簡易檢索 / 詳目顯示

研究生: 陳奕瑋
Chen, Yi-Wei
論文名稱: 氨基硫醇單分子層修飾蕭特基式氮氧化物感測器之研製
Fabrication of Amino-alkanethiol Monolayer Functionalized Schottky-type NOx Sensors
指導教授: 陳慧英
Chen, Huey-Ing
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 90
中文關鍵詞: 自組裝單分子層氨基硫醇蕭特基二極體氣體感測器氮氧化物
外文關鍵詞: Self-assembled monolayers, Amino-alkanethiol, Schottky diode, Gas sensors, Nitrogen oxides
相關次數: 點閱:125下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究係以氨基硫醇單分子層修飾金/磷化銦鎵(Au/InGaP)蕭特基二極體作為氮氧化物(NOX)之感測器。實驗中,首先製作金/磷化銦鎵蕭特基二極體,再以溶液含浸法將氨基硫醇單分子層修飾於金膜表面,並以此元件進行氮氧化物感測特性之探討。
    文中改變氨基硫醇含浸溶液之濃度來選擇最適之元件製備條件,此外也針對了不同碳數及分子結構之氨基硫醇來探討。為了測定不同氨基硫醇在金膜上之吸附量,本實驗以循環伏安法來加以分析;在元件感測實驗方面則改變NOx濃度、溫度、濕度及氣體種類等操作變因來探討元件對NOx感測特性,如:靈敏度、選擇性、響應及回復速率等性質之影響。
    由實驗結果可知,在金膜上之吸附量隨著濃度的增加亦增加,但當氨基硫醇濃度達到1mM時其吸附量趨於飽和;不同碳數及分子結構的氨基硫醇單分子層,則出現高碳數之氨基辛烷硫醇吸附量比氨基己烷硫醇更多的結果,而內含苯環結構的氨基苯酚之吸附量則最少。此結果與其製備成元件後對NOx感測靈敏度呈現相同趨勢;在25℃,100 ppm下,氨基辛烷硫醇元件對NO2之感測靈敏度為44.19,響應時間為236秒,回復時間為7541秒;NO之感測靈敏度為8.43,響應時間為1039秒,回復時間為2635s ; 氨基己烷硫醇元件對NO2之感測靈敏度為38.63,響應時間為187秒,回復時間為1004秒;NO之感測靈敏度為2.80,響應時間為217秒,回復時間為368秒。
    以氨基硫醇修飾Au/InGaP元件進行感測氣體濃度之探討時,發現元件對NOx之感測靈敏度隨濃度增加而增大;另一方面對於感測環境的操作變因進行探討,以氨基硫醇修飾Au/InGaP元件進行感測,發現感測靈敏度隨溫度之升高而降低,即在25℃下為最佳之感測溫度;而對於環境濕度而言,感測靈敏度在相對濕度高於50%之後會顯著的下降,即元件適合在環境相對濕度50%以下操作。此外以甲醇、乙醇、一氧化碳、二氧化碳、甲醛、甲烷、氫氣、氨氣、丙酮等常見工業用危害性氣體來進行選擇性之探討,發現元件對氮氧化物呈現極佳之選擇性。
    為了探究氣體感測的機制,在感測不同濃度二氧化氮氣體時,個別就修飾癸二硫醇以及氨基辛烷硫醇之元件,進行蕭特基能障下降量之計算,由計算結果可知,氨基辛烷硫醇(AOT)感測100 ppm二氧化氮時,蕭特基能障的下降量為0.09868 V,癸二硫醇(DDT)元件則為0.07386 V。在感測二氧化氮氣體時,氨基硫醇元件會比雙硫醇元件具有更大的蕭特基能障下降量。
    此外以Langmuir吸附來描述元件對NO2之穩態感測行為,感測靈敏度與濃度之關係符合Langmuir模式。對於氨基辛烷硫醇(AOT)元件,反應階數為0.5階,平衡常數(K)為4.15×10-1;對於癸二硫醇(DDT)硫醇元件,反應階數為1階,平衡常數(K)為4.21 ×10-2。進一步以吸附動力模式來描述元件對NO2之暫態感測行為。以穩態模式求得之反應階數代入,對於氨基辛烷硫醇元件,正向反應速率(k1)為4.25×10-3;對於癸二硫醇元件,正向反應速率(k1)為4.293×10-4。

    In this work, we devoted to fabricate the amino-alkane thiol monolayer decorated Au/InGaP Schottky diode NOx gas sensor. Experimentally, we prepared Au/InGaP Schottky diode and deposited the amino-alkane thiol self-assembled monolayer (SAM) on Au film of device sequentially using immersion method. The effect of different solution concentrations for immersion (=0.01, 0.05, 0.1, 0.5, 1, 2 mM), carbon numbers and structures of alkyl chain have been comprehensively discussed in our research. Cyclic voltammetry is applied to simulate the amino-alkanethiol monolayer self-assembled on Au surface and its adsorption amounts is further calculated by reduction peak current analysis. In addition, the sensing performance of the amino-alkanethiol modified Au/InGaP Schottky diode under different NOx concentrations, temperatures, humidities has been researched. The reduction of Schottky barrier height is calculated as well as the thermodynamic and kinetic analysis at the end of the study. Langmuir model is successfully fitted for thermodynamic analysis and then forward reaction rate constant is derived from kinetic analysis.

    總目錄 誌謝 中文摘要 英文摘要 總目錄 表目錄 圖目錄 第一章 緒論 1.1 前言 1 1.2 氣體感測器 2 1.3 自組裝單分子層 5 1.3.1 自組裝單分子層的歷史 5 1.3.2 自組裝單分子層的結構 5 1.3.3 自組裝單分子層形成機制 6 1.4 自組裝單分子層在氣體感測器之應用 7 1.5 研究目的與概要 8 第二章 原理 2.1 蕭特基二極體 15 2.1.1 蕭特基二極體的平衡狀態 15 2.1.2 蕭特基二極體的操作 16 2.1.3 蕭特基能障下降量 18 2.2 感測原理 19 2.2.1 氮氧化物感測機制 19 2.2.2 穩態熱力學模型推導 20 2.2.3 暫態動力學模型推導 21 第三章 實驗 3.1 藥品與材料 26 3.1.1 藥品 26 3.1.2 材料 27 3.1.3 氣體 27 3.2 分析儀器與設備 28 3.2.1 實驗設備 28 3.2.2 分析儀器 28 3.3 蕭特基二極體式感測元件之製備 29 3.3.1 元件結構 29 3.3.2 元件製備 29 3.4 氣體感測方法 32 3.4.1 穩態量測 32 3.4.2 暫態量測 32 3.5 分析方法 33 3.5.1 循環伏安法 33 第四章 結果與討論 4.1 循環伏安法分析氨基硫醇分子吸附量 39 4.1.1 含浸溶液濃度影響 39 4.1.2 碳數及分子結構之影響 40 4.2 元件電性分析 41 4.2.1 溫度影響 41 4.2.1 濕度影響 41 4.3 氮氧化物感測 42 4.3.1 SAM分子結構之影響 42 4.3.1.1 分子結構之影響 42 4.3.1.2 長鏈碳數之影響 43 4.3.1.3 官能基之影響 43 4.3.2 感測條件之影響 43 4.3.2.1 氣體濃度之影響 43 4.3.2.2 操作溫度之影響 45 4.3.2.3 氣氛濕度之影響 45 4.3.4 選擇性測試 46 4.4 蕭特基能障下降量 46 4.5 動力學及熱力學模型分析 46 4.5.1 穩態熱力學分析 46 4.5.2 暫態動力學分析 47 4.6 感測機制推測 47 4.7 綜合討論 48 第五章 結論與建議 5.1 結論 84 5.2 建議 85 參考文獻 86

    [1] M. J. Tierney, and H. O. L. Kim, “Electrochemical gas sensor with extremely fast times”, Analytical Chemistry, 65, 3435-3440, 1993.
    [2] Z. Zheng, H. Ren, I. VonWald, and M.E Meyerhoff, “Highly sensitive amperometric Pt-Nafion gas phase nitric oxide sensor: Performance and application in characterizing nitric oxide-releasing biomaterials”, Analytica Chimica Acta, 887, 186-191, 2015.
    [3] G. Lu, N. Miura, and N. Yamazoe, “High-temperature sensors for NO and NO2 based on stabilized zirconia and spinel-type oxide electrodes” , Journal of Materials Chemistry, 7, 1445-1449, 1997.
    [4] Z.C. Meng, J.B. Zheng, and Q.D. Li , “A nitrite electrochemical sensor based on electrodeposition of zirconium dioxide nanoparticles on carbon nanotubes modified electrode” , Journal of the Iranian Chemical Society, 12, 1053-1060, 2015.
    [5] B. Yang, J.Z. Xiao, and C. Wang, “Effects of WO3 electrode microstructure on NO2 sensing properties for a potentiometric sensor” , Royal Society Open Science, 6, 190526, 2019.
    [6] Q. Diao, X.M. Zhang, J. Li, Y.N. Yin, M.L. Jiao, J. Cao, C.H. Su, K. Yang, “Improved sensing performances of NO2 sensors based on YSZ and porous sensing electrode prepared by MnCr2O4 admixed with phenol-formaldehyderesin microspheres” , Ionics, 25, 6043-6050, 2019.
    [7] D. Nunes, A. Pimentel, A. Gonçalves, S. Pereira, R. Branquinho, P. Barquinha, E. Fortunato, and R. Martins, “Metal oxide nanostructures for sensor applications”, Semiconductor Science and Technology, 34, 4 , 2019.
    [8] A. Dey, “Semiconductor metal oxide gas sensors: A review” , Materials Science and Engineering: B, 229, 206-217, 2018.
    [9] P. Feng, F. Shao, Y. Shi, and Q. Wan, “Gas sensors based on semiconducting nanowire field effect transistors” , Sensors (Basel), 14, 17406-17429,2014.
    [10] T. H. Tsai, H. I. Chen, K. W. Lin, T. Y. Chen, C. C. Huang, K. S. Hsu, and W. C. Liu, “A hydrogen sensor based on a metamorphic high electron mobility transistor (MHEMT)” , Microelectronics Reliability, 50, 734-737, 2010.
    [11] J. R. Huang, W. C. Hsu, H. I. Chen, and W. C. Liu, “Comparative study of hydrogen sensing characteristics of a Pd/GaN Schottky diode in air and N2 atmospheres” , Sensors and Actuators B: Chemical, 123, 1040-1048, 2007.
    [12] I. Langmuir, “The constitution and fundamental properties of solids and liquids.II.liquids.” , Journal of the American Chemical Society, 38, 2221-2295, 1916.
    [13] K. Blodgett, “Monomolecular films of fatty acids on glass.”, Journal of the American Chemical Society, 56, 495-495, 1934.
    [14] W. Bigelow, D. Pickett, and W. Zisman, “Oleophobic monolayers I. films adsorbed from solution in non-polar liquids”, Journal of Colloid and Interface Science, 1, 513-538, 1946.
    [15] L. C. F. Blackman, M. J. S. Dewar, and H. Hampson, “An investigation of compounds promoting the dropwise condensation of steam.” , Journal of Applied Chemistry, 7, 160-171, 1957.
    [16] J. Sagiv, “Organized monolayers by adsorption. 1. Formation and structure of Oleophobic mixed monolayers on solid surfaces” , Journal of the American Chemical Society, 102, 92-98, 1978.
    [17] C. E. D. Chidsey, C. R. Bertozzi, T. M. Putvinski, and A. M. Mujsce, “Coadsorption of ferrocene-terminated and unsubstituted alkanethiols on gold: electroactive self-assembled monolayers” , Journal of the American Chemical Society, 112, 4301-4306, 1989.
    [18] H. Hakkinen, “The gold–sulfur interface at the nanoscale” , Nature Chemistry, 4, 443-455, 2012.
    [19] W. P. Fitts, and J. M. White, “Low-coverage decanethiolate structure on Au(111): substrate effects”, Langmuir ,18, 1561-1566, 2002.
    [20] A. M. Andringa, M. J. Spijkman, E. C. P. Smits, S. G. J. Mathijssen, P. A. v. Hal, S. Setayesh, N. P. Willard, O. V. Borshchev, S. A. Ponomarenko, P. W. M. Blom, and D. M. de Leeuw, “Gas sensing with self-assembled monolayer field-effect transistors” , Organic Electronics, 11, 895-898, 2010.
    [21] N. Singh, R. K. Gupta, and P. S. Lee, “Gold-nanoparticle-functionalized In2O3 nanowires as CO gas sensors with a significant enhancement in response” , ACS Applied Materials and Interfaces, 3, 2246-2252, 2011.
    [22] H. Yuan, B.H. Kang, H.M. Jeong, H.C. Kwon, Yeom, and J.S. Lee, “Room temperature VOC gas detection using a gated lateral BJT with an assembled solvatochromic dye”, Sensors and Actuators B: Chemical, 16, 549-561, 2000.
    [23] E.R. Waclawik, J. Chang, A. Ponzoni, A, I. Concina, D. Zappa, E. Comini, N. Motta, G. Faglia, and G. Sberveglieri, “Functionalised zinc oxide nanowire gas sensors:enhanced NO2 gas sensor response by chemical modification of nanowire surfaces”, Beilstein Journal of Nanotechnology, 3, 368-377, 2012.
    [24] T.Y.Zhao, X.W.Fu, X.H.Cui, G.Lian, Y.Liu ,S.Song, Q.L.Wang, K.Wang, and D.L.Cui, “An in-situ surface modification route for realizing the synergeticeffect in P3HT-SnO2 composite sensor and strikingly improving itssensing”, Sensors and Actuators B: Chemical, 241, 1210-1217, 2017.
    [25] W. Liu, L. Xu, K. Sheng, C. Chen, X.Y. Zhou, B. Dong, X. Bai, S. Zhang, G.Y. Lu, H.W Song, “APTES-functionalized thin-walled porous WO3 nanotubes for highly selective sensing of NO2 in a polluted environment”, Journal of Materials Chemistry A, 6, 10976-10989, 2018.
    [26] M. W. Hoffmann, L. Mayrhofer, O. Casals, L. Caccamo, F. Hernandez-Ramirez, G. Lilienkamp, W. Daum, M. Moseler, A. Waag, H. Shen, and J. D. Prades, “A highly selective and self-powered gas sensor via organic surface functionalization of p-Si/n-ZnO diodes” , Advanced Materials, 26, 8017-8022, 2014.
    [27] Z. Wang, L.Z. Huang, X.F. Zhu, X. Zhou, L.F. Chi, “An ultrasensitive organic semiconductor NO2 sensor based on crystalline TIPS-Pentacene films”, Advanced Materials, 29, 1703192, 2017.
    [28] M.W. Ahn, K.S. Park, J.H. Heo, D.W. Kim, K.J. Choi, J.G. Park, “On-chip fabrication of ZnO-nanowire gas sensor with high gas sensitivity”, Sensors and Actuators B: Chemical, 138, 168-173, 2009.
    [29] L. Chandra, P. K. Sahu, R. Dwivedi, and V. N. Mishra, “Electrical and NO2 sensing characteristics of Pd/ZnO nanoparticles based Schottky diode at room temperature” , Materials Research Express, 4, 125017, 2017.
    [30] C. Varenne, J. Brunet, A. Pauly, and B. Lauron, “Influence of electrical characteristics on the sensitivity of p-InP-based pseudo-Schottky diodes for NO2 monitoring in atmosphere” , Sensors and Actuators B: Chemical, 134, 597-603, 2008.
    [31] P. C. Chou, H. I. Chen, I. P. Liu, C. C. Chen, J. K. Liou, C. J. Lai, and W. C. Liu, “Nitrogen oxide gas sensing performance of ZnO nanoparticles (NPs)/sapphire-based sensors” , IEEE Sensors Journal, 15, 3759-3763, 2015.
    [32] X. Zhuang, W. Huang, S. Han, Y. Jiang, H. Zheng, and J. Yu, “Interfacial modifying layer-driven high-performance organic thin-film transistors and their nitrogen dioxide gas sensors” , Organic Electronics, 49, 334-339, 2017.
    [33] N. S. Harale, D. S. Dalavi, S. S. Mali, N. L. Tarwal, S. A. Vanalakar, V. K. Rao, C. K. Hong, J. H. Kim, and P. S. Patil, “Single-step hydrothermally grown nanosheet assembled tungsten oxide thin films for sensitive and selective NO2 gas detection” , Journal of Materials Science, 53, 6094-6105, 2018.
    [34] W. Du, N. Wu, Z. Wang, J. Liu, D. Xu, and W. Liu, “High response and selectivity of platinum modified tin oxide porous spheres for nitrogen dioxide gas sensing at low temperature” , Sensors and Actuators B: Chemical, 257, 427-435, 2018.
    [35] Y. Zhao, M. Ikram, J. Zhang, K. Kan, H. Wu, W. Song, L. Li, and K. Shi, “Outstanding gas sensing performance of CuO-CNTs nanocomposite based on asymmetrical schottky junctions” , Applied Surface Science, 428, 415-421, 2018.
    [36] E. H. Rhoderick, “The physics of Schottky barriers”, Journal of Physics D: Applied Physics, 3, 81-95, 1970.
    [37] 施敏, 李明逵 著, 曾俊元 譯, “半導體元件物理與製作技術”, 交通大學出版社, 317-329, 2015.
    [38] F. P. Cometto, C. A. Calderón, E. M. Euti, D. K. Jacquelín, M. A. Pérez, E. M. Patrito, and V. A. Macagno, “Electrochemical study of adlayers of α,ω-alkanedithiols on Au(111): Influence of the forming solution, chain length and treatment with mild reducing agents”, Journal of Electroanalytical Chemistry, 661, 90-99, 2011.
    [39] 吳家興,“硫醇單分子曾修飾蕭特基式氮氧化物感測器之研究”,成功大學化學工程學系碩士論文, 2018.

    下載圖示 校內:2025-07-28公開
    校外:2025-07-28公開
    QR CODE