| 研究生: |
陳宏達 Chen, Hung-Ta |
|---|---|
| 論文名稱: |
溶出參數對夯實泥岩襯裡回脹及滲透行為之影響 Effects of Leaching Parameters on Swelling and Permeability Behaviors of Compacted Mudstone Liners |
| 指導教授: |
張祖恩
Chang, Juu-En |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 171 |
| 中文關鍵詞: | 溶出參數 、崩解 、遇水敏感 、鹽鹼土 、可接受區 、掩埋場 、鈉離子 、地工指標 、環境掃瞄式電子顯微鏡 |
| 外文關鍵詞: | Slaking, Watersensitive, Saline-alkali soil, Acceptable zone, Landfill, Leaching parameters, Sodium ion, Geoindicator, ESEM |
| 相關次數: | 點閱:92 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
泥岩本身含有溶解鹽類導致其鈉交換比(ESP)高,泥岩遇水後產生回脹崩解行為,簡言之,泥岩具有遇水敏感(Watersensitive)特性,此外泥岩中特定溶出鹽類是否改變其地工性質亟待進一步釐清。為能有效探討溶出參數對夯實泥岩襯裡回脹及滲透行為之影響,本實驗使用萃取、離心、過濾、濃縮及結晶等固液分離技術獲得特定溶出鹽類後,以掃描式電子顯微鏡及元素分析(SEM/EDX)及X光繞射分析(XRF/XRD)進行鑑定,進一步以環境掃描式電子顯微鏡及元素分析(ESEM/EDX)觀察泥岩浸水時固相之顯微結構及元素成份變化,以溶出參數分析觀察泥岩浸水時液相之水質變化,此外採用夯實及滲透實驗求得夯實泥岩襯裡施工鋪設之可接受區(Acceptable zone),基於可接受區製備自由回脹、受限回脹滲透實驗的標準試體進行試驗,並同步量測溶出參數分析(包括導電度、酸鹼值及離子分析),最後建立溶出參數與夯實泥岩襯裡自由回脹、受限回脹及滲透行為之關係。
基於上述研究分析結果,可歸納以下幾點結論:
1.泥岩及其特定溶出鹽類鑑定
經土壤基本物化分析得知泥岩飽和萃取導電度(ECe)>4 m mho cm-1及ESP>15%,由此判定泥岩屬鹽鹼土,此外泥岩浸水後呈現弱鹼性應是Na+離子的水解造成,泥岩特定溶出鹽類經由SEM/EDX及XRF/XRD鑑定後確認為Na2SO4及NaCl等鈉鹽成分。
2.泥岩浸水後之固液相變化
從環境掃瞄式電子顯微鏡的觀察發現,泥岩浸水後有崩解(Slaking)、回脹及分散行為明顯減少泥岩顆粒間的孔隙。泥岩浸水後透過固相ESEM/EDX顯微結構分析及液相溶出參數分析之同步觀察,由固相ESEM/EDX顯微結構觀察發現,不同時間下浸水泥岩的顯微孔隙明顯改變。另由液相離子分析發現,特定溶出陽離子包括:Na+、Mg2+、K+及Ca2+,特定溶出陰離子包括: SO42- 及Cl-,陰陽離子中分別以SO42-及Na+離子溶出最多,泥岩遇水易於回脹崩解應為鈉鹽所引起。
3.溶出參數與夯實泥岩襯裡之自由回脹行為之關係
透過溶出參數與夯實泥岩襯裡自由回脹行為之同步觀察得知,夯實泥岩在初期浸水時,幾乎完全回脹,夯實泥岩早期(<3days)的自由回脹行為直接受到溶液中Na+離子濃度及CaCO3沈澱作用所致,至於夯實泥岩的晚期(>3days)微量回脹則是受Mg2+離子溶出影響。溶出參數中以Na+、SO42-離子、EC及pH與夯實泥岩襯裡自由回脹具有甚佳的相關性,顯示可以用Na+離子、SO42-離子、EC及pH等溶出參數預測夯實泥岩襯裡的自由回脹行為。
4.溶出參數與夯實泥岩襯裡受限回脹及其滲透係數之關係
夯實泥岩襯裡受限回脹能降低其滲透係數,且夯實泥岩襯裡滲透係數亦可由受限回脹量與滲透係數之數學模式直接預測,此外,夯實泥岩襯裡浸水>1.6day,受限回脹達穩定狀態,滲透係數亦趨於穩定,此時入滲液中的pH及Na+離子濃度等溶出參數亦接近穩定,入滲液中溶出參數中以Na+離子濃度同時能預測夯實泥岩襯裡的受限回脹及滲透係數,顯示泥岩特定鹽類的溶出促使Na+離子濃度成為預測夯實泥岩襯裡回脹及滲透行為的地工指標(Geoindicator)。
High exchangeable sodium percent (ESP) of mudstone is attributed to the dissolution of soluble salts from mudstone itself. As mudstone is immersed in water, the behaviors of slaking, swelling and dispersion is susceptible to occur. In other words, mudstone is watersensitive. It is controversial issue whether dissolution of salts will change geotechnical properties and engineering applications of compacted mudstone or not. Knowledge of leaching parameters is important in estimation of geotechnical behaviors for compacted mudstone liners under field conditions. In order to distinguish effects of leaching parameters on swelling and permeability behaviors of compacted mudstone liners, critical soluble salts are separated from mudstone by extraction, centrifugation, filtration, condensation and crystallization. The critical soluble salts are identified by using scanning electron microscopy (SEM) /energy-dispersive X-ray analysis (EDAX), X-ray fluorescence spectrometry (XRF), X-ray diffractometry (XRD), conductivity measurement, ion chromatography (IC), and environmental scanning electron microscopy (ESEM)/EDAX techniques. The mudstone-water mixtures at specific moment is characterized in liquid and solid phase by analyses of leaching parameters and observations of environmental scanning electron microscopy (ESEM)/EDAX, respectively. The concurrent use of the leaching parameters analysis and ESEM/EDAX examination yielded valuable information regarding the leaching parameters and microchanging characteristics of the soaked mudstone. Acceptable zone is specified by the results of compaction and permeability test. Based on acceptable zone, the standard specimens are prepared for free swelling test and confined swelling permeability test. With the concurrent analyses of leaching parameters using a pH meter, a conductivity meter, and ion chromatography (IC) techniques, the relationships among leaching parameters, swelling and permeability behavior are well established.
Based on the results above, the conclusion are summarized as follows:
(1) Identification of mudstone and critical soluble salts
Closely examining chemical characteristics indicated that mudstone is as saline-alkali soil based on ECe>4 m mho cm-1and ESP>15%. The alkaline reaction of the natural mudstone may undergo hydrolysis of Na+ ions. Owing to the results from SEM /EDX, XRF and XRD,critical soluble salts are recognized as sodic salts such as Na2SO4及NaCl.
(2) Liquid and solid phase of mudstone-water mixture
ESEM micrographs clearly show evidence of slaking, swelling and dispersion of mudstoneduring soaking since the visible pores are filled with small aggregative masses. Natural mudstone includes the critical soluble cations such as Na+, Mg2+, K+, and Ca2+ and anions such as SO42- and Cl-. The leaching of Na+ and SO42- ions in the early soaking period participates importantly in making water-sensitive mudstone highly susceptible to slaking and dispersion. It is suggested that swelling, slaking and dispersing behaviors of mudstone are induced by the dissolution of sodic salts.
(3) Relationships between leaching parameters and free swelling behaviors of compacted mudstone liners
The concurrent use of the free swell test and leaching parameters analysis yielded valuable information regarding the swelling and leaching behaviors of compacted mudstone. The swelling developed relatively rapidly after the start of soaking, stopping after 7 days. The early swelling behaviors of compacted mudstone are directly related to the concentration of Na+ ions in the soaking suspension and the precipitation of CaCO3 in compacted mudstone. Moreover, the very slightly swelling after the 3 days of soaking can be attributed to the dissolution of Mg2+ ion in compacted mudstone. The relationships of free swelling to leaching parameters indicated that the EC, pH, Na+ and SO42- ions in soaking suspension are significantly advantageous to predict the amount of free swelling for compacted mudstone liners.
(4) Relationships among leaching parameters, confined swelling and permeability behavior of compacted mudstone liners
Swelling of compacted mudstone liners enhances the reduction of permeability. Swelling and permeability behaviors of mudstone are steady after 1.6days. The leaching parameters such as pH and concentration of Na+ ions are also constantly after 1.6 days. The confined swelling and permeability of compacted mudstone liners can be directly estimated by leaching parameters such as concentration of Na+ ions. Based on the relationships among leaching parameters, confined swelling and permeability, it is established that confined swelling and permeability of compacted mudstone liners are well estimated from concentration of Na+ ions. Therefore, concentration of Na+ ions can be taken as geoindicators of compacted mudstone liners.。
Abduljauwad, S. N.; Al-amoudi, O. S. B. Geotechnical Behaviour of Saline Sabkha Soils, Geotechnique. 1995. 45(3), 425-445.
Al-amoudi, O. S. B.; Abdujauwad, S. N. Modified Odometer for Arid , Saline Soils. J. Geotech. Eng. 1994. 120(5), 1892-1897.
Al-Homoud, A. S.; Basma, A. A.; Malkawi, A. I. H.; Bashabsheh, M. A. Al. Cyclic Swelling Behavior of Clays. J. Geotech. Eng. 1995. 121(7), 562-565.
American Society for Testing and Materials (ASTM). Annual Book of ASTM Standards: ASTM, Philadelphia, Pennsylvania, 2000.
Bagchi, A. Design Construction and Monitoring of Landfills, 2nd ed., John Wiley & Sons: Canada , 1994.
Bagchi, A. Discussion of Overburden pressures exerted on clay liners, by J. J. Peirce. J. Environ. Engl. Div. (Am. Soc. Civ. Eng. ). 1987. 113(5), 1180-1182.
Baker, J. C.;Uwins, P. J. R.; Mackinnon, I. D. R. Freshwater Sensitivity of Corrensite and Chlorite/Smectite in Hydrocarbon Reservoirs - an ESEM Study. J. Pet. Sci. Eng. 1994. 11(3), 241-247
Bar On, P.; Shainberg, I.; Michaeli, I. Electrophoretic Mobility of Montmorillonite Particles Saturated with Na/Ca Ion. J. Colloid Inter. Sci. 1970. 33(3), 471-472.
Barzegar, A. R.; Oades, J. M.; Rengasamy, P. Soil Structure Degradation of Mellowing of Compacted Soils by Saline-Sodic Solutions. Soil Sci. Soc. Am. J. 1996. 60, 583-588.
Bascoul, M. M.; Escadeillas G. Microstructural Features of Concrete in Relation to Initial Temperature-SEM and ESEM Characterization. Cem. Concr. Res. 1999. 29, 369-375.
Bell, F. G., Entwise, D. C.; Culshaw, M. G. A Geotechnical Survey of Some British Coal Measures Mudstones, with Particular Emphasis on Durability. Eng. Geol. 1997. 46, 115-129.
Bennett, R. H.; Hulbert, M. H. ,. Clay Microstructure, D. Reidel, 1986.
Benson C. H.; Gunter J. A.; Boutwell G. P.; Trautwein S. J.; Berzanskis Peter H. Comparison of Four Methods to Assess Hydraulic Conductivity, J. geotech. geoenviron. eng. 1997. 123(10), 929-937.
Benson C.H.; Daniel D.E. Influence of clods on hydraulic conductivity of compacted clay. J. Geotech. Eng. 1990. 16, 1231-1248.
Benson C.H.; Daniel D.E. Minimun thickness of compacted soil liners:I. stochastic models. J. Geotech. Eng. 1994. 120, 129-152.
Benson C.H.; Zhai H.; Wong X. Estimating hydraulic conductivity of compacted clay liners. J. Geotech. Eng. 1994. 120, 366-387.
Bishop P. K.; Jakobsen R.; Gosk E.; Lerner D. N.; Burston Mark William Investigation of A Solvent Polluted Industrial Site on A Deep Sandstone-mudstone Sequence in The UK. Part 1. Site Description and Groundwater flow, J. hydrol., 1993. 149, 209-229.
Biswas K.; Peng S.S. Study of Weathering Action on Coal Pillars and Its Effects on Long-term Stability. Min. eng. 1999, 71-76.
Bolt , G. H. Analysis of the Validity of Gouy-Chapman theory of the electric double layer. J. Colloid Sci. 1955. 10, 206.
Bradshaw, P. M. D.; Thomson, I. I.; Smee, B. W.; Larson, J. O. The Application of Different Analytical Extractions and Soil Profile Sampling in Exploration Geochemistry. J. geochem. explor. 3, 1974, 209-225.
Bresler, E.; McNeal, B. L.; Carter, D. L. Saline and Sodic Soils Principles Dynamics Modeling, Springer –Verlag: New York, 1982.
Buist D. S.; Burnett A. D.; Sanders M. K Engineering Properties and Slope Stability of Lower Coal Measures Rocks from Monk Wood Cutting, Unstone Dronfield By-pass, Derbyshire, Eng. geol., 1979. 14, 11-28.
Chang, H. W.; Tien, Y. M.; Juang, C. H. Formation of South-Facing Bald Mudstone Slopes in Southwestern Taiwan. Eng. Geol. 1996. 42(1), 37-49.
Chapuis, Robert P. Sand-bentonite Liners: Predicting Permeability From Laboratory Teata; Can. Geotech. J., 1990. 27, 47-57.
Cheremisinoff, P. N. Encyclopedia Environmental Control Technology In:Hazardous Waste Containment and Treatment, Gulf: Houston, 1990.
Chiang, S. C.; Radcliffe, D. E.; Miller, W. P.; Newman, K. D. Hydraulic Conductivity of Three Southeastern Soils as Affected by Sodium, Electrolyte Concentration, and pH. Soil Sci. Soc. Am. J. 1987. 51, 1293-1299.
Chigira M. A Mechanism of Chemical Weathering of Mudstone in A Mountainous Area. Eng. geol. 1990. 29, 119-138.
Chigira M.; Oyama T. Mechanism and Effect of Chemical Weathering of Sedimentary Rocks. Eng. geol. 1999. 55, 3-14.
Chigira, M. Dissolution and Oxidation of Mudstone under Stress. Can. Geotech.J. 1993. 30(1), 60-70.
Chorom, M.; Rengasamy, P.; Murray, R. S. Clay Dispersion as Influenced by pH and Net Particle Charge of Sodic Soils. Aust. J. Soil Res, 1994 , 32, 1243-1252
Clark R. B.; Ritchey K. D.; Baligar V. C. Benefits and Constraints for Use of FGD Products on Agricultural Land, Fuel, 2001. 80, 821-828.
Daniel, D. E. and Benson, C. H. Water-Content Density Criteria for Compacted Soil Liners. J. geotech. eng. 119(2). 1990.1811-1830.
Daniel, D. E. Predicting the hydraulic conductivity of compacted clay liners. J. Geotech. Eng. (Am. Soc. Civ. Eng. ). 1984. 110(2), 285-300.
Daniel, D. E. Soil Barrier Layers Versus Geosynthetic Barriers in Landfill Cover Systems, ASCE,Geotechnical Special Publication No.53, 1995. 1-18.
Daniel, D. E.; Wu, Y. K. Compacted Clay Liners and Covers for Arid Sites , J. geotech. eng. 119(2), 1993, 223-237.
Daniel, H. Fundamentals of Soil Physics. Academic Press: New York, 1980.
Dragun, J. The Soil Chemistry of Hazardous Materials , The Hazardous Materials Control Research Institute , Silver Spring: Md. , 1988, 458 pages.
Dutt G. R.; Terkeltoub R. W.; Rauschkolb R. S. Prediction of Gypsum And Leaching Requirements for Sodium-affected Soils, Soil sci., 1972. 114(2), 93-103.
Evangelou, V. P. The Chemistry and Management of Salt-Affected Soils and Brackish Waters. In Environmental Soil and Water Chemistry: Princiles and Applcations, 1st ed.; Evangelou, V. P. Eds.; John Wilsy & Sons: New York, 1998; 407-427.
Fang, S. S. Simulation of Swelling Pressure Measurements on Expansive Soils. Ph. D. Thesis. University of Saskatchewan Saskatoon: Canada, 1996.
Fergusson C. L.; Henderson R. A.; Leitch Evan C. Subduction Complex Melange of The Wandilla Terrane, Palaeozoic New England Orogen, Central Queensland, Australia, J. struct. geol., 1990. 12(5/6), 591-599.
Frenkel, H.; Goertzen, J. O.; Rhoades, J. D. Effect of Clay Type and Content, Exchangeable Sodium Percent, and Electrolyte Concentration on Clay Dispersion and Soil Hydraclic Conductivity. Soil Sci. Soc. Am. J. 1978. 42, 32-39.
Grim, R. E.; Guvenm, N. Bentonites-Geology , Mineralogy, Properties and Uses, Elsevier : Amsterdam, 1976.
Hachinohe, S.; Hiraki, N.; Suzuli, T. Rates of Weathering and Temporal Changes in Strength of Bedrock of Marine Terrance in Boso Peninsula, Japan. Eng. Geol. 1999. 55, 29-43.
Watanabe H.; Akiyama, M. Characterization of Organic in The Miocene Turbidites and Hemipelagic Mudstones in The Niigata Oil field, Central Japan, Org. Geochem., 1998. 29(1-3), 605-611.
Huggett, J. M.; Uwins, Philippa J.R. Observation of Water-Clay Reactions in Water-Sensitive Sandstone and Mudrocks Using an Environmental Scanning Electron Microscope. J Pet. Sci. Eng. 1994. 10(3) 211-222.
Isaacs, M. C.; Tomson, J. H.; Stewart, K. C. Jackson, L. L. Abundances of Major Elements of Cuttings from the Foxen Mudstone and the Sisquoc, Montery, and Point sal Formation in the Union Hobbs 22 Well, and Preliminary Comparison with Cores from the Union Newlove 51 Well, Orcut oil Field , Onshore santa Maria Basin, California. Department of the Inteior U. S. Geological Survey, 89-466, 1990.
IUGS, Geoindicator Checklist. In: Assessing Rapid Environmental Geoindicators Changes in Earth Systems, Balkema A. A. eds, Rotterdam: Netherlands, 1996.
Iwata, S.; Tabuchi, T.; Warkentin, B. P. Soil Water Interactions-Mechnisms and Applicatioons. Marcel Dekker: New York, 1994.
Janzen, H. H. Soluble Salts. In Soil Sampling and Methods of Analysis, 1st ed.; Martin, R. C., Eds.; Canadian Society of Soil Science; CRC: USA, 1993; 161-166.
Keren R.; Singer M. J. Effect of pH on Permeability of Clay-sand Mixture Containing Hydroxy Polymers. Soil. Sci. Soc. Am. J. 1990. 54, 1310-1315.
Kim, H. T. Soil Reaction. In Principles of Soils Chemistry, 2nd ed.; Marcel Dekker, Inc.: New York, 1992; 255-278.
Koerner, R.M. Solid Material Liners. In: Designing With Geosynthetics, 4th eds.; Prentice Hall: New Jersey, 1998; 513-550.
Komine, H.; Ogata, N. Experimental Study on Characteristics of Compacted Bentonite. Can. Geotech. J. 1994. 31, 478-490.
Lagerwerff, J. V., Nakayama F. S., and Free M.H.. Hydraulic Conductivity Related to Porosity and swelling of soils. Soil Sci. Soc.Am. Porc. 3, 3-11.
Lambe T. The engineering behavior of compacted clay. J. Soil Mech. Found. Div. 1958. 84, 1655.1-1655.35.
Lee, D.H.; Tien, K.G.; Juang, C.H. Full-scale Field Experimentation of A New Technique for Protecting Mudstone Slopes, Taiwan. Eng. Geol. 1996. 42(1), 51-63.
Levy, G. J.; Van Der Watt, H. V. H.; Du Plessis, H. M. Effects of Sodium-Magnesium and Sodium-Calcium Systems on Soil Hydraulic Conductivity and Infiltration. Soil Sci. 1988. 146(5), 303-310
Lin T. T.; Sheu C.; Chang J. E.; Chen H. T. Microstructural Characterization of Three Main Constituents of Mudstone. J. Environ. Sci. Health. 1999. A34(10), 2075-2086.
Lin, T.T.; Sheu, C.; Chang, J.E.; Cheng, C.H. Slaking Mechanisms of Mudstone Liner Immersed in Water. J. Hazard. Mater. 1998. 58, 261-273.
Low R.F. Physical Chemistry of Clay Water Interaction. Adv. Agron.. 1961. 13, 269-327..
Marsi, M.; Evangelou, V. P. Chemical and Physical Behavior of Two Kentucky Soils: III. Saturated Hydraulic Conductivity – Imhoff Cone Test Relationships. J. Environ. Sci. Health. A. 1991. 26(7), 1195-1215.
McNeal, B. L.; Layfield, D. A. Factors Influencing Hydraulic Conductivity of Soils in the Presence of Mixed-Salt Solution. Soil Sci. Soc. Am. Proc. 1968. 32, 187-190.
McNeal, B. L.; Norvell, W. A.; Coleman, N. T. Effect of Solution Composition on The Swelling of Extracted Soil Clays. Soil Sci. Soc. Amer. Proc. 1966. 30, 313-317.
Mersi G.; Olson R. Mechanisms controlling the permeability of clays. Clays and clay miner. 1971. 19, 151-158.
Mitchel J. K. Fundamentals of Soil Behavior. John Wiley & Sons, New York. 1993.
Mitchell J.; Hooper D.; Companella R. Permeability of compacted clay. J. Soil Mech. Found. Div. 1965. 91, 41-65.
Mohan K.K.; Vaidya R. N.; Reed M. G.; Fogler H. S. Water Sensitivity of Sandstones Containing Swelling and Non-selling Clay. Physicochem. Eng. Aspects. 1993. 73, 237-254.
Mouret M.; Bascoul A.; Escadeillas G. Microstructural Features of Concrete in Relation to Initial Temperature-SEM and ESEM Characterization. Cem. concr. res. 1999. 29, 369-375.
Nakagawa T.; Ishiguro M. Hydraulic Conductivity of An Allophanic Andisol as Affected by Solution pH. J. Environ. Qual. 1994. 23, 208-210.
Niu B.; Ishida H. Different Rates of Smectite Illitization in Mudstone and Sandstone from The Niigata Basin. Japan. Clay miner. 2000. 35, 163-173.
Olsen H. Hydraulic flow through saturated clays. Clays and clay miner. 1962. 11, 131-161.
Paker, S. P. Dictionary of Geology and Mineralogy, McGraw-Hill , 1997.
Pupisky, H.; Shainberg I. Salts Effects on the Hydraulic Conductivity of a Sandy Soil. Soil Sci. Soc. Am. J. 1979. 43, 429-433.
Quirk J. P.; Schofield R. K. The Effect of Electrolyte Concentration on Soil Permeability. J. soil sci. 1955. 6(2), 163-178.
Rajasekaran G.; Murali K.; Srinivasaraghavan R. Microfabric, Chemical and Mineralogical Study of Indian Marine Clays. Ocean eng. 1999. 26, 463-483.
Rao, S. M.; Reddy, P. M. R. Physico-Chemical Behavior of Dry Silty Clays. J. geotech. geoenviron. eng. 1998. 124(5), 451-453
Rhoades, J. D. Soluble Salts. In Methods of Soil Analysis, 2nd ed.; Page, A. L. et al. Eds.; 9; American Society of Agronomy: Madison, Wis., 1982; 167-179.
Richards, L. A. Diagnosis and improvement of saline and alkali soils In:USDA Agriculture Handbook 60; U. S. Salinity Laboratory: Washington D.C. 1954.
Rosenthal E.; Vinokurov A.; Ronen D.; Magaritz M.; Moshkovitz S. Anthropogenically Induced Salinization of Groundwater: A Case Study from The Coastal Plain Aquifer of Israel. J. contam. hydrol. 1992. 11, 149-171.
Rowe, R. K.; Quigley, R. M.; Booker, J. R. Clay mineralogy. Clay Barrier Systems for Waste Disposal Facilities, first edition; Chapman & Hall com: London, UK, 1995; 108-114.
Rowell, D. L.; Payne, D.; Ahmad, N. The Effect of the Concentration and Movement of Solutions of the Swelling, Dispersion, and Movement of Clay in Saline and Alkali Soils. J. Soil Sci. 1969.20, 176-188.
Russo, D.; Bresler, E. Analysis of the Saturated and Unsaturated Hydraulic Conductivity in Mixed Sodium and Calcium Soil Systems. Soil Sci. Soc. Am. J.41, 1977. 706-712.
Seedman, R. The Behavior of Clay Shales in Water. Can. Geotech. J. 1986. 23, 18-22.
Shainberg I.; Bresler E.; Klausner Y. Studies on NA /CA Montmorillonite Systems 1. The Swelling Pressure. Soil sci. 1970. 111(4), 214-219.
Shainberg I.; Kaiserman A. Kinetics of Formation and Breakdown of Ca-montmorillonite Tactoids. Soil. Sci. Soc. Amer. Proc. 1969. 33, 547-551.
Shainberg I.; Rhoades J. D.; Suarez D. L.; Prather R. J. Effect of Mineral Weathering on Clay Dispersion and Hydraulic Conductivity of Sodic Soils. Soil Sci. Soc. Am. j. 1981. 45, 287-291.
Shainberg I.; Rhoades, J. D.; Prather R. J. Effect of Low Electrolyte Concentration on Clay Dispersion and Hydraulic Conductivity of a Sodic Soil. Soil Sci. Soc. Am. J. 1980. 45, 273-277.
Shainberg, I. Interdisciplinary Aspects of Soil Science. In Handbook of Soil Science, 1st ed.; Malcolm E. S. Eds.; CRC: USA, 2000; G1-G74.
Shainberg, I.; Letey, J. Response of Soils to Sodic ad Saline Conditions. Hilgardia. 1984. 52, 1-57.
Shainberg, I.; Letey, J.; Response of soils to sodic ad saline conditions. Hilgardia 1984. 52, 1-57.
Sheu, C.; Lin, T.T.; Chang, J.E.; Cheng, C.H. The Feasibility of Mudstone Material as A Natural Landfill Liner. J. Hazard. Mater. 1998. 58, 237-247.
Skarie R. L; Arndt J. L; Richardson J. L. Sulfate and Gypsum Determination in Salin Soils, Soil sci. Am. J., 1987. 51, 901-905.
Sposito G.; Mattigod S. V. On The Chemical Foundation of The Sodium Adsorption Ratio. Soil. Sci. Soc. Am. J. 1977. 41, 323-329.
Sridharan, A.; Rao, S. M.; and Gajarajan, V. S. Effect of Sulfate Contamination on the Volume Change Behavior of Bentonite In Physico-Chemical Aspects of Soil and Related Materials, ASTM STP 1095, Hoddinott, K.B., Lamb, R. O., Eds.;, American Society for Testing and Materials: Philadelphia, 1990; 60-68.
Stephenson W. J.; Kirk R. M. Rates and Patterns of Erosion Inter-tidal Shore Platforms, KaiKoura Peninsula, South Island, New Zealand, Earth surf. processes landf., 1998. 23, 1071-1085.
Suarez D. L.; Rhoades J. D.; Lavado R.; Grieve C. M. Effect of pH on Saturated Hydraulic Conductivity and Soil Dispersion. Soil. Sci. Soc. Am. J. 1984. 48, 50-55.
Sumner, M. E. Section G Interdisciplinary Aspects of Soil Science. Handbook of Soil Science, 1st ed. CRC: USA, 2000.
Sumner, M. E. Sodic Soil: New Perspectives. Aust. J. Soil Res. 1993. 31, 683-750.
Szabolcs, I.Review of Research on Salt Affected Soils. UNESCO: Paris, France. 1979.
Tellam J. H. Hydrochemistry of The Saline Groundwater of The Lower Mersey Basin Permo-triassic Sandstone. J. hydrol. 1995. 165, 45-84.
Trast John M.; Benson Craig H. Estimating Field Hydraulic Conductivity of Compacted Clay, J. geotech. eng., 1995. 121(10), 736-739.
U. S. Environmental Protection Agency (USEPA). Test Methods for Evaluating Solid Waste, Physical / Chemical Methods: EPA SW-846, USEPA, Washington D.C., 1990.
U. S. EPA. Design, Operation and Closure of Municipal Solid Waste Landfills, EPA/625/R-94/008, U. S. EPA: Washington, DC, 1994.
U. S. EPA. Requirements for Hazardous Waste Landfills Design, Construction and Closure. EPA/625/4-89/022, U. S. EPA: Washington, DC, 1989.
Uwins, P. J. R.; Baker, J. C.; Mackinnon, I. D. R. Calcite Precipitation Induced by Clay-Bleach Cation Exchange in Andesitic Reservoir Rocks. J Pet. Sci. Eng. 1993. 9(2), 95-101.
Wang Xie-pei; Fei Qi; Zhang Jia-hua Cenozoic Diapiric Traps in Eastern China, Am. Assoc. Pet. Geol. bull., 1985. 69(12), 2098-2109.
Wicks C. M.; Herman J. S. The Effect of Zones of High Porosity and Permeability on The Configuration of The Saline-freshwater Mixing Zone. Ground water. 1995. 33(5), 733-740.
Yamaguchi, H.; Miura, Y.; Kuroshima, I.;Fukuda M. Triaxial Shear Behavior o f Tertiary Mudstone Crushed by Slaking. In Geotechnical Engineering of Hard Soils-. Soft Rocks. Anagnostopouslos et al. Eds. Balkema, Rotterdam, 1993. 871-881.
Yaron B.; Thomas G. W. Soil Hydraulic Conductivity as Affected by Sodic Water. Water resour. res. 1968. 4(3), 545-552.
Yong R. N. Overview of Modeling of Clay Microstructure and Interactions for Prediction of Waste Isolation Barrier Performance. Eng. geol. 1999. 54, 83-91.
Yong R. N.; Phadungchewit Y. pH Influence on Selectivity and Retention of Heavy Metals in Some Clay Soils. Can. Geotech. J. 1993. 30, 821-833.
Yong, R. N.; Warkentin, B. P. Soil Properties and Behaviour, 2nd ed, Elsevier Scientific, 1975.
Yousaf, M.; Ali, O.M.; Rhoades, J. D. Dispersion of Clay From Some Salt-Affected, Arid Land Soil Aggregates. Soil Sci. Soc. Am. J. 1987. 51, 920-924.
台灣省山地農牧局,台灣省西南部泥岩地區保育利用調查報告68-B21-N-626-A8,No.6,台灣省政府農林廳,1986,1-18。
何春蓀,台灣地質概論,經濟部中央地質調查所,1986。
李德河、蔡錦松、翁駿德,泥岩吸水破壞過程及其穩定方法之研究,行政院國科會防災科技研究報告 73-15 號,1984。
事業廢棄物貯存清除處理方法及設施標準。
周瑞燉、林朝棨,台灣地質,台灣省文獻委員會,1974,86-97。
林宗曾、許琦、張祖恩、陳宏達 泥岩襯裡之溶解化學特性”第十四屆廢棄物處理技術研討會,1999,8-7-8-14。
林宗曾、許琦、張祖恩、陳宏達,泥岩襯裡組構之顯微分析,第十二屆廢棄物處理技術研討會,1997,89-95。
林宗曾、許琦、張祖恩、陳宏達,原狀泥岩實驗室與現地二階段鑽孔TSB)滲透試驗之研究,第十三屆廢棄物處理技術研討會,1998,508-515。
林宗曾、許琦、張祖恩、鄭志鴻,泥岩襯裡吸水崩解特性之顯微分析,第十一屆廢棄物處理技術研討會,1996,467-476。
金永斌,台灣西南部泥岩坡地表面防治穩定處理(一),行政院國科會防災科技研究報告 73-13 號,1984。
姚敏郎,夯實泥岩滲透性及擴散性之研究,國立成功大學土木工程研究所碩士論文,1993。
耿文溥,台南以東丘陵區之地質,經濟部中央地質調查所彙刊,第一號,1981,1-31。
張仲民,普通土壤學,茂昌圖書,1988。
莊長賢,泥岩地區邊坡破壞原因之研究,國立成功大學土木工程研究所碩士論文,1976。
許琦,反覆荷重下泥岩動力特性之初步研究,,國立成功大學土木工程研究所碩士論文,1985。
許琦、林宗曾、張祖恩、鄭志鴻,泥岩為掩埋場襯裡之可行性研究,第十一屆廢棄物處理技術研討會,1996,pp.430-439。
陳榮河,夯實泥岩工程特性之研究,行政院國科會防災科技研究報告,73-44號,1985。
劉裕聰,泥岩崩解特性與物化關係之研究,國立成功大學礦冶及材料科學研究所碩士論文,1985。
蔡金郎,台灣西南部泥岩黏土礦物之研究,行政院國科會,NSC74-0414-P006-011,1985。
蔡嘉一,有害廢棄物管理與減廢概論,歐亞書局,1992。
鄭志鴻,泥岩材料作為天然不透水襯裡之可行性研究,國立成功大學環境工程研究所碩士論文,1996。
蕭達鴻,襯墊土層污染物傳輸模式之研究,國立成功大學土木工程研究所博士論文,1996。
環保署,環保法令,2000。
顏富士,台灣西南部泥岩坡地所含泥岩之物化性質,行政院國科會防災科技研究報告,74-09號,1985。
顏富士,台灣西南部泥岩的崩解行為與其顯微構造關係,行政院國科會防災科技研究報告,75-30號,1987。