| 研究生: |
傅道威 Fu, Tao-Wei |
|---|---|
| 論文名稱: |
由2-溴乙醇及2-氯乙醇在有氧覆蓋的Cu(100)上分解所得的中間物之理論研究 The theoretical studies of the intermediates generated from BrCH2CH2OH and ClCH2CH2OH on oxygen-precovered Cu (100) |
| 指導教授: |
林榮良
Lin, Jong-Liang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 64 |
| 中文關鍵詞: | 密度泛函數理論 、2-氯乙醇 、2-溴乙醇 、反應中間物 、吸附位置 、吸附型態 、振動頻率 |
| 外文關鍵詞: | ClCH2CH2OH, DFT, vibrational frequencies, adsorption sites, intermediates, BrCH2CH2OH, adsorption geometries |
| 相關次數: | 點閱:81 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文是配合程序控溫反應/脫附和反射式吸收紅外光譜的實驗研究及密度泛函數理論計算BrCH2CH2OH和ClCH2CH2OH分別吸附在有氧覆蓋的Cu(100)上所產生的反應中間物的振動頻率、吸附型態和吸附位置。
BrCH2CH2OH方面,研究的結果顯示在低暴露量時(<1.5L)。然而在較高暴露量(>1.5L)時,另外也有BrCH2CH2O- 生成。ClCH2CH2OH方面, ClCH2CH2O- 為ClCH2CH2OH在表面分解的中間產物主。DFT計算預測ClCH2CH2O-以gauche的構形吸附在Cu(100)的四重空洞(four-fold hollow)位置上,且其C-O鍵相對於Cu(100)的平面法線有些微的偏斜。吸附在空洞位的ClCH2CH2O- 其能量比吸附在橋位(bridging)及頂上(atop)位的要低,分別低了4.4和19.2 kcal•mol-1。計算也顯示吸附在表面上的O對ClCH2CH2O- 的幾何構形及分子振動頻率並無很大影響。
In this paper density-functional-theory calculations have been employed to investigate the vibrational frequencies, adsorption geometries and adsorption sites of the intermediates generated from BrCH2CH2OH and ClCH2CH2OH decomposition on oxygen-precovered Cu(100) surfaces in conjunction with the experimental studies of temperature-programmed reaction/desorption, reflection-absorption infrared spectroscopy.
In the case of BrCH2CH2OH, -CH2CH2O- is the major intermediate at lower exposures(<1.5L). However, at higher BrCH2CH2OH exposures(>1.5L), BrCH2CH2O- is also generated. In the case of ClCH2CH2OH, ClCH2CH2O- is the reaction intermediate. DFT calculations predicted that the ClCH2CH2O- is most likely to be adsorbed at the four-fold hollow sites of Cu(100), with its C-O bond only slightly titled away from the surface normal and with a gauche conformation with respect to the C-C bond. The hollow-site ClCH2CH2O- has 4.4 and 19.2 kcal•mol-1 lower than the ClCH2CH2O- bonded at the bridging and atop sites, respectively. The effect of pre-covered oxygen on the ClCH2CH2O- bonding geometry and infrared band frequencies is not significant.
(1) Slater, J. C. Phys. Rev. 1951, 81, 385.
(2) Slater, J. C. Phys. Rev. 1937, 51, 846.
(3) Gaspar, R. Acta. Phys. Acad. Sci. Hung. 1954, 3, 263.
(4) Quantum Theory of Molecules and Solids Vol. 4; Slater, J. C.; McGraw-Hill: New York, 1974.
(5) Schwarz, K. Phys. Rev. 1972, B5, 2466.
(6) Neckel, A.;Rasrl, P.; Eibler R.; Weinberger, P.; Schwarz, K. J. Phys. C: Solid St. Phys. 1976, 9, 579.
(7) Calculated Electronic Properties of Metals; Moruzzi, V. L., Janak, J. F., William A. R.; Pergamon: New York, 1978.
(8) Ab intio Molecular Orbital Theory; Hehre, P.; Radom, L.; Schleyer, P.; Pople, J. A.; John Wiley & Sons: New York, 1986.
(9) Hohenberg, P.; Kohn, W. Phys. Rev. 1964, 136, B864.
(10) Kohn, W.; Sham, L. J. Phys. Rev. 1965, 140, A1133.
(11) Korringa, J. Physica 1947, 13, 392.
(12) Kohn, W.; Rostoker, N. Phys. Rev. 1954, 94, 1111.
(13) Andersen, O.K. Phys. Rev. 1975, B12, 3060.
(14) Krakauer, H.; Posternak, M.; Freeman, A. J. Phys. Rev. Lett. 1978, 41, 1072.
(15) Wimmer, E.; Krakauer, H.; Weinert, M.; Freeman, A. J. Phys. Rev. 1981, B24, 864.
(16) Weinert, M; Wimmer, E.; Freeman, A. J. Phys. Rev. 1982, B26, 4571.
(17) Baerends, E. J.; Ellis, D. E.; Ros, P. Chem. Phys. 1973, 2, 41.
(18) Averill, F. W.; Ellis, D. E. J. Chem. Phys. 1973, 59, 6412.
(19) Rosen, A.; Ellis, D. E. J. Chem. Phys. 1976, 65, 3629.
(20) Delley, B.; Ellis, D. E. J. Chem. Phys. 1982, 76, 1949.
(21) Andersen, O. K.; Woolley, R. G. Mol. Phys. 1973, 26, 905.
(22) Sambe, H.; Felton, R. H. J. Chem. Phys. 1974, 61, 3862.
(23) Sambe, H.; Felton, R. H. J. Chem. Phys. 1975, 62, 1122.
(24) Gunnarson, O.; Harris, J.; Jones, R. O. J. Chem. Phys. 1977, 67, 3970.
(25) Ziegler, T; Versluis, L. J. Chem. Phys. 1988, 88, 322.
(26) Delley B. J. Chem. Phys. 1990, 92, 508.
(27) Michalak, A.; Witko, M.; Hermann, K. J. Mol. Cat. A 1997, 119, 213.
(28) Orita, H.; Itoh, N.; Inada, Y. Chem. Phys. Lett. 2004, 384, 271.
(29) Hatree, D. R. Proc. Cambridge Phil. Soc. 1928, 24, 89.
(30) Fock, V. Z. Phys. 1930, 61, 126.
(31) Fock, V. Z. Phys. 1930, 62, 795.
(32) Wimmer, E. Theoret. Chim. Acta(Berl.) 1979, 51, 339.
(33) Wigner, E. P. Phys. Rev. 1934, 46, 1002.
(34) Ceperley, D. M.; Alder, B. J. Phys. Rev. Lett. 1980, 45, 566.
(35) Hedin, L.; Lundqvist, S. J. phys. (France) 1988, 33, C3-73
(36) Vosko, S.H.; Wilk, L.; Nusair, M. Can. J. Phys. 1980, 58, 1200.
(37) Lin, J.-L.; Bent, B. E. J. Phys. Chem. 1992, 96, 8529.
(38) Chen, C.-Y.; Chang, P.-T.; Kuo, K.-H.; Shih J.-J.; Lin, J.-L. J. Phys. Chem. B 2003, 107, 10488.
(39) Linic, S.; Medlin, J. M.; Barteau, M. A. Langmuir 2002, 18, 5197.
(40) Jones, G. S.; Mavrikakis, M.; Barteau, M. A.; Vohs, J. M. J. Am. Chem. Soc. 1998, 120, 3196.
(41) Bryden, T. R.; Garrett, S. J. J. Phys. Chem. B 2001, 105, 9280.
(42) Wyn-Jones, E.; Orgille-Thomas, W. J. J. Mol. Struct. 1967-1968, 1, 79.
(43) Dai, Q.; Gellman, A. Surf. Sci. 1991, 257, 103.
(44) Chang, P.-T.; Kuo, K.-H; Shih, J.-J.; Chen, C.-Y.; Lin, J.-L. Surf. Sci., 2004, 561, 208
(45) Chang, P. -T.; Shih, J. -J.; Kuo, K. -H.; Chen, C. -Y.; Fu, T. -W.; Shih, D. -L.; Liao, Y. -H.; Lin, J. -L. J. Phys. Chem. 2004, 108, 13320.
(46) Ellis. T. H.; Kruus, E. J.; Wang, H. J. Vac. Sci. Technol. A 1993, 11, 2117.
(47) Durig, J. R.; Zhou, L.; Gounev, T. K.; Klaeboe, P.; Guirgis, G. A.;
Wang, L. -F. J. Molec. Struct. 1996, 385, 7