簡易檢索 / 詳目顯示

研究生: 翁崇琦
Weng, Chung-Chi
論文名稱: 光控與可電控空間濾波器於鍍有光導電配向膜之液晶薄膜之研究
Optically and electrically-controllable spatial filter based on a liquid crystal film with a photoconductive layer
指導教授: 傅永貴
Fuh, Ying-Guey Andy
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 78
中文關鍵詞: 空間濾波器光導體碳六十聚乙烯咔唑光導電配向膜液晶
外文關鍵詞: C60, spatial filter, photoconductor, liquid crystal, PVK
相關次數: 點閱:107下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研究題目為『可光控與可電控空間濾波器於鍍有光導電配向膜之液晶薄膜之研究』。本論文主要利用鍍有摻雜碳六十之光導體聚合物配向膜之扭轉型向列相液晶盒,不照光下,外加直流電場下造成配向膜與液晶介面相反電性電荷的累積以形成一個與外加直流電場反向的內建電場,造成屏蔽效應。此效應造成施予液晶層的有效電場小於外加電場,當有效電場小於Freedericksz transition臨界電場時,液晶導軸無法轉動。
    當液晶盒受到綠光照射時,光導體膜之導電率會有所提升,使得內部界面累積電荷會產生放電,導致屏蔽效應減弱,使得有效電場越接近外加直流電場。在本研究中,可分別選擇固定外加電壓或固定外加綠光強度,藉以改變綠光強度或改變外加電壓大小來達到調控屏蔽效應強弱,以達成使用同一液晶空間濾波器元件,具有既可光亦可電雙重調控之空間濾波功能。

    This thesis is entitled “Optically and electrically-controllable spatial filter based on a liquid crystal (LC) film with a photoconductive layer”. The sample used is a twisted nematics with a photoconductive polymer alignment film doping with C60. Under the application of a dc field, charges with opposite electricity can accumulate on the interfaces between the substrates and the LCs so as to build up an internal field which is opposite to the applied field. The so-call screen effect can cause that the magnitude of the effective field on the LC layer is smaller than that of the applied field on the cell. The LC director cannot reorient unless the effective field is lager than the threshold one for Freedericksz transition.
    Once the cell is irradiated with a green beam, the conductivity of the photoconductor may enlarge such that the internal surface charge can discharge to reduce the screen effect. This can lead to the reduction of the difference between the effective field on the LC layer and the applied field on the cell. In this study, one can vary the intensity of the incident green beam or the magnitude of the applied field to optically or electrically control the influence of screen effect on the cell. This method can lead to the achievement for fabricating a LC spatial filter device with an optically- and electrically-controllable filtering ability.

    摘要……………………………………………………………………Ⅰ Abstract ……………………………………………………………Ⅱ 誌謝……………………………………………………………………Ⅲ 目錄……………………………………………………………………Ⅳ 圖目錄…………………………………………………………………Ⅶ 第一章 緒論............................................1 1.1前言.................................................1 第二章 液晶簡介........................................4 2.1 液晶簡介............................................4 2.1.1 何謂液晶..........................................4 2.1.2 液晶的分類........................................6 2.2 液晶物理............................................16 2.2.1 液晶的雙折射性和光學異向性........................16 2.2.2 連續彈性體理論....................................21 2.2.3電場效應...........................................22 2.2.4 溫度對向列相液晶的影響............................24 第三章 相關理論機制.....................................25 3.1 傅立葉分析..........................................25 3.2 繞射理論中的傅立葉轉換..............................30 3.3空間頻率.............................................32 3.4 阿貝成像原理........................................34 3.5 空間濾波術..........................................35 3.6 光導電性............................................38 3.7 具有活化單位之高分子................................39 3.7.1 摻雜碳六十之聚乙烯咔唑光導體......................41 3.7.2聚乙烯咔唑(polyvinylcarbazole(PVK))的物理特性......42 3.7.3 聚乙烯咔唑與碳六十的相互作用機制..................45 3.8光導體層之光引致導電過程.............................51 第四章 樣品製作與實驗光路...............................54 4.1 材料介紹............................................54 4.1.1 向列型液晶E7......................................54 4.1.2 光敏劑C60.........................................55 4.1.3 有機光導體聚九乙烯咔唑(PVK).......................56 4.1.4 聚乙烯醇薄膜......................................56 4.2 製作流程............................................57 第五章 實驗結果與討論...................................62 5.1 液晶空間濾波器之可電調控特性........................62 5.2 液晶空間濾波器之可光調控特性........................70 第六章 總結與未來展望...................................74 6.1 總結................................................74 6.2 未來展望............................................75 參考文獻................................................76

    1.A. Emoto, H. Ono, and N. Kawatsuki, Liq. Cryst. 30,1201 (2003).
    2.A. Y.-G. Fuh and T.-H. Lin, J. Appl. Phys. 96, 5402 (2004).
    3.A. Y.-G. Fuh, T.-H. Lin, Opt. Lett. 30, 11 (2005).
    4.T.-H. Lin and A. Y.-G. Fuh, Appl. Phys. Lett. 87, 011106 (2005).
    5.H.-C. Yeh, J.-D. Wang, K.-C. Lo,C.-R. Lee, T.-S. Mo, and S.-Y. Huang, Appl. Phys. Lett. 92, 011121 (2008).
    6.松本正一 角田市良 合著,劉瑞祥 譯, “液晶之基礎與應用,”國立編譯館出版 (1996).
    7.液晶應用技術研究會 著, “最新液晶應用技術”, 建興出版社 (1997).
    8.紀國鐘、鄭晃忠 主編, “液晶顯示器技術手冊”, 台灣電子材料與元件協會(2002).
    9.小林駿介 著, “e世代液晶顯示器”, 全華圖書 (2002).
    10.趙中興 著, “顯示器原理與技術”, 全華圖書 (2001).
    11.Pochi Yeh et al, “Optical of Liquid Crystal Display”, John Wiley & Sons Inc. (2006).
    12.楊建人 譯, “光學原理”, 徐氏文教基金會 (2001).
    13.E. Hecht, “Optics”, Addison Wesley, San Francisco. (2002).
    14.Henk Bolink, “Photorefractive Polymers”, University of Groningen, Netherlands. (1997).
    15.H. Hoegl, J. Phys. Chem. 69, 755 (1965).
    16.M. Lardon, E. Lell-Doller, and J. C. Weigl, Mol. Cryst. 2, 241 (1967).
    17.P. J. Regensburger, Photochem. and Photobial. 8, 249 (1968).
    18.Wang Y , Nature 356, 585-587 (1992).
    19.A. Dyadyusha, M. Kaczmarek, and S. Slussarenko, electronic-Liquid Crystal Communications, December 23, (2003).
    20.Q. D. Ling, S. L. Lim, Y. Song, C. X. Zhu, D. S. H. Chan, E. T. Kang, K. G. Neoh, Langmuir, 23, 312-319 (2007).
    21.K. YOSHINO, S. MO'RITA, X. H. YIN, S. SHAKUDA and T. KAWAI, Conduction and Breakdown in Dielectric Liquids,1993., ICDL '93., IEEE 11th International Conference
    22.A. Watanabe and O. Ito, J. Chem. Soc., Chem. Commun. 1285, (1994).
    23.C. Wang, W. Ming and S. Fu, Polymer Bulletin 35, 177-181 (1995).
    24.W. England and M. J. S. Dewar, “Molecular Orbitals”, Springer-Verlag, (1971).
    25.A. F. Hebard et al., Nature 350, 600-601 (1991).
    26.M. A. Greaney and S. M. Gorun, J. Phys. Chem., 95, 7142-7144 (1991).
    27.A. G. Jepsen, D. Wright, B. Smith, M. S. Bratcher, M. S. DeClue, J. S. Siegel, and W. E. Moerner, Chem. Phys. Lett. 291, 553–561 (1998).
    28.H. Mada and K. Osajima, J. Appl. Phys. 60, 3111-3113 (1986)
    29.A. Sugimura, N. Matsui, Y. Takahashi,H. Sonomura,H. Naito,and M. Okuda, Phys. Rev. B, 43, 8272-8276 (1991).
    30.A. Mochizuki, T. Yoshihara, K. Motoyoshi, and S. Kobayashi, J. Jpn. Appl. Phys. 29, 322-325 (1990).
    31.F. L. Vladimirov, A. N. Chaika, I. E. Morichev, N. I. Pletneva, A. F. Naumov, and M. Yu. Loktev, J. Opt. Technol. 67, 712 (2000).
    32.H. T. Li and Paul J. Regensburger, J. Appl. Phys. 34, 1730-1735 (1963).
    33.M. Kaczmerek and A. Dyadyusha, J. Non. Opt. Phys. Mat. Vol. 12, No. 4, 547-555 (2003).

    下載圖示 校內:2009-07-23公開
    校外:2010-07-23公開
    QR CODE