簡易檢索 / 詳目顯示

研究生: 吳家豪
Wu, Chia-hao
論文名稱: 補強式梁柱韌性接頭高溫抗彎行為之數值模擬
The Numerical Simulations for the Flexural Strengths of the Strengthened Steel Beam-to-Column Connections at Elevated Temperatures
指導教授: 鍾興陽
Chung, Hsin-Yang
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 180
中文關鍵詞: 耐火鋼側板補強蓋板補強火害高溫梁柱接頭有限元素法
外文關鍵詞: Fire-Resistant Steel, Side-Plate Strengthed, Cover-Plate Strengthened, Elevated Temperatures, Beam-to-Column Connection, Finite Element Method
相關次數: 點閱:121下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要利用ABAQUS有限元素軟體,進行國內常見補強式梁柱韌性接頭試體抗彎行為之火害高溫數值模擬,並探討梁柱接頭處以耐火鋼來提升高溫抗彎能力之可行性。所有梁柱接頭試體之有限元素模型皆以三維八節點之實體元素來模擬,並採用FDS動態火場模擬軟體及區塊溫度模擬法來模擬火場溫度與試體表面溫度,並給定試體表面溫度進行火害高溫之數值模擬。模擬結果顯示,在不考慮梁受軸向束制的情形下,梁柱接頭之高溫抗彎行為,經蓋板、側板及加勁改良補強後,其臨界破壞溫度有顯著的提升,而FDS-ABAQUS非耦合分析法之模擬結果較區塊溫度給定分析法更能模擬出梁柱接頭試體在真實火場中之結構行為,顯示FDS動態火場模擬軟體在模擬試體火害溫度上有良好之成效。若全梁身及補強式韌性接頭皆採以耐火鋼材補強,相信在高溫下之抗彎能力更能有顯著的提升。

    This study utilized a general purpose finite-element program ABAQUS to simulate the flexural strengths of the common strengthened steel beam-to-column connections at elevated temperatures, and discussed the feasibility of using fire-resistant steel to improve the flexural strengths of beam-to-column connections at high temperatures. All the finite-element models of beam-to-column connections were simulated by the three-dimensional eight-node solid elements. Besides, Fire Dynamics Simulator (FDS) and Block Temperature Method were employed to simulate the surface temperatures of specimens in fire. The numerical simulation results showed that, without considering the axial restraint, the critical temperatures of cover-plate, side-plate and stiffener strengthened connections were raised notably. In addition, compared to the results from Block Temperature Assigned Method, FDS-ABAQUS Uncoupled Thermal-Stress Analysis Method can simulate more realistic structural behaviors of beam-to-column connection specimens in fire. As a result, good simulations of specimen temperatures in fire could be provided by FDS. It is believed that the flexural strength of a beam can be remarkably improved by using fire-resistant steel on the whole beam.

    摘要 I Abstract II 誌謝 III 目錄 IV 表目錄 VII 圖目錄 VIII 符號表 XII 第一章 緒論 1 1.1 研究動機 1 1.2 研究目的 4 1.3 研究方法 4 1.4 論文架構 6 第二章 文獻回顧 10 2.1 前言 10 2.2 鋼結構梁柱接頭文獻 10 2.2.1 補強式梁柱接頭研究 10 2.2.2 減弱式梁柱接頭研究 13 2.2.3 鋼結構火害研究 14 第三章 補強式梁柱韌性接頭尺寸設計 17 3.1 前言 17 3.2 鋼材介紹 17 3.2.1 SN490B鋼材性質 18 3.2.2 SN490C-FR鋼材性質 19 3.3 普通式托梁接頭試體介紹 20 3.4 側板式梁柱接頭設計 20 3.5 蓋板式梁柱接頭設計 22 3.6 加勁改良式梁柱接頭設計 23 第四章 ABAQUS分析相關理論 38 4.1 前言 38 4.2 非線性結構分析 38 4.3 PEEQ及AC Yield塑性準則 40 4.4 應力應變轉換 40 4.5 接觸分析 43 4.6 網格型式 45 4.7 疊代和收斂性 47 4.8 元素種類 48 4.9 熱傳理論 50 第五章 補強式梁柱韌性接頭之數值模擬 60 5.1 基本假設 60 5.2 溫度場模擬 61 5.2.1 區塊溫度模擬法 61 5.2.2 FDS動態火場模擬 62 5.3 模擬方法 63 5.3.1 區塊溫度給定分析法 63 5.3.2 FDS-ABAQUS非耦合分析法 64 5.4 模擬類型及命名 64 5.4.1 蓋板式補強梁柱接頭 64 5.4.2 側板式補強梁柱接頭 65 5.4.3 加勁改良式梁柱接頭 66 5.4.4 試體命名 67 5.5 材料參數 69 5.6 模型組立 72 5.7 分析步設定 73 5.7.1 室溫試驗模擬步驟 73 5.7.2 高溫火害試驗模擬步驟 74 5.8 接觸設定 75 5.9 邊界設定 76 5.9.1 加載給定 76 5.9.2 邊界條件束制 78 5.9.3 溫度給定 79 5.10 網格及元素 80 5.10.1 網格劃分 80 5.10.2 元素選定 81 第六章 結果分析及討論 114 6.1 前言 114 6.2 普通式托梁接頭試體模擬結果 114 6.2.1 普通鋼托梁接頭(Type C) 114 6.2.2 耐火鋼托梁接頭(Type D) 115 6.3 蓋板式補強接頭模擬結果 116 6.3.1 試體BN-CPN-BT 116 6.3.2 試體BN-CPN-FDS 116 6.3.3 試體BN-CPF-BT 117 6.3.4 試體BN-CPF-FDS 118 6.3.5 試體BN-CPF24-BT 118 6.3.6 試體BF-CPF-BT 119 6.3.7 試體BF-CPF-FDS 119 6.4 側板式補強接頭模擬結果 120 6.4.1 試體BN-SPN-BT 120 6.4.2 試體BN-SPN-FDS 120 6.4.3 試體BN-SPF-BT 121 6.4.4 試體BN-SPF-FDS 121 6.4.5 試體BF-SPF-BT 122 6.4.6 試體BF-SPF-FDS 122 6.5 加勁改良式托梁接頭模擬結果 123 6.5.1 試體BH-TFF-BT 123 6.5.2 試體BH-BFF-BT 124 6.5.3 試體BH-WBF-BT 124 6.5.4 試體BH-FGF-BT 125 6.5.5 試體BN-WBS1-BT 125 6.5.6 試體BN-WBS2-BT 126 6.5.7 試體BN-WBS3-BT 126 6.5.8 試體BN-WBS4-BT 127 6.5.9 試體BN-WBS4-FDS 127 6.5.10 試體BN-BFR1-BT 128 6.5.11 試體BN-BFR2-BT 128 6.5.12 試體BN-BFRF-BT 128 6.6 討論 129 6.6.1 區塊溫度給定與FDS-ABAQUS分析法比較 129 6.6.2 挫屈破壞位置 132 6.6.3 臨界破壞溫度比較 133 6.6.4 溫度提升之效益 136 第七章 結論與建議 171 參考文獻 173 附錄A 177 自述 180

    AISC, “Seismic Provisions forStructural Steel Buildings,” American Institute of Steel Contruction, (2005)

    Al-Jabri K.S, Seibi A., and Karrech A., “Modelling of unstiffened flush endplate bolted connections in fire,” Journal of Constructional Steel Research, Vo. 62, Issues 1-2, pp. 151-159, (2006)

    Bruneau M., Uang C.M., and Whittaker A., “Ductile Design of Steel Structures,” McGraw Hill, (1998)

    Chi B., Uang C.M., and Chen A., “Seismic rehabilitation of pre-Northridge steel moment connections: A case study,” Journal of Constructional Steel Research, Vol. 62, Issue 7, pp. 783-792, (2006)

    Eurocode-3, “Design of Steel Structures –Part1.2:General rules-Structural Fire Design,” ENV1993-1-2, (1995)

    Engelhardt M.D. and Sabol T.A., “Reinforcing of steel moment connections with cover plates benefits and limitations,” Engineering Structures, Vol. 20, Issues 4-6, pp. 510-520, (1998)

    Fire Safe Design a new approach to multi-storey steel framed buildings, The Steel Construction Institute, (2000)

    Huang H.C. and Usmani A.S., “Finite element analysis for heat transfer,” Springer-Verlag, (1994)

    Kassegne S.K., “Development of a closed-form 3-D RBS beam finite element and associated case studies,” Engineering Structures, Vol. 29, Issue 7, pp. 1580-1595, (2007)

    Liu T.C.H., “Fire resistance of unprotected steel beams with moment connections,” Journal of Constructional Steel Research, Vo. 51, Issue 1, pp. 61-77, (1999)

    Lee C.H., Chiou Y.J., Chung H.Y., and Chen C.J., “Experimental and Numerical Study on Fire Response Behavior of Steel Beam-Column Sub-frame,” (2009) (under review)

    Lee C.H., “Seismic Design of Rib-Reinforced Steel Moment connections based on Equivalent Strut Model,” Journal of Structural Engineering, ASCE, Vol. 128, Issue 9, pp. 1121-1129, (2002)

    Luecke W.E., McCowan C.N., and Banovic S.W., “Mechanical Properties of Structural Steel - Federal Building and Fire Safety Investigation of the World Trade Center Disaster,” National Institute of Standards and Technology, (2005)

    McGrattan K., Klein B., Hostikka S., and Floyd J., “Fire Dynamics Simulator (Version 5) User’s Guide,” National Institute of Standards and Technology, (2008)

    Najjar S.R. and Burgess I.W., “A Nonlinear Analysis for Three Dimensional Steel Frames in Fire Condition,” Engineering Structures, Vol. 18, No. 1, pp.77-89, (1996)

    SAC, “Recommended Seismic Design Criteira for New Steel Moment-Frame Buildings,” prepared by the SAC Joint Venture for the Federal Emergency Management Agency, Report No. FEMA-350, (2000)

    Santiago A., da S.L., Vila P.R., and Veljkovic M.,“Numerical study of a steel sub-frame in fire,” Computers & Structures, Vol. 86, Issues 15-16, pp. 1619-1632, (2008)

    Sarraj M., Burgess I.W., Davison J.B., and Plank R.J., “Finite Element Modelling of Steel Fin Plate Connections in Fire,” Fire Safety Journal, Vol. 42, pp.408-415, (2007)

    Uang C.M., Bondad D., and Lee C.H., “Cyclic performance of haunch repaired steel moment connections experimental testing and analytical modeling,” Engineering Structures, Vol. 20, Issues 4-6, pp. 552-561, (1998)

    王存偉,“切削式鋼構梁柱接頭行為之比較”,國立台灣科技大學營建學工程系,碩士論文,台北(1997)

    方朝俊,“火害對耐火鋼構件銲接及栓接行為影響”,國立台灣科技大學營建學工程系,碩士論文,台北(2000)

    李智民,“H型鋼柱接擴翼鋼梁抗彎接頭之耐震行為與設計”,國立交通大學土木工程學系,碩士論文,新竹(2006)

    何明錦、陳生金,“鋼結構梁柱接頭高溫載重行為研究”,內政部建築研究所研究報告,(2007)

    林潔祥,“擴翼式鋼骨托梁抗彎接頭之耐震行為”,國立交通大學土木工程學系,碩士論文,新竹(2005)

    林子賓,“高溫下螺栓孔承壓能力之研究”,國立成功大學土木工程系,碩士論文,台南(2006)

    林日增,“H型梁-箱型柱耐火彎矩接頭高溫行為之數值模擬”,國立成功大學土木工程學系,碩士論文,台南(2008)

    林振吉,“H型梁-箱型柱彎矩接頭之火害行為研究”,國立成功大學土木工程學系,碩士論文,台南(2008)

    陳諺輝,“螺栓孔於高溫下承壓行為之量測與數值模擬”,國立成功大學土木工程學系,碩士論文,台南(2006)

    陳紀勛,“鋼柱與鋼梁腹板開孔位處塑性區梁柱接頭之耐震行為”,國立交通大學土木工程學系,碩士論文,新竹(2008)

    愛發股份有限公司編著,“ABAQUS實務入門引導”,全華科技圖書股份有限公司印行,台北(2005)

    蔡承昀,“梁柱交接處連接板對鋼結構梁柱接頭行為之影響”,國立台灣科技大學營建學工程系,碩士論文,台北(2005)

    蕭博勳,“鋼結構抗彎梁柱接頭在高溫環境下之行為研究”,國立成功大學土木工程學系,碩士論文,台南(2007)

    羅仁甫,“鋼構造梁柱接頭具協力桿件之耐震性能”,國立交通大學土木工程學系,碩士論文,新竹(2006)

    蘇文傑,“實尺寸H型梁-箱型柱彎矩接頭之火害實驗研究”,國立成功大學土木工程學系,碩士論文,台南(2008)

    饒智凱,“鋼骨梁柱翼內側加勁補強接頭之耐震行為研究”,國立交通大學土木工程學系,碩士論文,新竹(2007)

    下載圖示 校內:2014-08-24公開
    校外:2019-08-24公開
    QR CODE