| 研究生: |
吳建池 Wu, Chien-Chih |
|---|---|
| 論文名稱: |
探討以不同製程製作之結構型超級電容器 Investigation of the Structural Supercapacitors Made by Different Manufacturing Processes |
| 指導教授: |
楊文彬
Young, Wen-Bin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 128 |
| 中文關鍵詞: | 結構型超級電容器 、PVA-KOH凝膠電解液 、RS製程 、RTM製程 、VARTM製程 、電化學性質量測 、機械性質量測 、微結構觀測 |
| 外文關鍵詞: | structural supercapacitor, PVA-KOH gel electrolyte, resin smear molding, resin transfer molding, vacuum assisted resin transfer molding |
| 相關次數: | 點閱:55 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
結構型超級電容器(SSC)具有高比電容、優異的結構強度與長循環壽命等特性進而受到廣泛的關注,使SSC成為便攜式設備、電動車與航太產業最具吸引力的選擇。本研究探討一種新型的SSC,其電極採用雙向編織碳纖維,介電層採用雙向編織玻璃纖維,電解液使用PVA-KOH 的鹼性聚合物,基材則使用環氧樹脂與硬化劑。透過樹脂塗布成型(RS)、無預先抽真空之樹脂轉注成型(RTM)、預先抽真空之樹脂轉注成型(RTMV)與真空輔助樹脂轉注成型(VARTM)四種製程用以製作SSC,比較不同製程對於SSC性能變化的影響,旨在製造出孔隙率低、性質穩定、尺寸與厚度皆均勻的SSC。實驗結果表明,透過預先使用真空泵浦排出纖維中的空氣並提高灌注電解液時的氣壓,可以有效地降低SSC 之孔隙率並使其電化學性質與機械性質得到大幅的提升。同時,為了確定SSC最適當的電化學和機械性質範圍,製作了三種不同樹脂含量的SSC,當樹脂含量在15 wt%到30 wt%之間時,SSC表現出最為優秀的性質。綜上所述,本研究成功開發出了穩定成型的SSC製程,並透過製程上的優化與改善成功提升SSC之各項性質,為日後SSC的研究與應用奠定了穩固的基礎。
This study investigated the structural supercapacitor (SSC) with high specific capacitance, high structural strength, fast charging and discharging, and stable charging and discharging cycle. It uses woven carbon fiber as the electrode, woven glass fiber as an insulating layer, alkaline and epoxy resin compound as electrolyte. Four processes, resin smear molding (RS), resin transfer molding without vacuum (RTM), resin transfer molding with vacuum (RTMV), and vacuum assisted resin transfer molding (VARTM), are used to produce the SSC, and the most suitable process for SSC was selected by comparing the results. Due to the vacuum and injecting the electrolyte through high air pressure, the electrochemical and mechanical properties of SSC can be greatly improved, and the porosity in SSC can be reduced at the same time. The best electrochemical performance mechanical properties of SSCs were observed in the range of resin content from 15 wt% to 30 wt%. This study contributes to the development of SSCs through the establishment of the fabrication process with improvement of part quality.
[1] J. Xu and D. Zhang, "Multifunctional structural supercapacitor based on graphene and geopolymer," Electrochimica Acta, vol. 224, pp. 105-112, 2017.
[2] K. Subhani et al., "Multifunctional structural composite supercapacitors based on MnO2-nanowhiskers decorated carbon fibers," Journal of Energy Storage, vol. 56, p. 105936, 2022.
[3] B. K. Deka, A. Hazarika, J. Kim, Y. B. Park, and H. W. Park, "Recent development and challenges of multifunctional structural supercapacitors for automotive industries," International Journal of Energy Research, vol. 41, no. 10, pp. 1397-1411, 2017.
[4] Y. Wang et al., "Tuning of Ionic Liquid–Solvent Electrolytes for High Voltage Electrochemical Double Layer Capacitors: A Review," Batteries, vol. 10, no. 2, p. 54, 2024.
[5] K. Hareesh, "Recent advances in borophene nanosheet for supercapacitor application: Mini review," Journal of Energy Storage, vol. 84, p. 110857, 2024/04/15/ 2024.
[6] Y. Jiang and J. Liu, "Definitions of Pseudocapacitive Materials: A Brief Review," ENERGY & ENVIRONMENTAL MATERIALS, vol. 2, no. 1, pp. 30-37, 2019.
[7] S. I. Basha, S. S. Shah, S. Ahmad, M. Maslehuddin, M. M. Al‐Zahrani, and M. A. Aziz, "Construction building materials as a potential for structural supercapacitor applications," The Chemical Record, vol. 22, no. 11, p. e202200134, 2022.
[8] S. Samantaray, D. Mohanty, I.-M. Hung, M. Moniruzzaman, and S. K. Satpathy, "Unleashing recent electrolyte materials for next-generation supercapacitor applications: a comprehensive review," Journal of Energy Storage, vol. 72, p. 108352, 2023.
[9] A. Arya and A. Sharma, "Polymer electrolytes for lithium ion batteries: a critical study," Ionics, vol. 23, no. 3, pp. 497-540, 2017.
[10] K. S. Ngai, S. Ramesh, K. Ramesh, and J. C. Juan, "A review of polymer electrolytes: fundamental, approaches and applications," Ionics, vol. 22, pp. 1259-1279, 2016.
[11] G. Wang et al., "LiCl/PVA gel electrolyte stabilizes vanadium oxide nanowire electrodes for pseudocapacitors," ACS nano, vol. 6, no. 11, pp. 10296-10302, 2012.
[12] H. Yu et al., "Improvement of the performance for quasi-solid-state supercapacitor by using PVA–KOH–KI polymer gel electrolyte," Electrochimica Acta, vol. 56, no. 20, pp. 6881-6886, 2011. 93
[13] G. Merle, S. S. Hosseiny, M. Wessling, and K. Nijmeijer, "New cross linked PVA based polymer electrolyte membranes for alkaline fuel cells," Journal of membrane science, vol. 409, pp. 191-199, 2012.
[14] C.-C. Yang, S.-T. Hsu, and W.-C. Chien, "All solid-state electric double layer capacitors based on alkaline polyvinyl alcohol polymer electrolytes," Journal of power sources, vol. 152, pp. 303-310, 2005.
[15] D. L. Zugic, I. M. Perovic, V. M. Nikolic, S. L. Maslovara, and M. P. M. Kaninski, "Enhanced performance of the solid alkaline fuel cell using PVA-KOH membrane," International Journal of Electrochemical Science, vol. 8, no. 1, pp. 949-957, 2013.
[16] G. Ma, J. Li, K. Sun, H. Peng, J. Mu, and Z. Lei, "High performance solid-state supercapacitor with PVA–KOH–K3 [Fe (CN) 6] gel polymer as electrolyte and separator," Journal of Power Sources, vol. 256, pp. 281-287, 2014.
[17] M. Jiang, J. Zhu, C. Chen, Y. Lu, Y. Ge, and X. Zhang, "Poly (vinyl alcohol) borate gel polymer electrolytes prepared by electrodeposition and their application in electrochemical supercapacitors," ACS applied materials & interfaces, vol. 8, no. 5, pp. 3473-3481, 2016.
[18] L. Sa’adu, M. Hashim, and M. bin Baharuddin, "Conductivity studies and characterizations of PVA-orthophosphoric electrolytes," J. Mater. Sci. Res, vol. 3, no. 3, pp. 48-58, 2014.
[19] S. S. Gaur, P. Dhar, A. Sonowal, A. Sharma, A. Kumar, and V. Katiyar, "Thermo-mechanically stable sustainable polymer based solid electrolyte membranes for direct methanol fuel cell applications," Journal of Membrane Science, vol. 526, pp. 348-354, 2017.
[20] A. Shabeeba, M. M. Manikandan, M. P. Sidheekha, L. Rajan, and Y. A. Ismail, "Poly-o-toluidine coated polyvinyl alcohol film: Reaction driven sensing capabilities," Materials Today: Proceedings, vol. 51, pp. 2293- 2299, 2022.
[21] N. Lingappan, S. Lim, G.-H. Lee, H. T. Tung, and W. Lee, "Recent advances on fiber-reinforced multifunctional composites for structural supercapacitors," Functional Composites and Structures, vol. 4, no. 1, p. 012001, 2022.
[22] H. Qian et al., "Activation of structural carbon fibres for potential applications in multifunctional structural supercapacitors," Journal of colloid and interface science, vol. 395, pp. 241-248, 2013.
[23] M. Zou et al., "Single carbon fibers with a macroscopic‐thickness, 3D highly porous carbon nanotube coating," Advanced Materials, vol. 30, no. 13, p. 1704419, 2018.
[24] J. Cherusseri, K. Sambath Kumar, D. Pandey, E. Barrios, and J. Thomas, "Vertically aligned graphene–carbon fiber hybrid electrodes with 94 superlong cycling stability for flexible supercapacitors," Small, vol. 15, no. 44, p. 1902606, 2019.
[25] K.-J. Wu, W.-B. Young, and C. Young, "Structural supercapacitors: A mini-review of their fabrication, mechanical & electrochemical properties," Journal of Energy Storage, vol. 72, p. 108358, 2023.
[26] M. Shoeb et al., "VARTM-assisted high-performance solid-state structural supercapacitor device based on the synergistic effect of Ni (OH) 2-Co3S4 nanocomposite for widened potential window and charge storage mechanism," Chemical Engineering Journal, vol. 466, p. 143116, 2023.
[27] V. R. Tamakuwala, "Manufacturing of fiber reinforced polymer by using VARTM process: A review," Materials Today: Proceedings, vol. 44, pp. 987-993, 2021.
[28] A. Trofimov, C. Ravey, N. Droz, D. Therriault, and M. Lévesque, "A review on the Representative Volume Element-based multi-scale simulation of 3D woven high performance thermoset composites manufactured using resin transfer molding process," Composites Part A: Applied Science and Manufacturing, vol. 169, p. 107499, 2023.
[29] K. M. Kim, Y.-G. Lee, D. O. Shin, and J. M. Ko, "Supercapacitive properties of activated carbon electrode in potassium-polyacrylate hydrogel electrolytes," Journal of Applied Electrochemistry, vol. 46, pp. 567-573, 2016.
[30] J. Huang et al., "Rational design of electrode materials for advanced supercapacitors: from lab research to commercialization," Advanced Functional Materials, vol. 33, no. 14, p. 2213095, 2023.
[31] Y. Xu, W. Lu, G. Xu, and T.-W. Chou, "Structural supercapacitor composites: a review," Composites Science and Technology, vol. 204, p. 108636, 2021.
[32] Y. G. Cho, C. Hwang, D. S. Cheong, Y. S. Kim, and H. K. Song, "Gel/solid polymer electrolytes characterized by in situ gelation or polymerization for electrochemical energy systems," Advanced materials, vol. 31, no. 20, p. 1804909, 2019.
[33] S. Alipoori, S. Mazinani, S. H. Aboutalebi, and F. Sharif, "Review of PVA-based gel polymer electrolytes in flexible solid-state supercapacitors: Opportunities and challenges," journal of energy storage, vol. 27, p. 101072, 2020.
[34] F. Santos, J. P. Tafur, J. Abad, and A. J. F. Romero, "Structural modifications and ionic transport of PVA-KOH hydrogels applied in Zn/Air batteries," Journal of Electroanalytical Chemistry, vol. 850, p. 113380, 2019. 95
[35] Y. Wu et al., "High-performance electrode material for electric double layer capacitor based on hydrothermal pre-treatment of lignin by ZnCl2," Applied Surface Science, vol. 508, p. 144536, 2020.
[36] J. Jiang et al., "Progress of nanostructured electrode materials for supercapacitors," Advanced Sustainable Systems, vol. 2, no. 1, p. 1700110, 2018.
[37] Y. Ding, G. Qi, Q. Cui, J. Yang, B. Zhang, and S. Du, "High-performance multifunctional structural supercapacitors based on in situ and ex situ activated-carbon-coated carbon fiber electrodes," Energy & Fuels, vol. 36, no. 4, pp. 2171-2178, 2022.
[38] P. Sinha, S. Banerjee, and K. K. Kar, "Activated carbon as electrode materials for supercapacitors," Handbook of Nanocomposite Supercapacitor Materials II: Performance, pp. 113-144, 2020.
[39] M. Li, Y. Gu, Y. Liu, Y. Li, and Z. Zhang, "Interfacial improvement of carbon fiber/epoxy composites using a simple process for depositing commercially functionalized carbon nanotubes on the fibers," Carbon, vol. 52, pp. 109-121, 2013.
[40] N. O. Laschuk, E. B. Easton, and O. V. Zenkina, "Reducing the resistance for the use of electrochemical impedance spectroscopy analysis in materials chemistry," RSC advances, vol. 11, no. 45, pp. 27925-27936, 2021.
[41] Y.-R. Lee, K.-J. Wu, W.-B. Young, and C. Young, "Advancements in Large-Scale Structural Supercapacitors: Innovations in Fabrication, Electrochemical Performance, and Mechanical Properties," Electrochemical Performance, and Mechanical Properties
校內:2026-07-01公開