Treatment of nitrobenzene in water using ferrous sulfide reduction |
| 指導教授: |
林財富
Lin, Tsair-Fuh |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 89 |
| 中文關鍵詞: | 化學還原法 、硝基苯 、硫化亞鐵(FeS) 、鐵的光還原 、發光二極體 |
| 外文關鍵詞: | chemical reduction, nitrobenzene, ferrous sulfide, UV-assisted reduction, light emitting diode |
| 相關次數: | 點閱:111 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
硝基苯(Nitrobenzene)是一種重要並普遍使用的工業化合物,用於製備苯胺、醫藥原料、染料和農藥,由於其具致突變性、難降解和累積於環境的特性,目前已被許多國家列為優先整治之污染物。本研究擬利用硫化亞鐵(FeS)具強還原力的特性,探討將水中硝基苯以前處理還原成為較易被生物降解和較易高移動的芳香族中間產物之可行性。實驗控制FeS劑量為0.25-2.5 g/L、硝基苯濃度為5-20 mg/L,以批次式進行還原動力實驗。並嘗試結合紫外光(波長為400 nm、強度為68.8 W/m2)和草酸(0.24-1.2 g/L)以增強FeS的還原力。為瞭解FeS的還原機制,分別研究了Fe2+和HS-在反應中的作用,運用數學模式分析反應中還原作用與吸附作用二者之間的關係,並探討中間產物的產生機制和濃度分佈。
研究結果顯示隨著FeS劑量的增加,硝基苯的還原率也隨之提升,當pH為3、劑量為2.5 g/L的條件下,可在兩天內將硝基苯完全還原為最終產物-苯胺。硝基苯濃度對反應速率也有著重要的影響,初始濃度越高,反應速率也就越快。實驗結果可符合二階複數反應(Second Order Reaction with multiple reactants),並且反應常數與二者的初始濃度無關。若結合紫外光和草酸隨著草酸的劑量增加,反應速率也隨著增加,顯示草酸濃度越高對於三價鐵的光還原效果越佳。FeS的還原機制主要是以Fe2+提供電子給硝基苯,再經由HS-提供電子給Fe3+,使Fe2+能持續提供電子給硝基苯,並以反應動力學推測出FeS對於硝基苯可能具吸附作用,但對於亞硝基苯和苯胺不明顯。亞鐵離子於不同pH值條件下對硝基苯的還原效率有顯著差異,與鐵氧化物的型態和氧化還原電位相關;在中性條件下,Fe2+會與草酸形成穩定的錯合物-Fe(C2O4),不易釋放電子且會降低紫外光對鐵的還原效果,因此並不適合結合紫外光和草酸。運用化學探針(Probe compound)技術,確認FeS結合草酸和紫外光不但可以增強FeS還原效果,同時會產生OH‧將硝基苯及中間產物進行礦化。
Nitrobenzene (NB) has been widely used in the industries for the production of aniline, aniline dyes, pesticides and drugs. Release of NB may cause significant risks to human beings and aquatic organisms, due to its mutagenicity, recalcitrance and ability to accumulate in the environment. Therefore, NB is listed as one of priority pollutants for contaminated site remediation by many countries. In this study, ferrous sulfide(FeS), a powerful reductant, is proposed to be used to reduce NB to more bioavailable and mobile aromatic amine products in water. Batch experiments were under various dosages of FeS (0.24-2.5 g/L) and concentrations of NB (5-20 mg/L). To enhance the efficiency, photo-catalyzed reduction was also examined using an integration of ultraviolet (UV) light and oxalic acid into the FeS system. A light emitting diode(LED) emitting 400 nm of wavelength with intensity of 68.8 W/m2 and various dosages of oxalic acid (0.24-1.2 g/L) was adopted in the processes. To explore the reducing mechanisms of the FeS system, the roles of Fe2+ and HS- were analysed separately during the reaction. Mathematical models were proposed to analyze the reduction and loss process and to understand the generation of the intermediate products.
Experimental results show that under the dosage of FeS = 2.5 g/L and pH = 3, NB was completely transformed to its end product, Aniline, in 2 days. The reaction rates were strongly influence by the initial concentration of NB,
with the rates increased with the initial concentration. A second order reaction model was successfully employed to describe the experimental results, and the rate constant is independent of the concentrations of FeS and NB. When UV/H2C2O4 was used in the system, the reaction rate increased with increasing dosage of oxalic acid, indicating that the UV-assisted reduction of Fe3+ is better with higher dosage of oxalic acid. Reduction in the FeS system is attributed to the release electron from Fe2+ and transfer back to Fe2+ by the electron donation of HS-. Kinetic experimental data indicated that FeS may adsorb NB but not Nitrosobenzene and Aniline. Oxidation of Fe2+ to reduce NB was pH dependent, as it’s related with iron oxides and redox potentials. Because Fe2+ may chelate with C2O42- to form stable chelate-Fe(C2O4), it’s difficult to release electron, and reduce Fe3+ under neutral condition using UV/H2C2O4 system. Application of chemical probes techniques confirmed that employment of UV/H2C2O4 not only enhanced the reduction but also generate OH‧ and cause oxidation of NB and intermediate products in this system.
Acero, J.L., Haderlein, S.B., Schmidt, T.C., Suter, M.J.-F. and von Gunten, U. MTBE oxidation by conventional ozonation and the combination ozone/hydrogen peroxide: efficiency of the processes and bromate formation. Environmental Science & Technology 35(21). 4252-4259. (2001)
Agrawal, A. and Tratnyek, P.G. Reduction of nitro aromatic compounds by zero-valent iron metal. Environmental Science & Technology 30(1). 153-160. (1996)
Amonette, J.E., Workman, D.J., Kennedy, D.W., Fruchter, J.S. and Gorby, Y.A. Dechlorination of carbon tetrachloride by Fe (II) associated with goethite. Environmental Science & Technology 34(21). 4606-4613. (2000)
Ball, D.W. Kinetics of Consecutive Reactions: First Reaction,First-Order; Second Reaction, Zeroth-Order. Journal of Chemical Education 75(7). (1998)
Balmer, M.E. and Sulzberger, B. Atrazine Degradation in Irradiated Iron/Oxalate Systems: Effects of pH and Oxalate. Environmental Science & Technology 33(14). 2418-2424. (1999)
Bell, L.S., Devlin, J.F., Gillham, R.W. and Binning, P.J. A sequential zero valent iron and aerobic biodegradation treatment system for nitrobenzene. J Contam Hydrol 66(3-4). 201-217. (2003)
Bhar, S.K., Jana, S., Mondal, A. and Mukherjee, N. Photocatalytic degradation of organic dye on porous iron sulfide film surface. J Colloid Interface Sci 393. 286-290. (2013)
Boparai, H.K., Comfort, S.D., Shea, P.J. and Szecsody, J.E. Remediating explosive-contaminated groundwater by in situ redox manipulation (ISRM) of aquifer sediments. Chemosphere 71(5). 933-941. (2008)
Choi, J., Choi, K. and Lee, W. Effects of transition metal and sulfide on the reductive dechlorination of carbon tetrachloride and 1,1,1-trichloroethane by FeS. J Hazard Mater 162(2-3). 1151-1158. (2009)
Cope, O. and Brown, R. The reduction of Nitrobenzene by sodium sulphide in aqueous ethanol. Canadian Journal of Chemistry 39(1695-1710). (1961)
Crimi, M. and Ko, S. Control of manganese dioxide particles resulting from in situ chemical oxidation using permanganate. Chemosphere 74(6). 847-853. (2009)
Davies, L. Environmental health criteria 230 nitrobenzene. WHO, Geneva. (2003)
Devi, L.G., Raju, K.S.A., Kumar, S.G. and Rajashekhar, K.E. Photo-degradation of di azo dye Bismarck Brown by advanced photo-Fenton process: Influence of inorganic anions and evaluation of recycling efficiency of iron powder. Journal of the Taiwan Institute of Chemical Engineers 42(2). 341-349. (2011)
Di Girolamo, F., Campanella, L., Samperi, R. and Bachi, A. Mass spectrometric identification of hemoglobin modifications induced by nitrosobenzene. Ecotoxicol Environ Saf 72(5). 1601-1608. (2009)
Dolfing, J., Van Eekert, M., Seech, A., Vogan, J. and Mueller, J. In situ chemical reduction (ISCR) technologies: Significance of low Eh reactions. Soil & Sediment Contamination 17(1). 63-74. (2007)
Feyte, S., Tessier, A., Gobeil, C. and Cossa, D. In situ adsorption of mercury, methylmercury and other elements by iron oxyhydroxides and organic matter in lake sediments. Applied Geochemistry 25(7). 984-995. (2010)
Gao, J., Liu, L., Liu, X., Zhou, H., Wang, Z. and Huang, S. Concentration level and geographical distribution of nitrobenzene in Chinese surface waters. Journal of Environmental Sciences 20(7). 803-805. (2008)
Geng, M. and Thagard, S.M. The effects of externally applied pressure on the ultrasonic degradation of Rhodamine B. Ultrason Sonochem 20(1). 618-625. (2013)
Guenther, E.A., Johnson, K.S. and Coale, K.H. Direct Ultraviolet Spectrophotometric Determination of Total Sulfide and Iodide in Natural Waters. Analytical Chemistry 73(14). 3481-3487. (2001)
Guertin, J. Overview of Cleanup Design Options and Treatability Testing for In Situ Remediation of Soil and Ground Water. The Professional Geologist 46(4). (2009)
Harrison, J.H. and Jollow, D.J. Rapid and sensitive method for the microassay of nitrosobenzene plus phenylhydroxylamine in blood. Journal of Chromatography B: Biomedical Sciences and Applications 277. 173-182. (1983)
Heijman, C.G., Holliger, C., Glaus, M.A., Schwarzenbach, R.P. and Zeyer, J. Abiotic reduction of 4-Chloronitrobenzene to 4-Chloroaniline in a dissimilatory iron-reducing enrichment culture. Applied and Environmental Microbiology. 59(12). 4350-4353. (1993)
Henderson, A.D. and Demond, A.H. Permeability of iron sulfide (FeS)-based materials for groundwater remediation. Water Res 47(3). 1267-1276. (2013)
Huang, K.-C., Couttenye, R.A. and Hoag, G.E. Kinetics of heat-assisted persulfate oxidation of methyl tert-butyl ether(MTBE). Chemosphere 49. 413-420. (2002)
Jeong, J. and Yoon, J. Dual roles of CO2*- for degrading synthetic organic chemicals in the photo/ferrioxalate system. Water Res 38(16). 3531-3540. (2004)
Kalbus, G.E., Lieu, V.T. and Kalbus, L.H. A Spectrophotometric Study of the Permanganate–Oxalate Reaction: An Analytical Laboratory Experiment. Journal of Chemical Education 81(1). 100-102. (2004)
Karlsson, S., Håkansson, K., Ledin, A. and Allard, B. Light induced changes of Fe(II)/Fe(III) and their implications for colloidal forms of Al, Mn, Cu, Zn and Cd in an acidic lake polluted with mine waste effluents. Journal of Geochemical Exploration 52. 145-159. (1995)
Klausen, J., Troeber, S.P., Haderlein, S.B. and Schwarzenbach, R.P. Reduction of substituted nitrobenzenes by Fe (II) in aqueous mineral suspensions. Environmental Science & Technology 29(9). 2396-2404. (1995)
Kovac, J., Peternai, L. and Lengyel, O. Advanced light emitting diodes structures for optoelectronic applications. Thin Solid Films 433(1-2). 22-26. (2003)
Lan, Y.-Q., Yang, J.-X. and Deng, B. Catalysis of Dissolved and Adsorbed Iron in Soil Suspension for Chromium(VI) Reduction by Sulfide. Pedosphere 16(5). 572-578. (2006)
Lee, Y., Jeong, J., Lee, C., Kim, S. and Yoon, J. Influence of various reaction parameters on 2,4-D removal in photo/ferrioxalate/H2O2 process. Chemosphere 51(9). 901-912. (2003)
Leetham, J.T. In-situ chemical oxidation of MTBE and BTEX in soil and groundwater:A case study. Contaminated Soil Sediment and Water spring. 54-58. (2001)
Lei, B., Huang, S., Qiao, M., Li, T. and Wang, Z. Prediction of the environmental fate and aquatic ecological impact of nitrobenzene in the Songhua River using the modified AQUATOX model. Journal of Environmental Sciences 20(7). 769-777. (2008)
Li, Y., Wang, F., Zhou, G. and Ni, Y. Aniline degradation by electrocatalytic oxidation. Chemosphere 53(10). 1229-1234. (2003)
Li, Y.P., Cao, H.B., Liu, C.M. and Zhang, Y. Electrochemical reduction of nitrobenzene at carbon nanotube electrode. J Hazard Mater 148(1-2). 158-163. (2007)
Liang, C., Huang, C.F. and Chen, Y.J. Potential for activated persulfate degradation of BTEX contamination. Water Res 42(15). 4091-4100. (2008)
Liang., C., Guo., Y.-Y., Chien., Y.-C. and Wu., Y.-J. Oxidative Degradation of MTBE by PyriteActivated Persulfate:Proposed Reaction Pathways. Ind. Eng. Chem. Res 49. 8858-8864. (2010)
Ling, X., Li, J., Zhu, W., Zhu, Y., Sun, X., Shen, J., Han, W. and Wang, L. Synthesis of nanoscale zero-valent iron/ordered mesoporous carbon for adsorption and synergistic reduction of nitrobenzene. Chemosphere 87(6). 655-660. (2012)
Liu, J., Valsaraj, K.T., Devai, I. and DeLaune, R.D. Immobilization of aqueous Hg(II) by mackinawite (FeS). J Hazard Mater 157(2-3). 432-440. (2008)
Luan, F., Xie, L., Sheng, J., Li, J., Zhou, Q. and Zhai, G. Reduction of nitrobenzene by steel convert slag with Fe(II) system: the role of calcium in steel slag. J Hazard Mater 217-218. 416-421. (2012)
MacFarlane, J.W. and Scott, T.B. Reduction of carbon dioxide on jet spray formed titanium dioxide surfaces. J Hazard Mater 211-212. 247-254. (2012)
Matheson, L.J. and Tratnyek, P.G. Reductive dehalogenation of chlorinated methanes by iron metal. Environmental Science & Technology 28(12). 2045-2053. (1994)
Maynard, R. MTBE: Effects on soil and groundwater resources. Occupational and Environmental Medicine 59(2). 139. (2002)
Meng, X., Cheng, H., Akiyama, Y., Hao, Y., Qiao, W., Yu, Y., Zhao, F., Fujita, S.-i. and Arai, M. Selective hydrogenation of nitrobenzene to aniline in dense phase carbon dioxide over Ni/γ-Al2O3: Significance of molecular interactions. Journal of Catalysis 264(1). 1-10. (2009)
Millero, F.J. Solubility of Fe (III) in seawater. Earth and Planetary Science Letters 154(1). 323-329. (1998)
Moon, D.H., Wazne, M., Jagupilla, S.C., Christodoulatos, C., Kim, M.G. and Koutsospyros, A. Particle size and pH effects on remediation of chromite ore processing residue using calcium polysulfide (CaS5). Sci Total Environ 399(1-3). 2-10. (2008)
Moyer, E.E. and Kostecki, P.T. MTBE Remediation Handbook. J Hazard Mater 119. 255-263. (2005)
Oh, S.-Y., Kang, S.-G., Kim, D.-W. and Chiu, P.C. Degradation of 2,4-dinitrotoluene by persulfate activated with iron sulfides. Chemical Engineering Journal 172(2-3). 641-646. (2011)
Pakzadeh, B. and Batista, J.R. Chromium removal from ion-exchange waste brines with calcium polysulfide. Water Res 45(10). 3055-3064. (2011)
Patrick, M. and Barbara, S. Diuron Degradation in Irradiated, Heterogeneous Iron/Oxalate Systems:The Rate-Determining Step. Environ. Sci. Technol 35. 3314-3320. (2001)
Poulton, S.W. Sulfide oxidation and iron dissolution kinetics during the reaction of dissolved sulfide with ferrihydrite. Chemical Geology 202(1-2). 79-94. (2003)
Rickard, D. and Luther, G.I. Chemistry of iron sulfides. Chemical Reviews-Columbus 107(2). 514-562. (2007)
Sanchez-Polo, M., Von Gunten, U. and Rivera-Utrilla, J. Efficiency of activated carbon to transform ozone into OH radicals: Influence of operational parameters. Water Res 39(14). 3189-3198. (2005)
Schroth, M.H., Oostrom, M., Wietsma, T.W. and Istok, J.D. In-situ oxidation of trichloroethene by permanganate:effects on porous medium hydraulic properties. J Contam Hydrol 50. 79-98. (2001)
Sedlak, D.L. and Hoigné, J. The role of copper and oxalate in the redox cycling of iron in atmospheric waters. Atmospheric Environment. Part A. General Topics 27(14). 2173-2185. (1993)
Sekyere, C.K.K., Forson, F.K. and Akuffo, F.O. Technical and economic studies on lighting systems: A case for LED lanterns and CFLs in rural Ghana. Renewable Energy 46. 282-288. (2012)
Sen, C., Packer, L. and Hänninen, O. Handbook of oxidants and antioxidants in exercise. Elsevier Science. (2000)
Siegrist, R.L., Urynowicz, M.A., West, O.R., Crimi, M.L. and Lowe, K.S. Principles and Practices of in situ Chemical Oxidation Using Permanganate. J Hazard Mater 90. 323-324. (2002)
Slowey, A.J. and Brown, G.E. Transformations of mercury, iron, and sulfur during the reductive dissolution of iron oxyhydroxide by sulfide. Geochimica et Cosmochimica Acta 71(4). 877-894. (2007)
Sternson, L.A. and DeWitte, W.J. High-pressure liquid chromatographic analysis of aniline and its metabolites. Journal of Chromatography A 137(2). 305-314. (1977)
Tsitonaki, A., Petri, B., Crimi, M., MosbÆK, H., Siegrist, R.L. and Bjerg, P.L. In Situ Chemical Oxidation of Contaminated Soil and Groundwater Using Persulfate: A Review. Critical Reviews in Environmental Science and Technology 40(1). 55-91. (2010)
Tsuchiya, K., Akai, K., Tokumura, A., Abe, S., Tamaki, T., Takiguchi, Y. and Fukuzawa, K. Oxygen radicals photo-induced by ferric nitrilotriacetate complex. Biochim Biophys Acta 1725(1). 111-119. (2005)
Uchimiya, M., Gorb, L., Isayev, O., Qasim, M.M. and Leszczynski, J. One-electron standard reduction potentials of nitroaromatic and cyclic nitramine explosives. Environmental Pollution 158(10). 3048-3053. (2010)
USEPA. METHOD 8330A-Nitroaromatics and Nitramines by high performance liquid chromatography(HPLC). http://www.epa.gov/. (2007).
USEPA. Toxicological Review of Nitrobenzene. http://www.epa.gov/. (2009).
Weimin, W., Yongnian, Y. and Jiayu, Z. Selective reduction of nitrobenzene to nitrosobenzene over different kinds of trimanganese tetroxide catalysts. Applied Catalysis A:General 133. 81-93. (1995)
Wu, J., Yin, W., Gu, J., Li, P., Wang, X. and Yang, B. A biotic Fe0–H2O system for nitrobenzene removal from groundwater. Chemical Engineering Journal 226. 14-21. (2013)
Wurtele, M.A., Kolbe, T., Lipsz, M., Kulberg, A., Weyers, M., Kneissl, M. and Jekel, M. Application of GaN-based ultraviolet-C light emitting diodes--UV LEDs--for water disinfection. Water Res 45(3). 1481-1489. (2011)
Xie, X., Zhang, Y., Huang, W. and Huang, S. Degradation kinetics and mechanism of aniline by heat-assisted persulfate oxidation. Journal of Environmental Sciences 24(5). 821-826. (2012)
Xu, W.-Y., Gao, T.-Y. and Fan, J.-H. Reduction of nitrobenzene by the catalyzed Fe-Cu process. J Hazard Mater 123(1-3). 232-241. (2005)
Zhang, Y.Q., Huang, W.L. and Fennell, D.E. In situ chemical oxidation of aniline by persulfate with iron(II) activation at ambient temperature. Chinese Chemical Letters 21(8). 911-913. (2010)
Zhang, Z., Wang, M., Ren, J. and Xu, J. Highly efficient photocatalyst Bi2MoO6 induced by blue light-emitting diode. Applied Catalysis B:Environmental 123-124. 89-93. (2012)
Zhou, X., Wang, X. and Shi, H. Inhibitory effect of nitrobenzene on oxygen demand in lake sediments. Journal of Environmental Sciences 24(5). 934-939. (2012)
Zhu, L., Ma, B., Zhang, L. and Zhang, L. The study of distribution and fate of nitrobenzene in a water/sediment microcosm. Chemosphere 69(10). 1579-1585. (2007)
Zuo, Y. and Hoigne, J. Formation of hydrogen peroxide and depletion of oxalic acid in atmospheric water by photolysis of iron (III)-oxalato complexes. Environmental Science & Technology 26(5). 1014-1022. (1992)
行政院環境保護署. 地下水污染監測基準及管制標準(草案). http://www.epa.gov.tw/index.aspx. (2001).
行政院環境保護署. 水中硫化物檢測方法-甲烯藍/分光光度計法. http://www.epa.gov.tw/index.aspx. (2006).
行政院環境保護署. 土壤及地下水受比水重非水相液體污染場址整治技術選取、系統設計要點與注意事項參考手冊. (2008)
行政院環境保護署. 土壤污染管制標準第五條修正草案總說明. http://www.epa.gov.tw/index.aspx. (2012a).
行政院環境保護署. 物質安全資料表-苯胺. http://www.epa.gov.tw/index.aspx. (2012b).
行政院環境保護署. 物質安全資料表-硝苯. http://www.epa.gov.tw/index.aspx. (2012c).
余文成. 台灣LED產業發展和競爭策略之研究. 國立台灣科技大學工業管理碩士在職專班碩士論文. (2006)
李文凱. 光催化過硫酸鹽氧化水中六種有機污染物之動力研究與模擬. 國立成功大學碩士論文. (2012)
邱南殼. 現地化學還原法整治技術及案例介紹. http://www.ftis.org.tw/eta2/index.asp. 環保技術e報. (2008).
范竣程. 以芬頓流體化床程序降解鄰-甲苯胺. 嘉南藥理科技大學環境工程與科學系碩士論文. (2010)
梁振儒. 淺談土壤及地下水污染現地過硫酸鹽化學氧化整治法. 台灣土壤及地下水環境保護協會簡訊 23. 13-20. (2007)
黃建歷. 高功率白光LED照明之光學設計. 國立台灣科技大學電子工程系碩士論文. (2009)
經濟部工業局. 經濟部工業局97含氯碳氫化合物土壤及地下水污染預防與整治技術手冊. (2008)
蔡宏志. Photo-Fenton法處理反應性偶氮染料Black B與酚之研究. 國立成功大學碩士論文. (2005)
魏豪正. 草酸於異相光催化系統降解偶氮染料之研究. 國立成功大學化學工程研究所碩士論文. (2006)
饒瑞佶. 發光二極體應用於蝴蝶蘭、彩色海芋與馬鈴薯組織培養之研究. 國立台灣大學碩士論文. (2003)