| 研究生: |
李潔莉 Jaclyn, |
|---|---|
| 論文名稱: |
在磷酸鋰鐵表面合成PEDOT於鋰離子電池之應用 Surface synthesis of poly(3,4-ethylenedioxythiophene) on lithium iron phosphate for lithium ion battery |
| 指導教授: |
溫添進
Wen, Ten-Chin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 英文 |
| 論文頁數: | 59 |
| 中文關鍵詞: | 磷酸鋰鐵 、聚二氧乙基噻吩 、化學聚合 、鋰離子電池 |
| 外文關鍵詞: | LiFePO4, PEDOT, chemical polymerization, lithium ion battery |
| 相關次數: | 點閱:60 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要是藉由合成條件的改變來製備不同型態的聚二氧乙基噻吩-磷酸鋰鐵複合物,並且探討以不同金屬離子合成的聚二氧乙基噻吩於鋰離子電池正極材料之研究。首先,使用紫外線自由基聚合法合成的聚二氧乙基噻吩。利用氧化還原聚合的方式,透過3,4-乙烯二氧噻吩和有機液相中氧化劑(金屬離子)濃度的改變,以製備出不同型態的聚二氧乙基噻吩-磷酸鋰鐵複合物。藉由反應前後溶液顏色改變,推測其反應,並利用掃描式電子顯微鏡(SEM)、紫外光/可見光光譜(UV-Vis)、傅立葉紅外線光譜(FTIR)和X光繞射分析(XRD)、熱重分析儀(TGA)證實聚二氧乙基噻吩成功製備。此本論文將其應用於鋰離子電池正極材料的研究,從硬幣型電池充放電測試、循環壽命測試、放電速率測試、交流電阻抗測試探討經修飾磷酸鋰鐵的特性,由實驗結果得知經修飾磷酸鋰鐵可以有效地提升鋰離子電池的電容量,對電池的循環壽命也有不錯的表現。
Lithium iron phosphate (LiFePO4) is material used in lithium ion battery as positive electrode material which has excellent thermal stability, good safety property, and environmentally friendly. In spite of these advantages, LiFePO4 has low conductivity and thereby its electrochemical performance is limited, resulting in poor rate capability. Poly(3,4-ethylenedioxythiophene) (PEDOT) is a conductive polymer which can be synthesized using chemical oxidation. Coating LiFePO4 with PEDOT conducting polymer can enhances the conductivity and rate capability.
PEDOT had been successfully synthesized on the surface of LiFePO4 using UV radical polymerization or using metal ion as an oxidant. EDOT oxidizes to PEDOT while transferring electron reducing metal ion to metal. Metal ions which can oxidize EDOT are auric and ferric ion. Auric ion reduces to gold metal while ferric ion reduces to ferrous ion. When using ferric ion as oxidant, ferrous ion needs to be washed clearly. Ferrous ion could play a catalytic role in the formation and growth of an interfacial film between electrolyte and electrode. The best ferric ion used to oxidize EDOT is iron (III) tosylate (Fe(OT)3) because the resulting PEDOT contains least contaminant. When using auric ion as oxidant, high concentration EDOT (8 mmol) and low concentration HAuCl4 (25 mmol) sample gives the best performance on electrochemical test. Higher concentration of HAuCl4 can enhance the conductivity of LiFePO4 but no enhancement on electrochemical performance because the amount of active material in electrochemical test, which is LiFePO4, was reduced when there is too much gold in the composite. PEDOT synthesized from UV radical polymerization or using metal ion as an oxidant, all can enhance the conductivity, discharge capacity, and cycling ability of LiFePO4.
[1] Bard, A.J. and L.R. Faulkner. Electrochemical Methods: fundamentals and applications. 2001. 2nd edition. New York: John Wiley & Sons.
[2] Ozawa, Kazunori (ed.). Lithium Ion Rechargeable Batteries: Materials, Technology, and New Applications. 2009. Weinheim: WILEY-VCH Verlag GmbH & Co. KGaA.
[3] Gholam-Abbas, Nazri and Gianfranco Pistoa (eds.). Lithium Batteries: Science and Technology. 2003. Boston: Kluwer Academic Publishers.
[4] Priya, Shashank and Daniel J. Inman (eds.). Energy Harvesting Technologies. 2009. New York: Springer Science.
[5] Bazito, Fernanda F.C. and Roberto M. Torresi. Cathodes for Lithium Ion Batteries: The Benefits of Using Nanostructured Materials. 2006. J. Braz. Chem. Soc. Vol. 17. No 4: 627-643.
[6] Li, Zhihua, Duanming Zhang, Fengxia Yang. Developments of lithium-ion batteries and challenges of LiFePO4 as one promising cathode material. 2009. J. Mater. Sci. 44: 2435-2443.
[7] Padhi, A.K., K.S. Nanjundaswamy, J.B. Goodenough. Phospho-olivines as Positive-Electrode Materials for Rechargeable Lithium Batteries. 1997. J. Electrochem. Soc. 144. 4: 1188-1194.
[8] Ritchie A. and Howard W. Recent developments and likely advances in lithium-ion batteries. 2006. J. Power Sour. 162: 809-812.
[9] Kim, Dong-Han and Jaekook Kim. Synthesis of LiFePO4 nanoparticles in polyol medium and their electrochemical properties. 2006. Electrochem. Solid-state Lett. Vol. 9, No. 9, pp. A439–A442.
[10] Cho, Tae-Hyung and Hoon-Taek Chung. Synthesis of olivine-type LiFePO4 by emulsion-drying method. 2004. J. Power Sour. 133: 272-276.
[11] Lee, J. and Amyn S. Teja. Synthesis of LiFePO4 micro and nanoparticles in supercritical water. 2006. Mater. Lett. Vol 60: 2105-2109.
[12] Nakamura T., Miwa Y., Tabuchi M., Yamada Y. Structural and surface modifications of LiFePO4 olivine particles and their electrochemical properties. 2006. J. Electrochem. Soc. Vol. 153. No. 6: A1108-A1114.
[13] Chung, Sung-Yoon, Jason T. Bloking, and Yet-Ming Chiang. Electronically conductive phospho-olivines as lithium storage electrodes. 2002. Nat. Matter. 1: 123-128.
[14] Nakamura, Tatsuya, et al. Synthesis of LiFePO4/C Composite Particles by Gas–Solid Phase Reaction and Their Electrochemical Properties. 2010. J. Electrochem. Soc. 157: A544-A549.
[15] Park, K.S. et al. Surface modification by silver coating for improving electrochemical properties of LiFePO4. 2004. Solid State Commun. 129: 311-314.
[16] Croce, F. A novel concept for the synthesis of an improved LiFePO4 lithium battery cathode. 2002. Electrochem. Solid-State Lett. 5: A47-A50.
[17] Xia, Yonggao, Yoshio M., Noguchi H. Improved electrochemical performance of LiFePO4 by increasing its specific surface area. 2006. Electrochim Acta. 52:240–245.
[18] Ravet, N., et al. Electroactivity of natural and synthetic triphylite. 2001. J. Power Sour. 97–98: 503-507.
[19] Yun, N.J., et al. Synthesis and electrochemical properties of olivine-type LiFePO4/C composite cathode material prepared from a poly(vinyl alcohol)-containing precursor. 2006. J. Power Sour. 160: 1361-1368.
[20] Wan, Meixiang. Conducting polymers with micro or nanometer structure. 2008. New York: Springer Berlin Heidelberg.
[21] Groenendaal, L. et al. Poly(3,4-ethylenedioxythiophene) and its derivatives: past, present, and future. 2000. Adv. Matter. 12. No 7: 481-494.
[22] Jang, Jyongsik. Conducting polymer nanomaterials and their applications. 2006. Adv. Polym. Sci. 199: 189-259.
[23] de Leeuw, D.M., et al. Electroplating of conductive polymers for the metallization of insulators. 1994. Synth. Met. 66: 263-273.
[24] Bayer AG. Eur. Patent. 1991. 440 957.
[25] Murugan, A. Vadivel, et al. Electrochemical lithium insertion into a poly(3,4-ethylenedioxythiophene) PEDOT/V2O5 nanocomposite. 2002. J. Power Sour. 105: 1-5.
[26] Murugan, A. Vadivel, Chinnakonda S. Gopinath, K. Vijayamohanan. Electrochemical studies of poly(3,4-ethylenedioxythiophene) PEDOT/VS2 nanocomposite as a cathode material for rechargeable lithium batteries. 2002. Electrochemistry Communications. 7: 213-218.
[27] Her, Li-Jane, Jin-Long Hong, Chia-Chin Chang. Preparation and electrochemical characterizations of poly(3,4-ethylenedioxythiophene/LiCoO2 composite cathode in lithium-ion battery. 2005. J. Power Sour. 157: 457-463.
[28] Her, Li-Jane, Jin-Long Hong, Chia-Chin Chang. Preparation and electrochemical characterizations of poly(3,4-ethylenedioxythiophene/LiCoO2-Ketjenblack composite cathode in lithium-ion battery. 2005. J. Power Sour. 161: 1247-1253.
[29] Murugan, A. Vadivel, T. Muraliganth, A. Manthiram. Rapid microwave-solvothermal synthesis of phosphor-olivine nanorods and their coating with a mixed conducting polymer for lithium ion batteries. 2008. Electrochemistry Communications. 10: 903-906.
[30] Huang, Shahua, et al. Improvement of the high-rate discharge properties of LiCoO2 with the Ag additives. 2005. J. Power Sour. 148: 72-77.
[31] Tu, Jian, et al. Improved performance of LiMn2O4 cathode materials for lithium ion batteries by gold coating. 2006. Materials Letters. 60: 3251-3254.
[32] Salsamendi, M. et al. Simultaneous synthesis of gold nanoparticles and conducting poly(3,4-ethylenedioxythiophene) towards optoelectronic nanocomposites. 2008. Phys. stat. sol. (a). 205: 1451-1454.
[33] Pollack, et al. US Patent. 2008. 7,320,813 B2.
[34] Socrates, George. Infrared and Raman characteristic group frequencies table and charts. 2001. 3rd edition. Wiltshire: John Wiley & Sons.
[35] Zaghib, K., et al. Relationship between local structure and electrochemical performance of LiFePO4 in Li-ion batteries. 2007. Ionics. 14: 271-278.
[36] Feng et al. Improved electrical and optical properties of poly (3,4-ethylenedioxythiophene) via ordered microstructure.2007. J. Phys.: Condens. Matter. 19: 186220-186227.
[37] Kvarnstrőm, C., et al. In situ spectroelectrochemical characterization of poly(3,4-ethylenedioxythiophene). 1999. Electrochimica Acta. 44: 2739-2750.
[38] Balamurungan, A., Kun-Cheng Ho, Shen-Ming Chen. One-pot synthesis of highly stable silver nanoparticles-conducting polymer nanocomposite and its catalytic application. 2009. Synthetic Metals. 159:2544-2549.
[39] Kumar, S.S. et al. Stabilized gold nanoparticles by reduction using 3,4-ethylenedioxythiophene-polystyrenesulfonate in aqueous solutions: nanocomposite formation, stability, and application in catalysis. 2007. Langmuir. 23: 3401–3408.
[40] Lee, Joon Ho, et al. Fabrication of Ag nanopaticles/poly (3,4-ethylenedioxythiophene) nanocomposite electrodes by ink-jet printing. 2006. Mater. Res. Soc. Symp. 920.
[41] Belharouak, I., C. Johnson, K. Amine. Synthesis and electrochemical analysis of vapor-deposited carbon coated LiFePO4. 2005. Electrochemistry Communications. 7: 983-988.
[42] Kiebooms, R., et al. Thermal and electromagnetic behavior of doped poly(3,4-ethylenedioxythiophene) films. 1997. J. Phys. Chem. B. 101: 11037-11039.
[43] Mi, C.H., et al. Synthesis and characterization of LiFePO4/(Ag+C) composite cathodes with nano-carbon webs. 2008. Powder Technology. 181:301-306.
[44] Wang, G.X., et al. An investigation of polypyrrole-LiFePO4 composite cathode materials for lithium-ion batteries. 2005. Electrochimica Acta. 50: 4649-4654.
[45] Wu, Ling., et al. Electrochemical performance of Ti4+-doped LiFePO4 synthesized by co-precipitation and post-sintering method. 2010. Trans. Nonferrous Met. Soc. China. 20: 814−818.
[46] Morales, J. et al. Effect of C and Au additives produced by simple coaters on the surface and the electrochemical properties of nanosized LiFePO4. 2009. Journal of Electroanalytical Chemistry. 631: 29-35.
[47] Hu, Jiezi, et al., Doping effects on electronic conductivity and electrochemical performance on LiFePO4. 2009. J. Mater. Sci. Technol. 25: 405-409.
[48] Choi, J.W. et al. Poly(3,4-ethylenedioxythiophene) nanoparticles prepared in aqueous DBSA solutions. 2004. Synthetic metals. 141: 239-299.
[49] Chang, C.C., Li-Jane Her, Jin-Long Hong. Copolymer from electropolymerization of thiophene and 3,4-ethylenedioxythiophene and its use as cathode for lithium ion battery. 2005. Electrochimica Acta. 50: 4461-4468.
[50] Waseda, Yoshio and Shigeru Suzuki (eds). Characterization of corrosion products on steel surfaces. 2006. Berlin: Springer.
[51] Jang, Jyongsik, Mincheol Chang, Hyeonseok Yoon. Chemical sensors based on highly conductive poly(3,4-ethylenedioxythiophene) nanorods. 2005. Adv. Mater. 17: 1616-1620.
[52] Barbarella, Giovanna, et al. Regioselective oligomerization of 3-(alkylsulfantl)thiophenes with ferric chloride. 1996. J. Org. Chem. 61: 8285-8292.
[53] Tsai, Li-Duan, Yi-Chang Du. US Patent. 2010. US 2010/0099889 A1.
[54] Amine, K., J. Liu, I. Belharouak. High-temperature storage and cycling of C-LiFePO4/graphite Li-ion cells. 2005. Electrochemistry communications. 7: 669-673.