簡易檢索 / 詳目顯示

研究生: 傅道威
Fu, Tao-Wei
論文名稱: 由2-溴乙醇及2-氯乙醇在有氧覆蓋的Cu(100)上分解所得的中間物之理論研究
The theoretical studies of the intermediates generated from BrCH2CH2OH and ClCH2CH2OH on oxygen-precovered Cu (100)
指導教授: 林榮良
Lin, Jong-Liang
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 64
中文關鍵詞: 密度泛函數理論2-氯乙醇2-溴乙醇反應中間物吸附位置吸附型態振動頻率
外文關鍵詞: ClCH2CH2OH, DFT, vibrational frequencies, adsorption sites, intermediates, BrCH2CH2OH, adsorption geometries
相關次數: 點閱:81下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本篇論文是配合程序控溫反應/脫附和反射式吸收紅外光譜的實驗研究及密度泛函數理論計算BrCH2CH2OH和ClCH2CH2OH分別吸附在有氧覆蓋的Cu(100)上所產生的反應中間物的振動頻率、吸附型態和吸附位置。

      BrCH2CH2OH方面,研究的結果顯示在低暴露量時(<1.5L)。然而在較高暴露量(>1.5L)時,另外也有BrCH2CH2O- 生成。ClCH2CH2OH方面, ClCH2CH2O- 為ClCH2CH2OH在表面分解的中間產物主。DFT計算預測ClCH2CH2O-以gauche的構形吸附在Cu(100)的四重空洞(four-fold hollow)位置上,且其C-O鍵相對於Cu(100)的平面法線有些微的偏斜。吸附在空洞位的ClCH2CH2O- 其能量比吸附在橋位(bridging)及頂上(atop)位的要低,分別低了4.4和19.2 kcal•mol-1。計算也顯示吸附在表面上的O對ClCH2CH2O- 的幾何構形及分子振動頻率並無很大影響。

      In this paper density-functional-theory calculations have been employed to investigate the vibrational frequencies, adsorption geometries and adsorption sites of the intermediates generated from BrCH2CH2OH and ClCH2CH2OH decomposition on oxygen-precovered Cu(100) surfaces in conjunction with the experimental studies of temperature-programmed reaction/desorption, reflection-absorption infrared spectroscopy.

      In the case of BrCH2CH2OH, -CH2CH2O- is the major intermediate at lower exposures(<1.5L). However, at higher BrCH2CH2OH exposures(>1.5L), BrCH2CH2O- is also generated. In the case of ClCH2CH2OH, ClCH2CH2O- is the reaction intermediate. DFT calculations predicted that the ClCH2CH2O- is most likely to be adsorbed at the four-fold hollow sites of Cu(100), with its C-O bond only slightly titled away from the surface normal and with a gauche conformation with respect to the C-C bond. The hollow-site ClCH2CH2O- has 4.4 and 19.2 kcal•mol-1 lower than the ClCH2CH2O- bonded at the bridging and atop sites, respectively. The effect of pre-covered oxygen on the ClCH2CH2O- bonding geometry and infrared band frequencies is not significant.

    第一章 緒論 1 第二章 密度泛函數理論簡介 2.1密度泛函理論(Density Functional Theory)的概念 7 2.2 DFT方程式的Self-consistent解 11 2.3 DFT的執行 13 第三章 實驗系統與操作方法 3.1高速電腦中心伺服器 15 3.2理論計算程式 15 3.3操作方法 16 3.3.1 進入系統 16 3.3.2 建構表面 16 3.3.3 建構分子並將之與表面模型結合 18 3.3.4 DMol3操作介紹 20 第四章 結果與討論 4.1 BrCH2CH2OH在O/Cu(100)上分解所產生的表面中間物之理論預測 33 4.1.1 BrCH2CH2OH的暴露量為1.0L的研究 33 4.1.2 BrCH2CH2OH的暴露量為1.5L以上的研究 41 4.2 ClCH2CH2OH在O/Cu(100)上分解所產生的表面中間物之理論預測 47 第五章 結論 60 參考文獻 61 附錄A 64

    (1) Slater, J. C. Phys. Rev. 1951, 81, 385.
    (2) Slater, J. C. Phys. Rev. 1937, 51, 846.
    (3) Gaspar, R. Acta. Phys. Acad. Sci. Hung. 1954, 3, 263.
    (4) Quantum Theory of Molecules and Solids Vol. 4; Slater, J. C.; McGraw-Hill: New York, 1974.
    (5) Schwarz, K. Phys. Rev. 1972, B5, 2466.
    (6) Neckel, A.;Rasrl, P.; Eibler R.; Weinberger, P.; Schwarz, K. J. Phys. C: Solid St. Phys. 1976, 9, 579.
    (7) Calculated Electronic Properties of Metals; Moruzzi, V. L., Janak, J. F., William A. R.; Pergamon: New York, 1978.
    (8) Ab intio Molecular Orbital Theory; Hehre, P.; Radom, L.; Schleyer, P.; Pople, J. A.; John Wiley & Sons: New York, 1986.
    (9) Hohenberg, P.; Kohn, W. Phys. Rev. 1964, 136, B864.
    (10) Kohn, W.; Sham, L. J. Phys. Rev. 1965, 140, A1133.
    (11) Korringa, J. Physica 1947, 13, 392.
    (12) Kohn, W.; Rostoker, N. Phys. Rev. 1954, 94, 1111.
    (13) Andersen, O.K. Phys. Rev. 1975, B12, 3060.
    (14) Krakauer, H.; Posternak, M.; Freeman, A. J. Phys. Rev. Lett. 1978, 41, 1072.
    (15) Wimmer, E.; Krakauer, H.; Weinert, M.; Freeman, A. J. Phys. Rev. 1981, B24, 864.
    (16) Weinert, M; Wimmer, E.; Freeman, A. J. Phys. Rev. 1982, B26, 4571.
    (17) Baerends, E. J.; Ellis, D. E.; Ros, P. Chem. Phys. 1973, 2, 41.
    (18) Averill, F. W.; Ellis, D. E. J. Chem. Phys. 1973, 59, 6412.
    (19) Rosen, A.; Ellis, D. E. J. Chem. Phys. 1976, 65, 3629.
    (20) Delley, B.; Ellis, D. E. J. Chem. Phys. 1982, 76, 1949.
    (21) Andersen, O. K.; Woolley, R. G. Mol. Phys. 1973, 26, 905.
    (22) Sambe, H.; Felton, R. H. J. Chem. Phys. 1974, 61, 3862.
    (23) Sambe, H.; Felton, R. H. J. Chem. Phys. 1975, 62, 1122.
    (24) Gunnarson, O.; Harris, J.; Jones, R. O. J. Chem. Phys. 1977, 67, 3970.
    (25) Ziegler, T; Versluis, L. J. Chem. Phys. 1988, 88, 322.
    (26) Delley B. J. Chem. Phys. 1990, 92, 508.
    (27) Michalak, A.; Witko, M.; Hermann, K. J. Mol. Cat. A 1997, 119, 213.
    (28) Orita, H.; Itoh, N.; Inada, Y. Chem. Phys. Lett. 2004, 384, 271.
    (29) Hatree, D. R. Proc. Cambridge Phil. Soc. 1928, 24, 89.
    (30) Fock, V. Z. Phys. 1930, 61, 126.
    (31) Fock, V. Z. Phys. 1930, 62, 795.
    (32) Wimmer, E. Theoret. Chim. Acta(Berl.) 1979, 51, 339.
    (33) Wigner, E. P. Phys. Rev. 1934, 46, 1002.
    (34) Ceperley, D. M.; Alder, B. J. Phys. Rev. Lett. 1980, 45, 566.
    (35) Hedin, L.; Lundqvist, S. J. phys. (France) 1988, 33, C3-73
    (36) Vosko, S.H.; Wilk, L.; Nusair, M. Can. J. Phys. 1980, 58, 1200.
    (37) Lin, J.-L.; Bent, B. E. J. Phys. Chem. 1992, 96, 8529.
    (38) Chen, C.-Y.; Chang, P.-T.; Kuo, K.-H.; Shih J.-J.; Lin, J.-L. J. Phys. Chem. B 2003, 107, 10488.
    (39) Linic, S.; Medlin, J. M.; Barteau, M. A. Langmuir 2002, 18, 5197.
    (40) Jones, G. S.; Mavrikakis, M.; Barteau, M. A.; Vohs, J. M. J. Am. Chem. Soc. 1998, 120, 3196.
    (41) Bryden, T. R.; Garrett, S. J. J. Phys. Chem. B 2001, 105, 9280.
    (42) Wyn-Jones, E.; Orgille-Thomas, W. J. J. Mol. Struct. 1967-1968, 1, 79.
    (43) Dai, Q.; Gellman, A. Surf. Sci. 1991, 257, 103.
    (44) Chang, P.-T.; Kuo, K.-H; Shih, J.-J.; Chen, C.-Y.; Lin, J.-L. Surf. Sci., 2004, 561, 208
    (45) Chang, P. -T.; Shih, J. -J.; Kuo, K. -H.; Chen, C. -Y.; Fu, T. -W.; Shih, D. -L.; Liao, Y. -H.; Lin, J. -L. J. Phys. Chem. 2004, 108, 13320.
    (46) Ellis. T. H.; Kruus, E. J.; Wang, H. J. Vac. Sci. Technol. A 1993, 11, 2117.
    (47) Durig, J. R.; Zhou, L.; Gounev, T. K.; Klaeboe, P.; Guirgis, G. A.;
    Wang, L. -F. J. Molec. Struct. 1996, 385, 7

    下載圖示 校內:立即公開
    校外:2005-07-28公開
    QR CODE