簡易檢索 / 詳目顯示

研究生: 謝宏昇
Hsieh, Hung-Sheng
論文名稱: 雷射圓管成形之皺曲現象研究
Study of the buckling mechanism of a tube in laser forming
指導教授: 林震銘
Lin, Chen-Ming
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2002
畢業學年度: 90
語文別: 中文
論文頁數: 156
中文關鍵詞: 有限元素法皺曲成形圓管雷射
外文關鍵詞: ABAQUS, buckling, finite element, forming, laser
相關次數: 點閱:122下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    本文針對雷射圓管成形之皺曲現象進行研究,以實驗及數值計算兩方面相輔進行,研究中採用CO2雷射,以高斯分佈之移動熱源於不銹鋼SUS304管件表面進行加熱,使圓管加熱區產生皺曲成形,並針對製程之溫度場、圓管軸向變位、徑向隆起變形及皺曲機制之成形力進行量測。此成形機制為一複雜之非線性熱機耦合問題,故於數值計算中以有限元素法採熱機非耦合的方式來進行解析,並以數值軟體ABAQUS作為分析工具,針對雷射圓管成形皺曲現象之製程溫度場、暫態與殘留之應力及應變場與管件皺曲及偏擺角度來進行論述,並進行不同功率、光徑、管壁厚薄及預力條件的參數討論,以期對雷射圓管成形皺曲現象做詳盡的分析,並與實驗結果進行比較。
    分析結果顯示,雷射圓管成形之皺曲現象與所輸入的能量條件、機械力學條件及試件幾何等製程參數有關,在入熱能量對加熱區管壁均質加熱及未使製程溫度達到材料熔點的前提之下,提升圓管加熱區單位體積所吸收之能量與加強其局部熱膨脹體積之剛性拘束的製程參數皆能增強雷射圓管成形之皺曲現象形成。

    Abstract

    The object of this thesis is to analyze the buckling mechanism of laser assisted tube forming with numerical and experimental approaches. A CO2 laser with Gaussian beam mode was used as a moving heat source on a 304 stainless steel tube in laser forming. The buckling mechanism will be obtained at specific conditions and generated by thermal stresses to deform the tube specimen with bulge profiles. With/without the preload at the end of tube, the stress and strain distributions will significantly affect the bulge profiles. Furthermore the bending angle, elongation, temperature and the loading force of the tube specimen were simulated by the finite element method software, ABAQUS, and they were measured by appropriate sensors at operation conditions with various laser power, specimen size and pre-loads.

    It can be found that both the numerical and experimental results are in a fairly good agreement. It can be concluded that the buckling mechanism in laser tube forming was dominated by the laser power and pre-load conditions. If the temperature of the specimen is below the melting point and the distribution is nearly uniform, the buckling phenomenon is enhanced by increasing the laser power and pre-loads for a fixed specimen geometry.

    目 錄 中文摘要……………………………………………………………………Ⅰ 英文摘要……………………………………………………………………Ⅱ 誌謝…………………………………………………………………………Ⅲ 目錄………………………………………………………………………Ⅳ 圖目錄………………………………………………………………………Ⅶ 表目錄…………………………………………………………………ⅩⅢ 符號說明………………………………………………………………ⅩⅣ 第一章 緒論………………………………………………………………1 1.1 研究目的……………………………………………………1 1.2 文獻回顧…………………………..…………...……………….2 1.3 本文架構…………………………………………...…………...6 第二章 數值分析理論………………………………………...……………..8 2.1 熱傳模型方程式……………………………...………………...9 2.1.1 基本假設…………………………...……………………9 2.1.2 熱傳能量平衡方程式……………...…………..………..9 2.1.3 有限元素程式化……………………...……………..…11 2.2 力學模型方程式………………………...……….……………13 2.2.1 基本假設……………………………...………..………13 2.2.2 應力應變增量關係………………………...………..…13 2.2.2.1 彈性應變增量…………………………………14 2.2.2.2 塑性應變增量…………………….………...…14 2.2.2.3 熱應變增量………………………………....…17 2.2.3 力平衡方程式……………………………....……….…18 2.2.4 有限元素程式化……………………....……………….19 2.3 數值軟體ABAQUS簡介……………………………...………20 第三章 有限元素數值模擬……………………………………………...…22 3.1 ABAQUS範例驗證…………………………...…………….22 3.2 雷射成形之皺曲機制之定性描述………………...…………24 3.3 有限元素模型…………………………………………...……26 3.3.1 模型建立與網格測試………………………….……...26 3.3.2 材料性質………...………………………………….…29 3.4 高斯移動熱源……………...…………………………………31 3.5 初始條件與邊界條件…………...……………………………32 3.6 數值結果……………………………...………………………35 3.6.1 移動熱源溫度場…………………...……………….…35 3.6.2 皺曲機制之暫態應力及應變…………...……….……40 3.6.3 皺曲機制之殘留應力及應變………………...…….…47 3.6.4 皺曲機制之軸向及徑向變形……………………....…53 3.6.5 皺曲機制之成形角度……………...…………….……58 3.7 參數討論……………………………………...………...……60 3.8 結果與討論………………………………………...…..….…82 第四章 皺曲機制成形實驗…………………………………...……………85 4.1 實驗設備……………..………………………………….….…84 4.2 實驗方法與實驗參數..………………………...……...………87 4.3 實驗結果與討論…………………………………...……….…92 4.4 實驗與數值模擬結果之比較…………………………......…100 4.5 結果與討論..………………...……………………………….112 第五章 綜合結論與建議……………………...……………..……………115 5.1綜合結論……………………………...…………….…...……115 5.2相關建議及未來發展……………………...…………………118 參考文獻……………………………………………………...……………119 附錄A…………………………………………………………………..…..122 附錄B…………………………………………………………………..…..125 附錄C…………………………………………………………………..…..128 附錄D…………………………………………………………………..…..142 自述…………………………………………………………………….…..156

    參考文獻
    [1]Namba Y., Laser forming in space, International Conference on Lasers’85, editors:Wang C. P., pp.403-407, 1986.
    [2]Scully K., Laser line heating, Journal of Ship Production 3, pp.237-246,1987.
    [3]Namba Y., Laser Forming of Metal and Alloys, Proceedings of LAMP, Osaka, pp.601-606, 1987.
    [4]Geiger M., Vollertsen F. and Deinzer G., Flexible straightening of car body shells by laser forming, Sheet Metal and Stamping Symping Symposium SAE Special Publication, n944, SAE, pp.37-44, 1993.
    [5]Geiger M., Arnet H. and Vollertsen F., Laser Forming, Manufacturing Systems, No. 24, Vol. 1, pp.43-47, 1995.
    [6]Yau C. L., Chan K. C. and Lee W. B., Laser Bending of Leadframe Materials, Journal of Materials Processing Technology, Vol. 82, pp.117-121, 1998.
    [7]Widlaszewski J., Precise laser bending, Laser Assisted Net shape Engineering 2 Proceeding of the LAME’97, eds: Geiger M., Vollertsen F., pp.393-398, 1997.
    [8]Lawrence J., Schmidt M.J.J., Li L., The forming of mild steel plates with a 2.5Kw high power diode laser, International Journal of Machine Tools & Manufacture, Vol. 41 pp.967-977, 2001.
    [9]Vollertsen F., An Analytical Model for Laser Bending, Lasers in Engineering,Vol. 2, pp.261-276, 1994.
    [10]Arnet H. and Vollertsen F., Extending laser bending for the generation of convex shapes, Journal of Engineering Manufacture, Vol. 209, pp.433-442, 1995.
    [11]Vollertsen F., Komel I., and Kals R., The laser bending of steel foils for microparts by the buckling mechanism-a model, Modelling and Simulation in Materials Science and Engineering, Vol. 3, n1, pp. 107-119, 1995.
    [12]Cheng P.J. and Lin S.C., An Analytical Model for The Temperature Field in The Laser Forming of Sheet Metal, Journal of Materials Processing Technology, Vol.101, pp.260-267, 2000.
    [13]Cheng P.J. and Lin S.C., An analytical model to estimate angle formed by
    laser, Journal of Materials Processing Technology, Vol.108, pp.314-319,
    2000.
    [14]Kyrsanidi An. K., Kermanidis Th. B. and Pantelakis Sp. G., An Analytical
    Model for the Prediction of Distortions Caused by the Laser Forming
    Process, Journal of Materials Processing Technology, Vol.104, pp.94-102,
    2000.
    [15]Pridham M. S., Thomson G. A., An investigation of laser forming using
    empirical methods and finite element analysis, Journal of design and
    Manufacturing, Vol. 5, pp.203-211, 1995.
    [16]Kraus J., Basic Processes in Laser Bending Extrusions Using the Upsetting
    Mechanism, Laser Assisted Net shape Engineering 2 Proceedings of the LANE’]
    97, pp.431-438, 1997.
    [17]Ji Z. and Wu S., FEM Simulation of The Temperature Field During The Laser
    Forming of Sheet Metal, J. Materials Processing Technology, Vol. 74, pp.89-
    95, 1998.
    [18]Kyrsanidi An. K., Kermanidis Th. B. and Pantelakis Sp. G., Numerical and
    Experimental Investigation of the Laser Forming Process, J. Materials
    Processing Technology, Vol. 87, pp281-290, 1999.
    [19]Chen G., Xu X., Poon C. C. and Tam A. C., Experimental and Numerical
    Studies on Microscale Bending of Stainless Steel with Pulsed Laser,
    Transactions of the ASME, Vol. 66, pp.772-779, 1999.
    [20]Thomas H., Development of Irradiation Strategies For 3D-Laser Forming, J.
    Materials Processing Technology, Vol. 103, pp.102-108, 2000.
    [21]Li W. and Yao Y. L., Buckling based laser forming process: concave or
    convex, Sction F-ICALEO, pp.220-229, 2000.
    [22]Li W. and Yao Y. L., Numrical and experimental investigation of laser
    induced tube bending, Sction F-ICALEO, pp.53-62, 2000.
    [23]Yu G., Masubuchi K., Maekawa T., Patrikalakis N. M., FEM Simulation of
    Laser Forming of Metal Plates, Journal of Manufacturing Science and
    Enginerring, Vol. 123, pp.405-410, 2001.
    [24]Wu S., Ji Z., FEM simulation of the deformation field during the laser
    forming of sheet metal, Journal of Materials Proceeding Technology, Vol.
    121, pp.269-272, 2002.
    [25]Getting Started with ABAQUS/Standard, H.K.S. Inc., Pawtuckett, RI, 1998.
    [26]ABAQUS Theory Manual, H.K.S. Inc., Pawtuckett, RI, 1998.
    [27]ABAQUS/Standard User’s Manual, H.K.S. Inc., Pawtuckett, RI, 1998.
    [28]ABAQUS/Standard Verification Manual, H.K.S. Inc., Pawtuckett, RI, 1998.
    [29]Timoshenko S., Theory of plates and shells, pp.497-501, 1959.
    [30]Timoshenko S., Strength of Materials, pp.258-264, 1956.
    [31]Steen W. M., Laser Material Processing, pp.46-50, 1991.
    [32]Radaj D., Heat Effects of Welding, Springer-Verlag, pp.5, 1992.
    [33]Holman J.P., Heat transfer, pp48-pp51 1981.
    [34]Incropera F. P., DeWitt D. P, John Wiley & Sons, Fundamental of heat mass
    transfer, pp624-pp628, 1996.
    [35]Ueda Y., Iida K., Saito m. and Okamoto A., Finite element model and
    residual stress calculation for multi-pass welded joint between a sheet
    metal and the penetrating pipe, Modeling of Casting, Welding and Advanced
    Solidification Processes-V, pp.219-227, 1991.
    [36]Peckner D. and Bernstein I. M., Handbook of stainless steels, McGraw-Hill,
    pp.19-2, 1977.
    [37]Shames I. H. and Cozzarelli F. A., Elastic and inelastic stress analysis, Taylor & Francis, pp.262-271, 1997.

    下載圖示 校內:2012-07-24公開
    校外:2012-07-24公開
    QR CODE