| 研究生: |
陳勇達 Chen, Yong-Da |
|---|---|
| 論文名稱: |
應用風險值於共同基金投資風險與績效指標之研究 |
| 指導教授: |
蔡長鈞
Tsai, Chang-Chun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 工業與資訊管理學系 Department of Industrial and Information Management |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 81 |
| 中文關鍵詞: | 風險值 、回溯測試法 、蒙地卡羅模擬法 、歷史模擬法 、夏普指標 |
| 外文關鍵詞: | Value-at-Risk, Historical Simulation Approach, Monte Carlo Simulation Approach, Sharpe Index, Back Testing |
| 相關次數: | 點閱:81 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
「高報酬、高風險」是永恆不變的投資定律,相較於銀行的無風險利率,其他理財工具雖具備較高的預期報酬,卻也潛伏著較大的投資風險。過去常以「敏感度」、「波動性」與「機率」來衡量風險概念,但這些指標卻無法有效滿足投資人僅關注損失風險的事實。風險值(VaR, Value-at-Risk)擁有動態管理風險與量化風險的優點,並具有僅描述投資部位下方風險的特性,正可修正傳統風險指標之不足。
近年來,共同基金因為具有「專業投資」與「藉由投資組合分散投資風險」的特性而成為熱門的理財工具。但統計資料卻顯示半數以上基金之年化報酬率劣於定存利率,所以,能否選取較有潛力的投資標的乃成為獲利與否的關鍵因素。為了建立有效的投資績效指標,本研究嘗試以風險值改善傳統指標建構於常態假設的偏誤,並以市場實際數據驗證其有效性。
本研究根據樣本之常態檢定結果選定蒙地卡羅模擬法與歷史模擬法為風險值模型,經由實證結果發現,蒙地卡羅模擬法可藉由微調係數使風險值估計量更貼近實際風險,在應用上也比歷史模擬法更有彈性,但數倍於其他風險值模型的人力、物力與時間成本則是其最大缺點。而在投資績效指標之應用部份,雖然在一般情況下,風險值並無法有效改善傳統投資績效指標建構於常態假設下的偏誤,但本研究卻發現VaRRAF觀念可補足風險值在投資損失超乎預期時所無法提供的風險資訊。另外,本研究亦發現集中市場加權指數平均報酬率屬於動態指標,比無風險利率更適合引用為投資標竿;而當投資市場處於長期多頭時,風險收益(VaB)之參考價值也勝於風險值。整體來說,若能將風險值的模型誤差控制在可接受的範圍之內,風險值的確是一種能夠明確衡量損失幅度的風險指標。
“High return accompanies higher risk” is the constant law of investment. Compared to risk-free interest rate, other tools of personal finance are more risky in despite of higher expected return on investment. Sensitivity, volatility and probability are often used to interpret the risk of investment in the past. These indicators, however, cannot effectively meet the needs of investors who only care the risk of loss. Value-at-Risk(VaR)has the advantages of both dynamic management of risk and risk quantification. It also gives a good description of downside risk of the investment, which traditional indicators cannot achieve.
In recent years, securities investment trust funds(or mutual funds)become one of the most popular tools for personal finance due to the characteristics of professional investment and dispersing the investment risk while statistical data shows that more than half yearly return rate of funds is lower than the risk-free rate of interest. As a result, the key to make more profit is to pick out investments with great potential profit. In order to develop an effective index of investment performance, a VaR method is developed to improve traditional indicators under the assumption of normal-distribution bias. Its effectiveness is verified with the real market data.
After sample test of normal-distribution, Monte Carlo Simulation Approach and Historical Simulation Approach are chosen as the VaR models in this research. According to empirical tests, Monte Carlo Simulation can make VaR more close to the real risk of investment by fine-tuning the estimate of VaR, and it is more flexible than Historical Simulation Approach in application. However, the most unfavorable is that its cost of time, manpower and material resources is times to those of the other VaR models. With regard to the application of performance indicators, the concept of VaRRAF can provide information about risk as investment loss exceeds the expectation. In addition, this research finds that the average return rate of weighted TSE index is a dynamic indicator and hence more suitable to be used as an investment benchmark than risk-free interest rate. When the investment market is in bull in the long run, VaB is superior to VaR for reference. Generally speaking, VaR is certainly an excellent risk indicator to measure the amount of loss if its model bias is controlled in a tolerant range.
【中文部份】
1.李進生等(2001),「風險管理-風險值(VaR)理論與應用」,清蔚科技股份有限公司出版事業部。
2.周大慶等(2002),「風險管理新標竿-風險值理論與應用」,智勝文化事業有限公司。
3.胡聯國等(2000),「推動我國綜合證券商採用涉險值模式(VaR)控管市場風險研究計畫」,台灣證券交易所委託計畫。
4.韋端等(2003),「統計金融學」,台灣知識庫股份有限公司。
5.陳松男(1997),「現代投資學」,新陸書局。
6.陳哲瑜(2003),「風險值在共同基金績效評估上之應用」,國立中正大學企業管理研究所碩士論文。
7.張雅惠(2000),「應用風險值評估共同基金之績效」,國立政治大學金融研究所碩士論文。
8.楊宗庭(2001),「共同基金風險值的評估與應用」,國立台灣大學財務金融研究所碩士論文。
【英文部份】
1.Bali, T. G. and N. Cakici (2004), “Value at Risk and Expected Stock Returns,” Financial Analysts Journal, Vol.60, Iss.2, pp.57-73.
2.Basle Committee on Banking Supervision (1996), “Supervisory Framework for the Use of Backtesting in Conjunction with the Internal Models Approach to Market Risk Capital Requirements,” Basle: Bank for International Settlement.
3.Beder, T. S. (1995), “VAR: Seductive but Dangerous,” Financial Analysts Journal, Vol.51, Iss.5, pp.12-24.
4.Black, F. and M. Scholes (1973), “The Pricing of Options and Corporate Liabilities,” The Journal of Political Economy, Vol.81, Iss.3, pp.637-654.
5.Bollerslev, T. (1986), “Generalized Autoregressive Conditional Heteroskedasticity,” Journal of Econometrics, Vol.31, Iss.3, pp.307-327.
6.Cabedo J. D. and I. Moya (2003), “Estimating Oil Price 'Value at Risk' Using the Historical Simulation Approach,” Energy Economics, Vol.25, Iss.3, pp.239-253.
7.Campbell, R., R. Huisman and K. Koedijk (2001), “Optimal Portfolio Selection in a Value-at-Risk Framework,” Journal of Banking & Finance, Vol.25, Iss.9, pp.1789-1803.
8.Chen, S. N. and C. F. Lee (1981), “The Sampling Relationship Between Sharpe's Performance Measure and Its Risk Proxy: Sample Size, Investment Horizon and Markey Conditions,” Management Science, Vol.27, Iss.6, pp.607-618.
9.Chen, S. N. and C. F. Lee (1984), “On the Measurement Errors and Ranking of Three Alternative Composite Performance Measures,” Quarterly Review of Economics and Business, Vol.24, Iss.3, pp.6-17.
10.Chen, S. N. and C. F. Lee (1986), “The Effects of the Sample Size, the Investment Horizon and Market Conditions on the Validity of Composite Performance Measures: A Generalization,” Management Science, Vol.32, Iss.11, pp.1410-1421.
11.Danielsson, J. and C. G. de Vries (1997), “Value-at-Risk and Extreme Returns,” Discussion Paper No.273, London School of Economics, Financial Markets Group.
12.Dowd, K. (1998), “Beyond Value at Risk,” John Wiley & Son.
13.Dowd, K. (1999), “A Value at Risk Approach to Risk-Return Analysis,” Journal of Portfolio Management, Vol.25, Iss.4, pp.60-67.
14.Dowd, K. (2001), “Estimating VaR with Order Statistics,” Journal of Derivatives, Vol.8, Iss.3, pp.23-30.
15.Duffie, D. and J. Pan (1997), ”An Overview of Value at Risk,” Journal of Derivatives, Vol.4, Iss.3, pp.7-49.
16.Dybvig, P. and S. A. Ross (1985), “The Analytics of Performance Measurement Using a Security Market Line,” Journal of Finance, Vol.40, Iss.2, pp.401
17.Dybvig, P. and S. A. Ross (1985), “Yes, the APT Is Testable/Multi-Beta CAPM or Equilibrium-APT?: A Reply,” Journal of Finance, Vol.40, Iss.4, pp.1173-1196.
18.Engel, J. and M. Gizycki (1999), “Conservatism, Accuracy and Efficiency: Comparing Value-at-Risk Models,” Working Paper, Australian Prudential Regulation Authority.
19.Engle, R. F. (1982), “Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation,” Econometrica, Econometric Society, Vol.50, Iss.4, pp.987-1007.
20.Fuh, C. D. (2002), “Financial Statistics,” MATHMEDIA, pp.3-16.
21.Grinblatt, M. and S. Titman (1994), “A Study of Monthly Mutual Fund Returns and Performance Evaluation Technique,” Journal of Financial and Quantitative Analysis, Vol.29, Iss.3, pp.419-444.
22.Hendricks, D. (1996), “Evaluation of Value-at-Risk Models Using Historical Data,” Economic Policy Review - Federal Reserve Bank of New York. New York, Vol.2, Iss.1, pp.39-69.
23.Hull, J. C. (2003), “Options, Futures, and Other Derivatives,” Fifth Edition, Upper Saddle River, NJ : Prentice Hall.
24.J. P. Morgan (1996), ”RiskMetrics Technical Document,” Fourth Edition.(http://www.riskmetrics.com)
25.Jackson, P., D. J. Maude and W. Perraudin (1997), “Bank Capital and Value at Risk,” Journal of Derivatives, Vol.4, Iss.3, pp.73-89.
26.Jensen, M. (1968), “The Performance of Mutual Funds in the Period 1945-1964,” Journal of Finance, Vol.23, pp.389-416.
27.Jorion, P. (1997), “Value at Risk : the New Benchmark for Controlling Market Risk,” Chicago, Ill.: Irwin Professional Pub.
28.Jorion, P. (2001), “Value at risk: the new benchmark for managing financial risk,” Second Edition, New York: McGraw-Hill.
29.Ju, X. and N. D. Pearson (2000), “Using Value-at-Risk to Control Risk Taking : How Wrong Can You Be,” Journal of Risk, Vol.1, pp.5-36.
30.Lehmann, B. N. and D. M. Modest (1987), “Mutual Fund Performance Evaluation: A Comparison of Benchmarks and Benchmark Comparisons,” Journal of Finance, Vol.42, Iss.2, pp.233-265.
31.Moses, E. A., J. M. Cheyney and E. T. Veit (1987), “A New and More Complete Performance Measure,” Journal of Portfolio Management, Vol.13, Iss.4, pp.24-33.
32.Murray, S. (1999), “Benchmark-Relative Value at Risk,” Derivatives Quarterly, Vol.5, Iss.4, pp.37-45.
33.Roll, R. (1978), “Ambiguity When Performance is Measured by the Securities Market Line,” Journal of Finance, Vol.33, Iss.4, pp.1051-1069.
34.Sanders, D. R. and M. R. Manfredo (2002), “The Role of Value-at-Risk in Purchasing: An Application to the Foodservice Industry,” Journal of Supply Chain Management, Vol.38, Iss.2, pp.38-45.
35.Schwager, J. (1985), “Alternative to Sharpe Ratio Better Measure of Performance,” Futures, Vol.14, Iss.3, pp.56-58.
36.Sharpe, W. F. (1966), “Mutual Fund Performance,” Journal of Business, Vol.39, Iss.1, pp.119-138.
37.Sharpe, W. F. (1994), “The Sharpe Ratio,” Journal of Portfolio Management, Vol.21, Iss.1, pp.49-58.
38.Simons, K. (1996), “Value at Risk-New Approaches to Risk Management,” New England Economic Review, Sep/Oct, pp.3-13.
39.Singh, J. P. and P. Dey (2004), “Value at Risk-A Critique,” Finance India, Vol.18, Iss.1, pp.137-145.
40.Smith, K. V. and D. A. Tito (1969), “Risk-Return Measures of Ex-post Portfolio Performance,” Journal of Financial and Quantitative Analysis, Vol.4, pp.449-471.
41.Treynor, J. L. (1966), “How to Rate Management of Investment Funds,” Harvard Business Review, Vol.43, pp.63-75.
42.Treynor, J. L. and F. Black (1973), “How to Use Security Analysis to Improve Portfolio Selection,” Journal of Business, Vol.46, Iss.1, pp.66-86.