簡易檢索 / 詳目顯示

研究生: 陳敬軒
Chen, Ching-Hsuan
論文名稱: 雙階梯躍遷之高效通訊光子轉頻研究
Efficient Telecom Photon Conversion Based on Double-Cascade Transitions
指導教授: 陳泳帆
Chen, Yong-Fan
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2021
畢業學年度: 110
語文別: 中文
論文頁數: 84
中文關鍵詞: 通訊波長光子四波混頻銣原子雙階梯躍遷
外文關鍵詞: telecom photons, four-wave mixing, double-cascade transitions, Rubidium
相關次數: 點閱:168下載:19
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文研究的是分析雙階梯躍遷四波混頻系統將波長為 795 奈米之遠紅外光
    子轉至波長為 1367 奈米或 1529 奈米之通訊光子轉頻。而我們所使用的介質為銣原
    子,銣原子的激發態能階分別為 6S1/2 以及 4D1/2。根據我們的研究,當分析出各項
    最佳參數後,在此系統中波長 1367 奈米通訊光子的轉換效率可達百分之九十,而波
    長 1529 奈米通訊光子轉換效率可達百分之八十。在此論文中我們寫下如何利用光學
    布拉赫方程式以及馬克士威薛丁格方程式建構此系統進行數值分析,且研究其相位
    不匹配是否對其轉換效率造成影響。最後,我們考量各項參數對其進行分析,進而
    了解其背後的物理機制。

    We study on the conversion of a far-infrared photon with a wavelength of 795 nm to a telecom photon with a wavelength of either 1367 nm or 1529 nm through the four-wave mixing process in a medium with a double-cascade transition configuration. We numerical simulate the system with Optical-Bloch equations and Maxwell-Schrodinger equations to analyze the affections from various conditions, including the phase-mismatch effect. In simulation, we use the transition of the Rubidium 87 between energy levels of |6S1/2⟩ and |4D1/2⟩ . Under the optimal parameters, the results show that the conversion efficiencies are up to 90% and 80% for photons with 1367 nm and 1529 nm.

    摘要 i 英文延伸摘要 ii 誌謝 x 目錄 xii 表目錄 xiv 圖目錄 xv 第 1 章. 緒論 1 1.1 簡介 1 1.2 動機 2 第 2 章. 理論模型 3 2.1 二能階系統 3 2.1.1. 二能階系統-系統描述 3 2.2 電磁波引發透明 8 2.2.1. Λ-type EIT-系統描述 8 2.2.2. Λ-type EIT-暫態解 11 2.2.3. V-type EIT-系統描述 13 2.2.4. Cascade-type EIT-系統描述 21 2.3 四波混頻 26 2.3.1. Double-Λ type 的反向系統描述 26 第 3 章. Double-cascade type 四波混頻分析 31 3.1 Double-cascade type 四波混頻基礎模型 31 3.2 Double-cascade type 四波混頻能階分析 35 3.2.1. Double-cascade type 四波混頻多重賽曼態能階相關自發輻射率 36 3.2.2. Double-cascade type 四波混頻單一賽曼態能階相關自發輻射率 42 3.3 Double-cascade type 四波混頻相位不匹配 47 第 4 章. Double-cascade type 四波混頻數值模擬結果與討論 51 4.1 Double-cascade type 左旋探測光 |5S1/2,F = 2⟩ ↔ |5P1/2,F = 1⟩ 及左旋 信號光 |5P3/2,F = 3⟩ ↔ |6S1/2,F = 2⟩ 單一賽曼態模擬 52 4.2 Double-cascade type 左旋探測光 |5S1/2,F = 2⟩ ↔ |5P1/2,F = 1⟩ 及左旋 信號光 |5P3/2,F = 3⟩ ↔ |4D3/2,F = 2⟩ 單一賽曼態模擬 57 4.3 Double-cascade type 右旋探測光 |5S1/2,F = 1⟩ ↔ |5P1/2,F = 2⟩ 及左旋 信號光 |5P3/2,F = 2⟩ ↔ |6S1/2,F = 2⟩ 多重賽曼態模擬 62 4.4 Double-cascade type 右旋探測光 |5S1/2,F = 1⟩ ↔ |5P1/2,F = 2⟩ 及左旋 信號光 |5P3/2,F = 2⟩ ↔ |4D3/2,F = 2⟩ 多重賽曼態模擬 68 第 5 章. 結論與未來展望 73 參考文獻 74 附錄 A. 光學布拉赫方程式 77 附錄 B. 馬克士威-薛丁格方程式 79 附錄 C. Double-cascade type 四波混頻信號光轉至探測光之模擬 82

    [1] Michael A Nielsen and Isaac Chuang. Quantum computation and quantum information,2002.
    [2] Claude Cohen-Tannoudji and David Guéry-Odelin. Advances in atomic physics: an overview. 2011.
    [3] Michael G. Raymer and Kartik Srinivasan. Manipulating the color and shape of single photons. Physics Today, 65, 11:32, 2012.
    [4] S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden. A
    photonic quantum information interface. Nature, 437(7055):116–120, 2005.
    [5] Stefano Pirandola, Jens Eisert, Christian Weedbrook, Akira Furusawa, and Samuel L Braunstein. Advances in quantum teleportation. Nature photonics,9(10):641–652,2015.
    [6] Prem Kumar. Quantum frequency conversion. Opt. Lett., 15(24):1476–1478, Dec 1990.
    [7] Fabian Steinlechner, N Hermosa, Valerio Pruneri, and Juan P. Torres. Frequency conversion of structured light. 6, 06 2015.
    [8] Björn Lauritzen, Jiří Minář, Hugues De Riedmatten, Mikael Afzelius, Nicolas Sangouard, Christoph Simon, and Nicolas Gisin. Telecommunication-wavelength solidstate memory at the single photon level. Physical review letters,104(8):080502, 2010.
    [9] Yu-Ao Chen, Shuai Chen, Zhen-Sheng Yuan, Bo Zhao, Chih-Sung Chuu, Jörg Schmiedmayer, and Jian-Wei Pan. Memory-built-in quantum teleportation with photonic and atomic qubits. Nature Physics, 4(2):103–107, 2008.
    [10] Hoonsoo Kang, Gessler Hernandez, and Yifu Zhu. Resonant four-wave mixing with slow light. Phys. Rev. A, 70:061804, Dec 2004.
    [11] Hoonsoo Kang, Gessler Hernandez, Jiepeng Zhang, and Yifu Zhu. Backward four-wave mixing in a four-level medium with electromagnetically induced transparency. J. Opt.Soc. Am. B, 23(4):718–722, Apr 2006.
    [12] Nicolas Maring, Dario Lago-Rivera, Andreas Lenhard, Georg Heinze, and Huguesde Riedmatten. Quantum frequency conversion of memory-compatible single photons from 606 nm to the telecom c-band. Optica, 5(5):507–513, 2018.
    [13] Marius A Albota and Franco NC Wong. Efficient single-photon counting at 1.55 µm by means of frequency upconversion. Optics letters, 29(13):1449–1451, 2004.
    [14] H. J. McGuinness, M. G. Raymer, C. J. McKinstrie, and S. Radic. Quantum frequency translation of single-photon states in a photonic crystal fiber. Phys. Rev. Lett.,105:093604, Aug 2010.
    [15] Alex S. Clark, Shayan Shahnia, Matthew J. Collins, Chunle Xiong, and Benjamin J.Eggleton. High-efficiency frequency conversion in the single-photon regime. Opt.
    Lett., 38(6):947–949, Mar 2013.
    [16] Jason S Pelc, Lijun Ma, CR Phillips, Qiang Zhang, C Langrock, Oliver Slattery, Xiao Tang, and Martin M Fejer. Long-wavelength-pumped upconversion single-photon detector at 1550 nm: performance and noise analysis. Optics express,19(22):21445–21456, 2011.
    [17] Zi-Yu Liu, Jian-Ting Xiao, Jia-Kang Lin, Jun-Jie Wu, Jz-Yuan Juo, Chin-Yao Cheng,and Yong-Fan Chen. High-efficiency backward four-wave mixing by quantum interference. In Scientific Reports, 2017.
    [18] Jz-Yuan Juo, Jia-Kang Lin, Chin-Yao Cheng, Zi-Yu Liu, Ite A. Yu, and Yong-Fan
    Chen. Demonstration of spatial-light-modulation-based four-wave mixing in cold
    atoms. Phys. Rev. A, 97:053815, May 2018.
    [19] Yoshiaki Tamura, Hirotaka Sakuma, Keisei Morita, Masato Suzuki, Yoshinori Yamamoto, Kensaku Shimada, Yuya Honma, Kazuyuki Sohma, Takashi Fujii, and Takemi Hasegawa. Lowest-ever 0.1419-db/km loss optical fiber. In Optical Fiber Communication Conference, pages Th5D–1. Optical Society of America, 2017.
    [20] AG Radnaev, YO Dudin, R Zhao, HH Jen, SD Jenkins, A Kuzmich, and TAB Kennedy. A quantum memory with telecom-wavelength conversion. Nature Physics, 6(11):894–899, 2010.
    [21] Marlan O Scully and Muhammad Suhail Zubairy. Quantum optics. Cambridge University Press, Cambridge; New York, 1997. OCLC: 841234668.
    [22] S. E. Harris, J. E. Field, and A. Imamoğlu. Nonlinear optical processes using electromagnetically induced transparency. Phys. Rev. Lett., 64:1107–1110, Mar 1990.
    [23] K-J Boller, A Imamoğlu, and Stephen E Harris. Observation of electromagnetically induced transparency. Physical Review Letters, 66(20):2593, 1991.
    [24] Ying Wu and Xiaoxue Yang. Electromagnetically induced transparency in v-, λ-, and cascade-type schemes beyond steady-state analysis. Physical Review A,71(5):053806,2005.
    [25] Surajit Sen, Tushar Kanti Dey, Mihir Ranjan Nath, and Gautam Gangopadhyay. Comparison of electromagnetically induced transparency in lambda, cascade and vee threelevel systems. Journal of Modern Optics, 62(3):166–174, 2015.
    [26] David J Fulton, Sara Shepherd, Richard R Moseley, Bruce D Sinclair, and Malcolm H Dunn. Continuous-wave electromagnetically induced transparency: A comparison of v, λ, and cascade systems. Physical Review A, 52(3):2302, 1995.
    [27] Vineet Bharti and Ajay Wasan. Polarization dependence of electromagnetic induced transparency in multilevel cascade system. In 2012 International Conference on Optical
    Engineering (ICOE), pages 1–4. IEEE, 2012.
    [28] Zhang-Kai Qiu. Studies on eit-based four-wave mixing at low light levels. Master Thesis,NCKU, 2013
    [29] Jz-Yuan Juo. Optical wavelength converter in resonant four-wave mixing processes. Master Thesis,NCKU, 2017.
    [30] Chin-Yao Cheng. Quantum frequency conversion based on resonant-type quantum nonlinear optics. Doctor Thesis,NCKU, 2021.
    [31] Pi-Sheng Hu. Highly efficient optical wavelength converter based on electromagnetically induced transparency. Master Thesis,NCKU, 2018.
    [32] Chin-Yao Cheng, Jia-Juan Lee, Zi-Yu Liu, Jiun-Shiuan Shiu, and Yong-Fan Chen.
    Quantum frequency conversion based on resonant four-wave mixing. Physical Review A, 103(2):023711, 2021.
    [33] Tsai-Ni Wang. Quasi-phase-matching slow light propagation in efficient four-wave mixing media. Master Thesis,NCKU, 2020.
    [34] T Chaneliere, DN Matsukevich, SD Jenkins, TAB Kennedy, MS Chapman, and
    A Kuzmich. Quantum telecommunication based on atomic cascade transitions. Physical review letters, 96(9):093604, 2006.
    [35] Jean E Sansonetti. Wavelengths, transition probabilities, and energy levels for the spectra of rubidium (rb i through rb xxxvii). Journal of physical and chemical reference data, 35(1):301–421, 2006.
    [36] Jing Gao, Jie Wang, Baodong Yang, Tiancai Zhang, and Junmin Wang. Doubleresonance optical-pumping spectra of rubidium 5s1/2-5p3/2-4d3/2 transitions and frequency stabilization of 1.5-micrometer laser. In Quantum and Nonlinear Optics, volume 7846, page 784618. International Society for Optics and Photonics, 2010.
    [37] Daniel A Steck. Rubidium 87 d line data, 2001.

    下載圖示
    2022-08-31公開
    QR CODE