簡易檢索 / 詳目顯示

研究生: 葛瑞迪
Ryadi, Gabriel Yedaya Immanuel
論文名稱: 基於季節感知鬆弛法之衛星影像正規化架構應用於跨感測器地球觀測之時序一致性保存
Satellite Image Normalization Framework using Season-aware Relaxation for Temporal Consistency Preservation in Cross-Sensor Earth Observations
指導教授: 林昭宏
Lin, Chao-Hung
學位類別: 博士
Doctor
系所名稱: 工學院 - 測量及空間資訊學系
Department of Geomatics
論文出版年: 2026
畢業學年度: 114
語文別: 英文
論文頁數: 98
中文關鍵詞: 輻射正規化時間序列分析季節感知圖結構基於鬆弛之正規化跨感測器影像
外文關鍵詞: Radiometric Normalization, Time-Series Analysis, Season-Aware Graph, Relaxation-Based Normalization, Cross-Sensor Images
ORCID: https://orcid.org/0000-0002-2696-2887
ResearchGate: Gabriel Yedaya Immanuel Ryadi
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 光學衛星影像輻射正規化是多時序與跨感測器遙測分析中關鍵的預處理步驟,因為多時期影像輻射不一致性會嚴重影響時間序列的判讀與變遷偵測。雖然現有的正規化方法—從統計和基於影像的技術,到典型相關分析和迭代加權多元變化檢測等基於特徵的方法—在減少輻射差異方面已展現成效,但它們往往受限於成對假設以及缺乏對季節變異性的考量。當應用於長期的多感測器資料集時,這些限制可能導致正規化結果的不平衡。本研究提出了一種季節性鬆弛輻射正規化框架,整合了基於鬆弛的正規化與季節感知圖結構,在改善時間一致性的同時,保留具意義的季節性動態。該框架將多時序影像組織為季節性群組,並明確納入季節間的過渡影像,從而實現包含跨季節邊界的季間正規化(inter-normalization)與季節群組內的季內正規化(intra-normalization)之兩階段策略。此外,本研究進一步採用相似度加權鬆弛機制來自適應地結合多重正規化關係,降低過度正規化(over-normalization)與正規化不足(under-normalization)的風險。
    本研究利用來自熱帶與亞熱帶地區的多年期、多感測器資料集對此框架進行評估。透過包含偽不變特徵分析、目視檢查、誤差精度指標、結構相似性評估以及基於 NDVI 的時空分析等綜合評估,結果顯示此季節性鬆弛方法在獲得優異輻射一致性的同時,也能保留真實的季節變異性。研究結果證實,將季節性脈絡納入基於鬆弛的正規化中,能為使用異質衛星影像進行長期環境監測提供一套穩健且易於解釋的解決方案。

    Radiometric normalization is a crucial preprocessing step for multi-temporal and cross-sensor remote sensing analysis, as radiometric inconsistencies can significantly impair time series interpretation and change detection. Although existing normalization methods, ranging from statistical and image-based techniques to feature-based approaches such as Canonical Correlation Analysis (CCA) and Iteratively Reweighted Multivariate Change Detection (IR-MAD), they have demonstrated effectiveness in reducing radiometric differences, they are often limited by pairwise assumptions and lack of consideration of seasonal variability. These limitations can lead to imbalanced normalization results when applied to long-term multi-sensor datasets.
    This research proposes a Season-aware Relaxation-Based Radiometric Normalization framework that integrates Relaxation-Based Normalization with a season-aware graph structure to improve temporal consistency while preserving meaningful seasonal dynamics. The framework organizes multi-temporal images into seasonal groups and explicitly transition images between seasons, enabling a two-stage normalization strategy consisting of inter-normalization across seasonal boundaries and intra-normalization within seasonal groups. A similarity-weighted relaxation mechanism is further employed to adaptively combine multiple normalization relationships, reducing the risk of both under- and over-normalization.
    The proposed framework is evaluated using a multi-year, multi-sensor dataset from tropical and subtropical regions. A comprehensive assessment, including pseudo-invariant feature analysis, visual inspection, error-based accuracy metrics, structural similarity evaluation, and NDVI-based spatial and temporal analysis, demonstrates that the Season-aware Relaxation-based approach achieves superior radiometric consistency while preserving true seasonal variability. The results confirm that incorporating seasonal context into Relaxation-Based Normalization provides a robust and easily interpretable solution for long-term environmental monitoring using heterogeneous satellite imagery.

    ABSTRACT ii 摘要 iv ACKNOWLEDGEMENT vi TABLE OF CONTENTS viii LIST OF TABLES x LIST OF FIGURES xi CHAPTER 1 INTRODUCTION 1 1.1 Research Background 1 1.2 Research Motivation and Objectives 2 1.3 Research Contributions 6 1.4 Outline of the Dissertation 8 CHAPTER 2 LITERATURE REVIEW 10 2.1 Fundamentals of Radiometric Normalization 10 2.1.1 Absolute Radiometric Normalization 10 2.1.2 Relative Radiometric Normalization 11 2.2 Review of Radiometric Normalization Methods 12 2.2.1 Radiative Transfer-Based Normalization (Physical) ARN 12 2.2.2 Image-Based Normalization (Empirical) ARN 14 2.2.3 Statistical-Based Normalization RRN 15 2.2.4 Scene-Based Normalization RRN 17 2.2.5 Feature-Based Normalization Methods RRN 18 CHAPTER 3 METHODOLOGY 21 3.1 Relaxation-Based Normalization Overview 21 3.1.1 Normalization Network Configurations 22 3.1.2 IR-MAD PIFs Extraction 24 3.1.3 Regression-Based Normalization 26 3.1.4 Iterative Refinement and Optimization 27 3.2 Season-Aware Relaxation Normalization Framework 29 3.2.1 Framework Overview 30 3.2.2 Season-Aware Graph Configuration 31 3.2.3 Inter-Normalization 34 3.2.4 Intra-Normalization 35 CHAPTER 4 EXPERIMENTAL RESULTS OF RELAXATION-BASED NORMALIZATION 38 4.1 Dataset and Experimental Setup 38 4.1.1 Dataset Acquisition and Study Area 38 4.1.2 Image Pre-processing 38 4.2 Evaluation and Results of Relaxation Based Normalization 39 4.2.1 Visual Assessment of Normalized Images 39 4.2.2 Temporal Surface Reflectance Value 47 4.2.3 Loss Value Measurements 48 4.2.4 Accuracy Assessment 49 4.2.5 Correlation Coefficient Assessment 52 4.2.6 Spectral Distance Assessment 53 4.3 Discussions 55 CHAPTER 5 EXPERIMENTAL RESULTS OF SEASON-AWARE RELAXATION NORMALIZATION 57 5.1 Experimental Setup and Datasets 57 5.1.1 Datasets and Study area 57 5.1.2 Normalization Graph Arrangements 58 5.2 Evaluation and Results of Season-Aware Relaxation Normalization 59 5.2.1 PIFs Extractions 59 5.2.2 Visual Assessment 61 5.2.3 Accuracy Assessment 63 5.2.4 Similarity Assessment 64 5.2.5 NDVI Comparisons 66 5.2.6 Temporal NDVI comparisons 68 5.3 Discussion 69 CHAPTER 6 CONCLUSIONS AND FUTURE WORKS 72 REFERENCES 75

    Alizadeh Naeini, A., Babadi, M., & Homayouni, S. (2017). Assessment Of Normalization Techniques On The Accuracy Of Hyperspectral Data Clustering. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-4/W4, 27–30.
    Anderson, G. P., Felde, G. W., Hoke, M. L., Ratkowski, A. J., Cooley, T. W., Chetwynd, Jr., J. H., Gardner, J. A., Adler-Golden, S. M., Matthew, M. W., Berk, A., Bernstein, L. S., Acharya, P. K., Miller, D. P., & Lewis, P. E. (2002). MODTRAN4-Based Atmospheric Correction Algorithm: FLAASH (Fast Line-Of-Sight Atmospheric Analysis Of Spectral Hypercubes) (S. S. Shen & P. E. Lewis, Eds.; pp. 65–71).
    Ariza, A., Robredo Irizar, M., & Bayer, S. (2018). Empirical line model for the atmospheric correction of sentinel-2A MSI images in the Caribbean Islands. European Journal of Remote Sensing, 51(1), 765–776.
    Armstrong, J. S., & Collopy, F. (1992). Error Measures For Generalizing About Forecasting Methods: Empirical Comparisons. 12.
    Bao, N., Lechner, A. M., Fletcher, A., Mellor, A., Mulligan, D., & Bai, Z. (2012). Comparison Of Relative Radiometric Normalization Methods Using Pseudo-Invariant Features For Change Detection Studies In Rural And Urban Landscapes. Journal of Applied Remote Sensing, 6(1), 063578–1.
    Barazzetti, L., Gianinetto, M., & Scaioni, M. (2016). Radiometric Normalization With Multi-Image Pseudo-Invariant Features (K. Themistocleous, D. G. Hadjimitsis, S. Michaelides, & G. Papadavid, Eds.; p. 968807).
    Bassani, C., Manzo, C., Zakey, A., & Cuevas-Agulló, E. (2016). Effect of the Aerosol Type Selection for the Retrieval of Shortwave Ground Net Radiation: Case Study Using Landsat 8 Data. Atmosphere, 7(9), 111.
    Berk, A., Anderson, G. P., Bernstein, L. S., Acharya, P. K., Dothe, H., Matthew, M. W., Adler-Golden, S. M., Chetwynd, Jr., J. H., Richtsmeier, S. C., Pukall, B., Allred, C. L., Jeong, L. S., & Hoke, M. L. (1999). MODTRAN4 Radiative Transfer Modeling For Atmospheric Correction (A. M. Larar, Ed.; p. 348).
    Bernstein, L. S., Adler-Golden, S. M., Jin, X., Gregor, B., & Sundberg, R. L. (2012). Quick Atmospheric Correction (QUAC) Code For VNIR-SWIR Spectral Imagery: Algorithm Details. 2012 4th Workshop on Hyperspectral Image and Signal Processing (WHISPERS), 1–4.
    Biday,. (2010). Radiometric Correction of Multitemporal Satellite Imagery. Journal of Computer Science, 6(9), 1027–1036.
    Bilal, M., Nazeer, M., Nichol, J. E., Bleiweiss, M. P., Qiu, Z., Jäkel, E., Campbell, J. R., Atique, L., Huang, X., & Lolli, S. (2019). A Simplified and Robust Surface Reflectance Estimation Method (SREM) for Use over Diverse Land Surfaces Using Multi-Sensor Data. Remote Sensing, 11(11), 1344.
    Bilal, M., Qiu, Z., Wang, Y., & Ali, Md. A. (2021). Comparison Between SREM and 6SV Atmospheric Correction Methods. 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, 1434–1436.
    Blooshi, L. S. A., Abuelgasim, A., Nassar, A., & Ksiksi, T. (2020). Impact of Desert Urbanization on Urban Heat Islands Effect. Open Journal of Geology, 10(07), 760–770.
    Broncano-Mateos, C. J., Pinilla, C., Gonzalez-Crespo, R., & Castillo-Sanz, A. (2010). Relative Radiometric Normalization of Multitemporal images. International Journal of Interactive Multimedia and Artificial Intelligence, 1(3), 53. https://doi.org/10.9781/ijimai.2010.139
    Callieco, F., & Dell’Acqua, F. (2011). A comparison between two radiative transfer models for atmospheric correction over a wide range of wavelengths. International Journal of Remote Sensing, 32(5), 1357–1370.
    Canty, M. J., & Nielsen, A. A. (2008). Automatic Radiometric Normalization Of Multitemporal Satellite Imagery With The Iteratively Re-Weighted MAD Transformation. Remote Sensing of Environment, 112(3), 1025–1036.
    Chavez, P. S. (1988). An Improved Dark-Object Subtraction Technique For Atmospheric Scattering Correction of Multispectral Data. Remote Sensing of Environment, 24(3), 459–479.
    Chen, X., Vierling, L., & Deering, D. (2005). A Simple And Effective Radiometric Correction Method To Improve Landscape Change Detection Across Sensors And Across Time. Remote Sensing of Environment, 98(1), 63–79.
    Chraibi, E., de Boissieu, F., Barbier, N., Luque, S., & Féret, J.-B. (2022). Stability In Time And Consistency Between Atmospheric Corrections: Assessing The Reliability Of Sentinel-2 Products For Biodiversity Monitoring In Tropical Forests. International Journal of Applied Earth Observation and Geoinformation, 112, 102884.
    Claverie, M., Ju, J., Masek, J. G., Dungan, J. L., Vermote, E. F., Roger, J.-C., Skakun, S. V., & Justice, C. (2018). The Harmonized Landsat and Sentinel-2 surface reflectance data set. Remote Sensing of Environment, 219, 145–161.
    Commar, L. F. S., Louzada, L., Costa, M. H., Brumatti, L. M., & Abrahão, G. M. (2024). Mato Grosso’s Rainy Season: Past, Present, And Future Trends Justify Immediate Action. Environmental Research Letters, 19(11), 114065.
    de Carvalho, O., Guimarães, R., Silva, N., Gillespie, A., Gomes, R., Silva, C., & de Carvalho, A. (2013). Radiometric Normalization of Temporal Images Combining Automatic Detection of Pseudo-Invariant Features from the Distance and Similarity Spectral Measures, Density Scatterplot Analysis, and Robust Regression. Remote Sensing, 5(6), 2763–2794.
    Deborah, H., Richard, N., & Hardeberg, J. Y. (2015). A Comprehensive Evaluation of Spectral Distance Functions and Metrics for Hyperspectral Image Processing. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(6), 3224–3234.
    Dunlap, W. P., Brody, C. J., & Greer, T. (2000). Canonical Correlation and Chi-Square: Relationships and Interpretation. The Journal of General Psychology, 127(4), 341–353.
    Edelmann, D., Móri, T. F., & Székely, G. J. (2021). On relationships between the Pearson and the distance correlation coefficients. Statistics & Probability Letters, 169, 108960.
    Garg, P., & Jain, T. (2017). A Comparative Study on Histogram Equalization and Cumulative Histogram Equalization. 3(9), 41–43.
    Ghorbanian, A., Maghsoudi, Y., & Mohammadzadeh, A. (2020). Clustering-Based Band Selection Using Structural Similarity Index and Entropy for Hyperspectral Image Classification. Traitement Du Signal, 37(5), 785–791.
    Gómez, C., White, J. C., & Wulder, M. A. (2016). Optical remotely sensed time series data for land cover classification: A review. ISPRS Journal of Photogrammetry and Remote Sensing, 116, 55–72.
    Guo, Y., Deng, R., Yan, Y., Li, J., Hua, Z., Wang, J., Tang, Y., Cao, B., & Liang, Y. (2024). Dark-Object Subtraction Atmosphere Correction For Water Body Information Extraction In Zhuhai-1 Hyperspectral Imagery. The Egyptian Journal of Remote Sensing and Space Sciences, 27(2), 382–391.
    Gupta, S. K., & Shukla, D. P. (2020). Evaluation Of Topographic Correction Methods For LULC Preparation Based On Multi-Source DEMS And Landsat-8 Imagery. Spatial Information Research, 28(1), 113–127.
    Hadjimitsis, D. G. (2012). Development Of A New Image Based Atmospheric Correction Algorithm For Aerosol Optical Thickness Retrieval Using The Darkest Pixel Method. Journal of Applied Remote Sensing, 6(1), 063538.
    Hawes, F. T., Berk, A., Van Den Bosch, J., & Fortin, G. (2022). MODTRAN7: A polarimetric extension of the MODTRAN6 radiometric atmospheric radiative transfer model. In D. B. Chenault & M. K. Kupinski (Eds.), Polarization: Measurement, Analysis, and Remote Sensing XV (p. 9). SPIE.
    He, L., Tang, Q., Chen, D., Gaffney, P. P. J., & Sun, G. (2025). Contribution Of Channel Geometry Adjustments To Stage Variance Based On Rating-Curves In The Main Stream Of The Lancang–Mekong River. Scientific Reports, 15(1), 35988.
    Hessel, C., Grompone von Gioi, R., Morel, J. M., Facciolo, G., Arias, P., & de Franchis, C. (2020). Relative Radiometric Normalization Using Several Automatically Chosen Reference Images for Multi-Sensor, Multi-Temporal Series. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, V-2–2020, 845–852.
    Hodson, T. O. (2022). Root-mean-square error (RMSE) or mean absolute error (MAE): When to use them or not. Geoscientific Model Development, 15(14), 5481–5487.
    Hong, G., & Zhang, Y. (2008). A comparative study on radiometric normalization using high resolution satellite images. International Journal of Remote Sensing, 29(2), 425–438.
    Hore, A., & Ziou, D. (2010). Image Quality Metrics: PSNR vs. SSIM. 2010 20th International Conference on Pattern Recognition, 2366–2369.
    Hu, F., Hu, Y., Cui, E., Guan, Y., Gao, B., Wang, X., Wang, K., Liu, Y., & Yao, X. (2023). Recognition Method Of Coal And Gangue Combined With Structural Similarity Index Measure And Principal Component Analysis Network Under Multispectral Imaging. Microchemical Journal, 186, 108330.
    Hu, Y., Liu, L., Liu, L., & Jiao, Q. (2011). Comparison of Absolute And Relative Radiometric Normalization Use Landsat Time Series Images (J. Liu, J. Tian, H. Sang, & J. Ma, Eds.; p. 800616).
    Hua, A. K. (2017). Land Use Land Cover Changes in Detection of Water Quality: A Study Based on Remote Sensing and Multivariate Statistics. Journal of Environmental and Public Health, 2017, 1–12.
    Huang, L. T., Jiao, W. L., Long, T. F., & Kang, C. L. (2020). A Radiometric Normalization Method Of Controlling No-Changed Set (Cncs) For Diverse Landcover Using Multi-Sensor Data. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-3/W10, 863–870.
    Huang, W., Tao, Y., Gan, W., & Shen, H. (2024). An Evaluation of Radiometric Normalization Methods for Gaofen-2 Vegetation Index Mapping. IEEE Geoscience and Remote Sensing Letters, 21, 1–5.
    Jia, A., Jia, Z.-H., Yang, J., & Kasabov, N. K. (2021). Single-Image Snow Removal Based on an Attention Mechanism and a Generative Adversarial Network. IEEE Access, 9, 12852–12860.
    Kharat, P., & Deshmukh, M. (2013). Radiometric Normalization of Satellite Images using Ordinal Conversion. International Journal of Computer Applications.
    Koczkodaj, W. W., Magnot, J.-P., Mazurek, J., Peters, J. F., Rakhshani, H., Soltys, M., Strzałka, D., Szybowski, J., & Tozzi, A. (2017). On Normalization Of Inconsistency Indicators In Pairwise Comparisons. International Journal of Approximate Reasoning, 86, 73–79.
    Kornienko, S. G. (2021). Radiometric Normalization Of Landsat Thermal Imagery For Detection Of Tundra Land Cover Changes: Experience From West Siberia. International Journal of Remote Sensing, 42(4), 1420–1449.
    Leach, N., Coops, N. C., & Obrknezev, N. (2019). Normalization Method For Multi-Sensor High Spatial And Temporal Resolution Satellite Imagery With Radiometric Inconsistencies. Computers and Electronics in Agriculture, 164, 104893.
    Liu, K., Ke, T., Tao, P., He, J., Xi, K., & Yang, K. (2020). Robust Radiometric Normalization of Multitemporal Satellite Images Via Block Adjustment Without Master Images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 6029–6043.
    Maciel, F. P., & Pedocchi, F. (2021). Evaluation of ACOLITE atmospheric correction methods for Landsat-8 and Sentinel-2 in the R´ıo de la Plata turbid coastal waters.
    Marpu, P. R., Gamba, P., & Canty, M. J. (2011). Improving Change Detection Results of IR-MAD by Eliminating Strong Changes. IEEE Geoscience and Remote Sensing Letters, 8(4), 799–803.
    Moghimi, A., Celik, T., Mohammadzadeh, A., & Kusetogullari, H. (2021). Comparison of Keypoint Detectors and Descriptors for Relative Radiometric Normalization of Bitemporal Remote Sensing Images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 4063–4073.
    Ndajah, P., Kikuchi, H., Yukawa, M., Watanabe, H., & Muramatsu, S. (2010). SSIM Image Quality Metric for Denoised Images. 6.
    Nielsen, A. A. (2007). The Regularized Iteratively Reweighted MAD Method for Change Detection in Multi- and Hyperspectral Data. IEEE Transactions on Image Processing, 16(2), 463–478.
    Nielsen, A. A., Conradsen, K., & Simpson, J. J. (1998). Multivariate Alteration Detection (MAD) and MAF Postprocessing in Multispectral, Bitemporal Image Data: New Approaches to Change Detection Studies. Remote Sensing of Environment, 64(1), 1–19.
    Ninin, J., Messine, F., & Hansen, P. (2015). A reliable affine relaxation method for global optimization. 4OR, 13(3), 247–277.
    O’Connell, J., Connolly, J., Vermote, E. F., & Holden, N. M. (2013). Radiometric Normalization For Change Detection In Peatlands: A Modified Temporal Invariant Cluster Approach. International Journal of Remote Sensing, 34(8), 2905–2924.
    Philpot, W., & Ansty, T. (2013). Analytical Description of Pseudoinvariant Features. IEEE Transactions on Geoscience and Remote Sensing, 51(4), 2016–2021.
    Proud, S. R., Rasmussen, M. O., Fensholt, R., Sandholt, I., Shisanya, C., Mutero, W., Mbow, C., & Anyamba, A. (2010). Improving The SMAC Atmospheric Correction Code By Analysis Of Meteosat Second Generation NDVI And Surface Reflectance Data. Remote Sensing of Environment, 114(8), 1687–1698.
    Rahman, M. M., Hay, G. J., Couloigner, I., Hemachandran, B., & Bailin, J. (2015). A Comparison Of Four Relative Radiometric Normalization (RRN) Techniques For Mosaicing H-Res Multi-Temporal Thermal Infrared (TIR) Flight-Lines Of A Complex Urban Scene. ISPRS Journal of Photogrammetry and Remote Sensing, 106, 82–94.
    Rayegani, B., Barati, S., & Sarkheil, H. (2021). A Simple Model For Pifs Extraction At Digital Change Detection Approach. Modeling Earth Systems and Environment, 7(3), 1769–1781.
    Rengarajan, R., Storey, J. C., & Choate, M. J. (2020). Harmonizing the Landsat Ground Reference with the Sentinel-2 Global Reference Image Using Space-Based Bundle Adjustment. Remote Sensing, 12(19), 3132.
    Roy, D. P., Kovalskyy, V., Zhang, H. K., Vermote, E. F., Yan, L., Kumar, S. S., & Egorov, A. (2016). Characterization of Landsat-7 To Landsat-8 Reflective Wavelength And Normalized Difference Vegetation Index Continuity. Remote Sensing of Environment, 185, 57–70.
    Sabino, M., Da Silva, A. C., De Almeida, F. T., & De Souza, A. P. (2024). Reference Evapotranspiration in Climate Change Scenarios in Mato Grosso, Brazil. Hydrology, 11(7), 91.
    Scheffler, D., Frantz, D., & Segl, K. (2020). Spectral Harmonization And Red Edge Prediction of Landsat-8 To Sentinel-2 Using Land Cover Optimized Multivariate Regressors. Remote Sensing of Environment, 241, 111723.
    Schott, J. R., Salvaggio, C., & Volchok, W. J. (1988). Radiometric Scene Normalization Using Pseudoinvariant Features. Remote Sensing of Environment, 26(1), 1–16. https://doi.org/10.1016/0034-4257(88)90116-2
    Sinaice, B. B., Owada, N., Ikeda, H., Toriya, H., Bagai, Z., Shemang, E., Adachi, T., & Kawamura, Y. (2022). Spectral Angle Mapping and AI Methods Applied in Automatic Identification of Placer Deposit Magnetite Using Multispectral Camera Mounted on UAV. Minerals, 12(2), 268.
    Tao, M., Chen, L., Wang, Z., Wang, J., Che, H., Xu, X., Wang, W., Tao, J., Zhu, H., & Hou, C. (2017). Evaluation of MODIS Deep Blue Aerosol Algorithm in Desert Region of East Asia: Ground Validation and Intercomparison: Evaluation of MODIS Deep Blue Algorithm. Journal of Geophysical Research: Atmospheres, 122(19), 10,357-10,368.
    Tenenhaus, A., Philippe, C., & Frouin, V. (2015). Kernel Generalized Canonical Correlation Analysis. Computational Statistics & Data Analysis, 90, 114–131.
    Tenenhaus, A., & Tenenhaus, M. (2014). Regularized Generalized Canonical Correlation Analysis For Multiblock Or Multigroup Data Analysis. European Journal of Operational Research, 238(2), 391–403.
    Vermote, E. F., Tanre, D., Deuze, J. L., Herman, M., & Morcette, J.-J. (1997). Second Simulation of the Satellite Signal in the Solar Spectrum, 6S: An overview. IEEE Transactions on Geoscience and Remote Sensing, 35(3), 675–686. https://doi.org/10.1109/36.581987
    Vijay Prakash, K., Geetha Vimala, Ch. S., Preethi Latha, T., Jayaram, C., Nagamani, P. V., & Laxmi, Ch. N. V. (2021). Assessment of Water Quality Along the Southeast Coast of India During COVID-19 Lockdown. Frontiers in Marine Science, 8, 659686.
    Vo, V. (2000). Fast algorithms for histogram matching: Application to texture synthesis. Journal of Electronic Imaging, 9(1), 39.
    Wang, B., Choi, S.-K., Han, Y.-K., Lee, S.-K., & Choi, J.-W. (2015). Application of IR-MAD Using Synthetically Fused Images For Change Detection In Hyperspectral Data. Remote Sensing Letters, 6(8), 578–586.
    Wilson, R. J. (2009). Introduction To Graph Theory (4. ed., [Nachdr.]). Prentice Hall.
    Wu, W., Sun, X., Wang, X., Fan, J., Luo, J., Shen, Y., & Yang, Y. (2018). A Long Time-Series Radiometric Normalization Method for Landsat Images. Sensors, 18(12), 4505.
    Xu, H. (2006). Evaluation of Two Absolute Radiometric Normalization Algorithms for Pre-processing of Landsat Imagery. Journal of China University of Geosciences, 17(2), 146–157.
    Yu, L., Zhang, Y., Sun, M., & Lu, Y. (2017). Automatic Reference Image Selection for Color Balancing in Remote Sensing Imagery Mosaic. IEEE Geoscience and Remote Sensing Letters, 14(5), 729–733.
    Zahidi, U. A., Chatterjee, A., & Yuen, P. W. T. (2019). A Radiative Transfer Model-Based Multi-Layered Regression Learning to Estimate Shadow Map in Hyperspectral Images. Machine Learning and Knowledge Extraction, 1(3), 904–927.
    Zhong, C., Xu, Q., & Li, B. (2016). Relative Radiometric Normalization for Multitemporal Remote Sensing Images by Hierarchical Regression. IEEE Geoscience and Remote Sensing Letters, 13(2), 217–221.

    QR CODE