| 研究生: |
吳奇寯 Wu, Chi-Chun |
|---|---|
| 論文名稱: |
製作一維非高斯隨機粗糙表面並呈現其散射特性 Fabricating One-dimensional Non-Gaussian Random Rough Surfaces and Demonstrating Their Unique Scattering |
| 指導教授: |
陳玉彬
Chen, Yu-Bin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 78 |
| 中文關鍵詞: | 自相關函數 、雙方向反射密度函數 、隨機粗糙表面 、蘇格蘭軛 |
| 外文關鍵詞: | autocorrelation function, bidirectional reflectance density function, random rough surfaces, Scotch yoke |
| 相關次數: | 點閱:114 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
藉由不平整表面散射提升熱輻射吸收率,已被視為改善太陽能板效能的成功關鍵之一,而隨機粗糙表面因製作方式多元、成本較次波長週期結構低廉的優點,更具備高度產業價值。然而,粗糙表面施用於以矽為主的商用太陽能板仍存在兩困難:一是矽非等向性晶格使高度自相關函數不再是高斯函數,故少有文獻探討;二是常見之化學或高溫製作方式,會破壞太陽能板電極或摻雜離子分佈。因此,本研究以單晶矽為對象,目標則是以純物理方式製作一維隨機粗糙表面,呈現波長405 nm下之散射特性,作為粗糙表面提升太陽能板吸收率潛力之初探。
本研究主要成果與貢獻包括:一、利用機構往復運動,開發出一維粗糙表面研磨機;二、以不同號數砂紙,在單晶矽上製作出不同高度標準差及相關長度之隨機粗糙表面,便於量化探討散射特性;三、以貝索級數將單晶矽表面高度自相關函數彌合成貝索表面,也能模擬其散射特性;四、量測矽、金、鋁等不同材料粗糙表面之雙方向反射密度函數,實驗與模擬結果呈現相同之特徵與趨勢,也支持利用粗糙表面應用於太陽能板吸收率之提升的想法,尤其是在橫電場波小角度入射時,樣本吸收率較高斯型式及平坦表面高,具有增加太陽能板效能的潛力。
Surface roughness raises the absorptivity of solar cells be brought to discussion in recent years. The fabrication of rough surfaces has the potential commercial applications of low cost and diverse compared with micro/nano period structures. However the unique crystalline of silicon the main material of solar cells, the fabricated roughness on surfaces will have two problems. First, there are few researches about non-Gaussian rough surfaces according to the unique auto-correlation function. Second, the recent fabrication will destroy the solar cells electrode and doping ions distribution because of chemical or high temperature. Therefore, for the purpose to initially access the promotion of absorptivity this research fabricate the one-dimensional rough surfaces by only physical method and demonstrate the light scattering by the 405 nm laser.
The results and contributions of this research are the following. 1. Develop a one-dimensional polishing machine by Scotch Yoke. 2. Fabricate the different range of height deviation and correlation length roughness on single crystalline silicon with different number of sandpaper. 3. Use the Bessel series to fit the non-Gaussian rough surfaces height auto-correlation function. 4. Measure the bidirectional reflectance density function (BRDF) of rough surfaces of silicon, gold, and aluminum. The measurement and simulation results have the same features and tendency.
1. W. Bogaerts, P. Dumon, D. V. Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, "Compact Wavelength-Selective Functions in Silicon-on-Insulator Photonic Wires," IEEE Journal of Selected Topics in Quantum Electronics 12, 1394-1401 (2006).
2. B. Jae Lee, Y.-B. Chen, S. Han, F.-C. Chiu, and H. Jin Lee, "Wavelength-Selective Solar Thermal Absorber With Two-Dimensional Nickel Gratings," Journal of Heat Transfer 136, 072702-072702 (2014).
3. K. M. Krause, and M. J. Brett, "Spatially Graded Nanostructured Chiral Films as Tunable Circular Polarizers," Advanced Functional Materials 18, 3111-3118 (2008).
4. J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, "Gold Helix Photonic Metamaterial as Broadband Circular Polarizer," Science 325, 1513-1515 (2009).
5. L. Tsakalakos, J. Balch, J. Fronheiser, B. A. Korevaar, O. Sulima, and J. Rand, "Silicon Nanowire Solar Cells," Applied Physics Letters 91, - (2007).
6. V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, "Plasmonic Nanostructure Design for Efficient Light Coupling into Solar Cells," Nano Letters 8, 4391-4397 (2008).
7. Y. J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, and J. W. P. Hsu, "ZnO Nanostructures as Efficient Antireflection Layers in Solar Cells," Nano Letters 8, 1501-1505 (2008).
8. H. Sai, and H. Yugami, "Thermophotovoltaic Generation with Selective Radiators Based on Tungsten Surface Gratings," Applied Physics Letters 85, 3399-3401 (2004).
9. V. Gruev, A. Ortu, N. Lazarus, J. Van der Spiegel, and N. Engheta, "Fabrication of a Dual-tier Thin Film Micropolarization Array," Optics Express 15, 4994-5007 (2007).
10. Y. B. Chen, and Z. M. Zhang, "Design of Tungsten Complex Gratings for Thermophotovoltaic radiators," Optics Communications 269, 411-417 (2007).
11. E. I. Thorsos, "The Validity of The Kirchhoff Approximation for Rough Surface Scattering Using a Gaussian Roughness Spectrum," The Journal of the Acoustical Society of America 83, 78-92 (1988).
12. F. D. Hastings, J. B. Schneider, and S. L. Broschat, "A Monte-Carlo FDTD Technique for Rough Surface Scattering," IEEE Transactions on Antennas and Propagation, 43, 1183-1191 (1995).
13. K. A. O'Donnell, and M. E. Knotts, "Polarization Dependence of Scattering from One-dimensional Rough Surfaces," Journal of Optical Society America A 8, 1126-1131 (1991).
14. Z. Q. Tian, B. Ren, and D.-Y. Wu, "Surface-Enhanced Raman Scattering: From Noble to Transition Metals and from Rough Surfaces to Ordered Nanostructures," The Journal of Physical Chemistry B 106, 9463-9483 (2002).
15. Q. Z. Zhu, and Z. M. Zhang, "Correlation of Angle-resolved Light Scattering with The Microfacet Orientation of Rough Silicon Surfaces," Optice 44, 073601-073601-073612 (2005).
16. T. Salditt, T. H. Metzger, J. Peisl, B. Reinker, M. Moske, and K. Samwer, "Determination of the Height-Height Correlation-Function of Rough Surfaces from Diffuse-X-Ray Scattering," Europhys Letters 32, 331-336 (1995).
17. J. J. Wu, "Simulation of Rough Surfaces with FFT," Tribology International 33, 47-58 (2000).
18. J. J. Wu, "Simulation of Non-Gaussian Surfaces with FFT," Tribology International 37, 339-346 (2004).
19. T. D. Wu, K. S. Chen, S. Jiancheng, and A. K. Fung, "A Transition Model for The Reflection coefficient in surface scattering," IEEE Transactions on Geoscience and Remote Sensing 39, 2040-2050 (2001).
20. H. J. Lee, Y. B. Chen, and Z. M. Zhang, "Directional Radiative Properties of Anisotropic Rough Silicon and Gold surfaces," International Journal of Heat and Mass Transfer 49, 4482-4495 (2006).
21. 古閔中(2013),「建立等向及非等向隨機粗糙表面並計算其輻射性質」,國立成功大學機械工程學系碩士論文。
22. D. Witte, "Dynamical Systems on Homogenous Spaces," Bulletin of the London Mathematical Society 33, 492-512 (2001).
23. D. Stirzaker, Elementary probability, Cambridge University Press, New York, (2003).
24. MathWorks,"http://www.mathworks.com/help/stats/normcdf.html," (2014).
25. P. F. Dunn, Measurement and data analysis for engineering and science, CRC Press/Taylor & Francis, Boca Raton, ( 2010).
26. P. Abrahamsen, and N. regnesentral, A Review of Gaussian Random Fields and Correlation Functions, Norsk Regnesentral/Norwegian Computing Center, Norway, (1997).
27. A. K. Fung, M. R. Shah, and S. Tjuatja, "Numerical-Simulation of Scattering from 3-Dimensional Randomly Rough Surfaces," IEEE Transactions on Geoscience and Remote Sensing 32, 986-994 (1994).
28. F. D. Hastings, J. B. Schneider, and S. L. Broschat, "A Monte-Carlo Fdtd Technique for Rough-Surface Scattering," IEEE Trancations on Antenn Propag 43, 1183-1191 (1995).
29. Y. M. Xuan, Y. G. Han, and Y. Zhou, "Spectral Radiative Properties of Two-Dimensional Rough Surfaces," International Journal of Thermophys 33, 2291-2310 (2012).
30. U. S. Inan, and A. S. Inan, Electromagnetic Waves, Prentice Hall, New York, (2000).
31. A. Taflove, and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, Artech House, London, (2005).
32. A. Taflove, and M. E. Brodwin, "Numerical-Solution of Steady-State Electromagnetic Scattering Problems Using Time-Dependent Maxwells Equations," IEEE Truncations on Microw Theory 23, 623-630 (1975).
33. K. Umashankar, and A. Taflove, "A Novel Method to Analyze Electromagnetic Scattering of Complex Objects," IEEE Troncations on Electromagn C 24, 397-405 (1982).
34. M. F. Modest, Radiative Heat Transfer, Academic Press, New York , (2003).
35. J. A. Newell, "Ultrasonics in Medicine," Physics in Medicine and Biology 8, 241 (1963).
36. 國網中心應用材料庫, "http://nampd.nchc.org.tw/zh/content/%E6%AD%A1%E8%BF%8E%E4%BE%86%E5%88%B0-%E5%9C%8B%E7%B6%B2%E4%B8%AD%E5%BF%83%E6%87%89%E7%94%A8%E6%9D%90%E6%96%99%E8%B3%87%E6%96%99%E5%BA%AB.", (2012)
37. W. G. Sawyer, K. I. Diaz, M. A. Hamilton, and B. Micklos, "Evaluation of a Model for the Evolution of Wear in a Scotch-Yoke Mechanism," Journal of Tribology 125, 678-681 (2003).
38. C. Galinski, and R. Zbikowski, "Insect-like Flapping Wing Mechanism Based on a Double Spherical Scotch Yoke," Journal of the Royal Society Interface 2, 223-235 (2005).
39. ANSYS Workbench Platform, "http://www.ansys.com/Products/Workflow+Technology/ANSYS+Workbench+Platform.", (2013)
40. D. H. Myszka, Machines and Mechanisms : Applied Kinematics Analysis , Prentice Hall, New Jercy, (1999).
41. J. Yu, Y. Hu, J. Huo, and L. Wang, "Dolphin-like Propulsive Mechanism Based on an Adjustable Scotch Yoke," Mechanism and Machine Theory 44, 603-614 (2009).
42. BANNER, "http://www.bannerengineering.com/en-US/search?k=LT3PU&search_type=all&x=0&y=0.", (2014)
43. Tektronix, "http://www.tekcomms.com/.", (2014)
44. Y. B. Chen, I. C. Ho, F. C. Chiu, and C. S. Chang, "In-plane Scattering Patterns from a Complex Dielectric Grating at The Normal and Oblique Incidence," Journal of the Optics Society America A 31, 879-885 (2014).
45. E. D. Palik, Handbook of Optical Constants of Solids, Academic Press, Orlando, (1985).
46. E. Hecht, Optic, Addison-Wesley, New York, ( 2002).
47. Y. B. Chen, J. S. Chen, and P. F. Hsu, "Impacts of Geometric Modifications on Infrared Optical Responses of Metallic Slit Arrays," Optics Express 17, 9789-9803 (2009).
48. FEPA, "http://www.fepa-abrasives.org/Abrasiveproducts/Grains/Pgritsizescoated.aspx.", (2014)
49. M. Abramowitz, and I. A. Stegun, Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables, Dover Publications, New York, (1972).
校內:2019-08-28公開