| 研究生: |
謝宏昇 Hsieh, Hung-Sheng |
|---|---|
| 論文名稱: |
雷射圓管成形之皺曲現象研究 Study of the buckling mechanism of a tube in laser forming |
| 指導教授: |
林震銘
Lin, Chen-Ming |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2002 |
| 畢業學年度: | 90 |
| 語文別: | 中文 |
| 論文頁數: | 156 |
| 中文關鍵詞: | 有限元素法 、皺曲 、成形 、圓管 、雷射 |
| 外文關鍵詞: | ABAQUS, buckling, finite element, forming, laser |
| 相關次數: | 點閱:122 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
本文針對雷射圓管成形之皺曲現象進行研究,以實驗及數值計算兩方面相輔進行,研究中採用CO2雷射,以高斯分佈之移動熱源於不銹鋼SUS304管件表面進行加熱,使圓管加熱區產生皺曲成形,並針對製程之溫度場、圓管軸向變位、徑向隆起變形及皺曲機制之成形力進行量測。此成形機制為一複雜之非線性熱機耦合問題,故於數值計算中以有限元素法採熱機非耦合的方式來進行解析,並以數值軟體ABAQUS作為分析工具,針對雷射圓管成形皺曲現象之製程溫度場、暫態與殘留之應力及應變場與管件皺曲及偏擺角度來進行論述,並進行不同功率、光徑、管壁厚薄及預力條件的參數討論,以期對雷射圓管成形皺曲現象做詳盡的分析,並與實驗結果進行比較。
分析結果顯示,雷射圓管成形之皺曲現象與所輸入的能量條件、機械力學條件及試件幾何等製程參數有關,在入熱能量對加熱區管壁均質加熱及未使製程溫度達到材料熔點的前提之下,提升圓管加熱區單位體積所吸收之能量與加強其局部熱膨脹體積之剛性拘束的製程參數皆能增強雷射圓管成形之皺曲現象形成。
Abstract
The object of this thesis is to analyze the buckling mechanism of laser assisted tube forming with numerical and experimental approaches. A CO2 laser with Gaussian beam mode was used as a moving heat source on a 304 stainless steel tube in laser forming. The buckling mechanism will be obtained at specific conditions and generated by thermal stresses to deform the tube specimen with bulge profiles. With/without the preload at the end of tube, the stress and strain distributions will significantly affect the bulge profiles. Furthermore the bending angle, elongation, temperature and the loading force of the tube specimen were simulated by the finite element method software, ABAQUS, and they were measured by appropriate sensors at operation conditions with various laser power, specimen size and pre-loads.
It can be found that both the numerical and experimental results are in a fairly good agreement. It can be concluded that the buckling mechanism in laser tube forming was dominated by the laser power and pre-load conditions. If the temperature of the specimen is below the melting point and the distribution is nearly uniform, the buckling phenomenon is enhanced by increasing the laser power and pre-loads for a fixed specimen geometry.
參考文獻
[1]Namba Y., Laser forming in space, International Conference on Lasers’85, editors:Wang C. P., pp.403-407, 1986.
[2]Scully K., Laser line heating, Journal of Ship Production 3, pp.237-246,1987.
[3]Namba Y., Laser Forming of Metal and Alloys, Proceedings of LAMP, Osaka, pp.601-606, 1987.
[4]Geiger M., Vollertsen F. and Deinzer G., Flexible straightening of car body shells by laser forming, Sheet Metal and Stamping Symping Symposium SAE Special Publication, n944, SAE, pp.37-44, 1993.
[5]Geiger M., Arnet H. and Vollertsen F., Laser Forming, Manufacturing Systems, No. 24, Vol. 1, pp.43-47, 1995.
[6]Yau C. L., Chan K. C. and Lee W. B., Laser Bending of Leadframe Materials, Journal of Materials Processing Technology, Vol. 82, pp.117-121, 1998.
[7]Widlaszewski J., Precise laser bending, Laser Assisted Net shape Engineering 2 Proceeding of the LAME’97, eds: Geiger M., Vollertsen F., pp.393-398, 1997.
[8]Lawrence J., Schmidt M.J.J., Li L., The forming of mild steel plates with a 2.5Kw high power diode laser, International Journal of Machine Tools & Manufacture, Vol. 41 pp.967-977, 2001.
[9]Vollertsen F., An Analytical Model for Laser Bending, Lasers in Engineering,Vol. 2, pp.261-276, 1994.
[10]Arnet H. and Vollertsen F., Extending laser bending for the generation of convex shapes, Journal of Engineering Manufacture, Vol. 209, pp.433-442, 1995.
[11]Vollertsen F., Komel I., and Kals R., The laser bending of steel foils for microparts by the buckling mechanism-a model, Modelling and Simulation in Materials Science and Engineering, Vol. 3, n1, pp. 107-119, 1995.
[12]Cheng P.J. and Lin S.C., An Analytical Model for The Temperature Field in The Laser Forming of Sheet Metal, Journal of Materials Processing Technology, Vol.101, pp.260-267, 2000.
[13]Cheng P.J. and Lin S.C., An analytical model to estimate angle formed by
laser, Journal of Materials Processing Technology, Vol.108, pp.314-319,
2000.
[14]Kyrsanidi An. K., Kermanidis Th. B. and Pantelakis Sp. G., An Analytical
Model for the Prediction of Distortions Caused by the Laser Forming
Process, Journal of Materials Processing Technology, Vol.104, pp.94-102,
2000.
[15]Pridham M. S., Thomson G. A., An investigation of laser forming using
empirical methods and finite element analysis, Journal of design and
Manufacturing, Vol. 5, pp.203-211, 1995.
[16]Kraus J., Basic Processes in Laser Bending Extrusions Using the Upsetting
Mechanism, Laser Assisted Net shape Engineering 2 Proceedings of the LANE’]
97, pp.431-438, 1997.
[17]Ji Z. and Wu S., FEM Simulation of The Temperature Field During The Laser
Forming of Sheet Metal, J. Materials Processing Technology, Vol. 74, pp.89-
95, 1998.
[18]Kyrsanidi An. K., Kermanidis Th. B. and Pantelakis Sp. G., Numerical and
Experimental Investigation of the Laser Forming Process, J. Materials
Processing Technology, Vol. 87, pp281-290, 1999.
[19]Chen G., Xu X., Poon C. C. and Tam A. C., Experimental and Numerical
Studies on Microscale Bending of Stainless Steel with Pulsed Laser,
Transactions of the ASME, Vol. 66, pp.772-779, 1999.
[20]Thomas H., Development of Irradiation Strategies For 3D-Laser Forming, J.
Materials Processing Technology, Vol. 103, pp.102-108, 2000.
[21]Li W. and Yao Y. L., Buckling based laser forming process: concave or
convex, Sction F-ICALEO, pp.220-229, 2000.
[22]Li W. and Yao Y. L., Numrical and experimental investigation of laser
induced tube bending, Sction F-ICALEO, pp.53-62, 2000.
[23]Yu G., Masubuchi K., Maekawa T., Patrikalakis N. M., FEM Simulation of
Laser Forming of Metal Plates, Journal of Manufacturing Science and
Enginerring, Vol. 123, pp.405-410, 2001.
[24]Wu S., Ji Z., FEM simulation of the deformation field during the laser
forming of sheet metal, Journal of Materials Proceeding Technology, Vol.
121, pp.269-272, 2002.
[25]Getting Started with ABAQUS/Standard, H.K.S. Inc., Pawtuckett, RI, 1998.
[26]ABAQUS Theory Manual, H.K.S. Inc., Pawtuckett, RI, 1998.
[27]ABAQUS/Standard User’s Manual, H.K.S. Inc., Pawtuckett, RI, 1998.
[28]ABAQUS/Standard Verification Manual, H.K.S. Inc., Pawtuckett, RI, 1998.
[29]Timoshenko S., Theory of plates and shells, pp.497-501, 1959.
[30]Timoshenko S., Strength of Materials, pp.258-264, 1956.
[31]Steen W. M., Laser Material Processing, pp.46-50, 1991.
[32]Radaj D., Heat Effects of Welding, Springer-Verlag, pp.5, 1992.
[33]Holman J.P., Heat transfer, pp48-pp51 1981.
[34]Incropera F. P., DeWitt D. P, John Wiley & Sons, Fundamental of heat mass
transfer, pp624-pp628, 1996.
[35]Ueda Y., Iida K., Saito m. and Okamoto A., Finite element model and
residual stress calculation for multi-pass welded joint between a sheet
metal and the penetrating pipe, Modeling of Casting, Welding and Advanced
Solidification Processes-V, pp.219-227, 1991.
[36]Peckner D. and Bernstein I. M., Handbook of stainless steels, McGraw-Hill,
pp.19-2, 1977.
[37]Shames I. H. and Cozzarelli F. A., Elastic and inelastic stress analysis, Taylor & Francis, pp.262-271, 1997.