簡易檢索 / 詳目顯示

研究生: 吳奇寯
Wu, Chi-Chun
論文名稱: 製作一維非高斯隨機粗糙表面並呈現其散射特性
Fabricating One-dimensional Non-Gaussian Random Rough Surfaces and Demonstrating Their Unique Scattering
指導教授: 陳玉彬
Chen, Yu-Bin
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 78
中文關鍵詞: 自相關函數雙方向反射密度函數隨機粗糙表面蘇格蘭軛
外文關鍵詞: autocorrelation function, bidirectional reflectance density function, random rough surfaces, Scotch yoke
相關次數: 點閱:114下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 藉由不平整表面散射提升熱輻射吸收率,已被視為改善太陽能板效能的成功關鍵之一,而隨機粗糙表面因製作方式多元、成本較次波長週期結構低廉的優點,更具備高度產業價值。然而,粗糙表面施用於以矽為主的商用太陽能板仍存在兩困難:一是矽非等向性晶格使高度自相關函數不再是高斯函數,故少有文獻探討;二是常見之化學或高溫製作方式,會破壞太陽能板電極或摻雜離子分佈。因此,本研究以單晶矽為對象,目標則是以純物理方式製作一維隨機粗糙表面,呈現波長405 nm下之散射特性,作為粗糙表面提升太陽能板吸收率潛力之初探。
    本研究主要成果與貢獻包括:一、利用機構往復運動,開發出一維粗糙表面研磨機;二、以不同號數砂紙,在單晶矽上製作出不同高度標準差及相關長度之隨機粗糙表面,便於量化探討散射特性;三、以貝索級數將單晶矽表面高度自相關函數彌合成貝索表面,也能模擬其散射特性;四、量測矽、金、鋁等不同材料粗糙表面之雙方向反射密度函數,實驗與模擬結果呈現相同之特徵與趨勢,也支持利用粗糙表面應用於太陽能板吸收率之提升的想法,尤其是在橫電場波小角度入射時,樣本吸收率較高斯型式及平坦表面高,具有增加太陽能板效能的潛力。

    Surface roughness raises the absorptivity of solar cells be brought to discussion in recent years. The fabrication of rough surfaces has the potential commercial applications of low cost and diverse compared with micro/nano period structures. However the unique crystalline of silicon the main material of solar cells, the fabricated roughness on surfaces will have two problems. First, there are few researches about non-Gaussian rough surfaces according to the unique auto-correlation function. Second, the recent fabrication will destroy the solar cells electrode and doping ions distribution because of chemical or high temperature. Therefore, for the purpose to initially access the promotion of absorptivity this research fabricate the one-dimensional rough surfaces by only physical method and demonstrate the light scattering by the 405 nm laser.
    The results and contributions of this research are the following. 1. Develop a one-dimensional polishing machine by Scotch Yoke. 2. Fabricate the different range of height deviation and correlation length roughness on single crystalline silicon with different number of sandpaper. 3. Use the Bessel series to fit the non-Gaussian rough surfaces height auto-correlation function. 4. Measure the bidirectional reflectance density function (BRDF) of rough surfaces of silicon, gold, and aluminum. The measurement and simulation results have the same features and tendency.

    目錄 摘要 i Abstract ii 致謝 xi 目錄 xii 表目錄 xv 圖目錄 xvi 符號表 xx 第一章 緒論 1 1.1背景 1 1.2研究目標 3 第二章 理論基礎 5 2.1基本函數介紹 5 2.2有限差分時域法 8 2.3 雙方向反射密度函數 14 第三章 實驗設置 17 3.1 研磨機組成 17 3.1.1 負載天平 19 3.1.2 蘇格蘭軛往復機構 20 3.2 機構靜態與動態分析 22 3.2.1 數值解應力分析 22 3.2.2 解析解應力分析 25 3.2.3 運動分析 30 3.3 原子力顯微鏡 34 3.4 三軸自動散射儀 37 3.4.1 性能測試 41 第四章結果與討論 47 4.1 矽樣本表面參數 47 4.1.1 以400號砂紙研磨之表面 48 4.1.2 以1200號砂紙研磨之表面 52 4.2 蒸鍍金屬後樣本之表面 56 4.3 粗糙表面散射現象 62 第五章 結論與未來工作 71 5.1 結論 71 5.2 未來工作 72 參考文獻…………………………………………………………………… 73 表目錄 表3. 1 天平材料機械性質 20 表3. 2 原子力顯微鏡規格 36 表3. 3 一維光柵之表面參數尺寸 45 表4. 1 樣本 400_VII 反射率比較 63 表4. 2 樣本 1200_VII 反射率比較 64 表4. 3 樣本 400_VI_Au 反射率比較 66 表4. 4 樣本 1200_VIII_Au 反射率比較 67 表4. 5 樣本 400_II_Al 反射率比較 69 表4. 6 樣本 1200_IX_Al 反射率比較 70 圖目錄 圖2. 1 累積分佈函數 7 圖2. 2 Yee 網格示意圖 9 圖2. 3 邊界條件配置圖 13 圖2. 4 近遠場轉換示意圖 13 圖2. 5 表面入射與反射光束之幾何示意圖 14 圖2. 6 有限差分時域法程式運算流程圖 16 圖3. 1 研磨機實體圖 17 圖3. 2 研磨機構兩重要部分相對在立體顯示圖:(a)負載天平在整個研磨機構相對位置;(b)負載天平獨立顯示;(c)蘇格蘭軛在整個研磨機構相對位置;(d)蘇格蘭軛獨立顯示 18 圖3. 3 勞勃佛天平示意圖 19 圖3. 4 平台邊緣圓角化示意圖:(a)截面A-A′之位置;(b)平台圓角化前 後之A-A′剖面 21 圖3. 5 平台邊緣圓角前後之試片照片 21 圖3. 6 ANSYS模型設置圖 23 圖3. 7 不同負重下之最大應力 24 圖3. 8 應力分佈圖:(a)負載天平整體圖;(b)局部放大圖 24 圖3. 9 解析解分析步驟:(a)適用公式(3.1)-(3.3);(b)適用公式(3.4)、 (3.5);(c)適用公式(3.6)、(3.7);(d)適用公式(3.8)-(3.10) 27 圖3. 10 橫桿自由體圖 28 圖3. 11 力與彎矩分析圖 28 圖3. 12 蘇格蘭軛示意圖 31 圖3. 13 蘇格蘭軛一週期之(a)位置;(b)速度;(c)加速度;(d)扭矩-時間圖 32 圖3. 14 運動分析之實驗架設:(a)實驗架設示意圖;(b)位移感測器實體圖 33 圖3. 15 蘇格蘭軛往復機構位置-時間圖 34 圖3. 16 原子力顯微鏡設置示意圖 36 圖3. 17 TAAS系統與元件設置(BS (Beam splitter):分光鏡、CL (Collimation lens):準直鏡、DAQ card (Data acquisition card):資料擷取卡、LD (LASER diode):半導體雷射、P (Polarizer):偏振片、TEC (Thermoelectric cooler):熱電致冷器) 37 圖3. 18 TAAS實體圖:(a)角度定位桌系統與資料擷取系統;(b)光路系統 38 圖3. 19 TTS和六軸動態載外貌及旋鈕作用示意圖:(a)旋鈕位置圖;(b)旋鈕與光路移動方向關係圖;(c)旋鈕與光路旋轉軸關係圖 40 圖3. 20 角度定位桌之示意圖 40 圖3. 21 矽平板,以405 nm入射光之菲涅耳方程式模擬值與量測值的反射率比較 43 圖3. 22 膜厚100 nm的金薄膜,以405 nm入射光之菲涅耳方程式模擬值與量測值的反射率比較 43 圖3. 23 膜厚100 nm的鋁薄膜,以405 nm入射光之菲涅耳方程式模擬值與量測值的 44 圖3. 24 一維光柵之表面形貌圖 45 圖3. 25 一維光柵不同入射角之零階繞射效率 46 圖3. 26 一維光柵15°入射角之繞射效率 46 圖4. 1 研磨後樣本示意圖:(a) 樣本劃分方式;(b) AFM掃描方式 49 圖4. 2 以400號砂紙研磨之矽樣本表面形貌 49 圖4. 3 以400號砂紙研磨之矽樣本表面高度累積分佈函數 50 圖4. 4 以400號砂紙研磨之矽樣本表面高度相關函數 52 圖4. 5 以1200號砂紙研磨之矽樣本表面形貌 53 圖4. 6 以1200號砂紙研磨之矽樣本表面高度機率密度累積函數 54 圖4. 7 以1200號砂紙研磨之矽樣本表面高度相關函數 55 圖4. 8 樣本400_VI蒸鍍金薄膜前後差異:表面形貌(a)前(b)後;累積分佈函數(c)前(d)後;相關函數(e)前(f)後 58 圖4. 9 樣本1200_VIII蒸鍍金薄膜前後差異:表面形貌(a)前(b)後;累積分佈函數(c)前(d)後;相關函數(e)前(f)後 59 圖4. 10 樣本400_II蒸鍍鋁薄膜前後差異:表面形貌(a)前(b)後;累積分佈函數(c)前(d)後;相關函數(e)前(f)後 60 圖4. 11 樣本1200_IX蒸鍍鋁薄膜前後差異:表面形貌(a)前(b)後;累積分佈函數(c)前(d)後;相關函數(e)前(f)後 61 圖4. 12 樣本400_VII 以不同入射角和極化方向之BRDF:(a) TE波;(b) TM波 63 圖4. 13 樣本1200_VII 以不同入射角和極化方向之BRDF:(a) TE波;(b) TM波 64 圖4. 14 樣本400_VI_Au 以不同入射角和極化方向之BRDF:(a) TE波; (b)TM 波 66 圖4. 15 樣本1200_VIII_Au 以不同入射角和極化方向之BRDF:(a) TE波;(b) TM波 67 圖4. 16 樣本400_II_Al 以不同入射角和極化方向之BRDF:(a) TE波;(b) TM波 69 圖4. 17 樣本1200_IX_Al 以不同入射角和極化方向之BRDF:(a) TE波;(b) TM波 70

    1. W. Bogaerts, P. Dumon, D. V. Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, "Compact Wavelength-Selective Functions in Silicon-on-Insulator Photonic Wires," IEEE Journal of Selected Topics in Quantum Electronics 12, 1394-1401 (2006).
    2. B. Jae Lee, Y.-B. Chen, S. Han, F.-C. Chiu, and H. Jin Lee, "Wavelength-Selective Solar Thermal Absorber With Two-Dimensional Nickel Gratings," Journal of Heat Transfer 136, 072702-072702 (2014).
    3. K. M. Krause, and M. J. Brett, "Spatially Graded Nanostructured Chiral Films as Tunable Circular Polarizers," Advanced Functional Materials 18, 3111-3118 (2008).
    4. J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, "Gold Helix Photonic Metamaterial as Broadband Circular Polarizer," Science 325, 1513-1515 (2009).
    5. L. Tsakalakos, J. Balch, J. Fronheiser, B. A. Korevaar, O. Sulima, and J. Rand, "Silicon Nanowire Solar Cells," Applied Physics Letters 91, - (2007).
    6. V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, "Plasmonic Nanostructure Design for Efficient Light Coupling into Solar Cells," Nano Letters 8, 4391-4397 (2008).
    7. Y. J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, and J. W. P. Hsu, "ZnO Nanostructures as Efficient Antireflection Layers in Solar Cells," Nano Letters 8, 1501-1505 (2008).
    8. H. Sai, and H. Yugami, "Thermophotovoltaic Generation with Selective Radiators Based on Tungsten Surface Gratings," Applied Physics Letters 85, 3399-3401 (2004).
    9. V. Gruev, A. Ortu, N. Lazarus, J. Van der Spiegel, and N. Engheta, "Fabrication of a Dual-tier Thin Film Micropolarization Array," Optics Express 15, 4994-5007 (2007).
    10. Y. B. Chen, and Z. M. Zhang, "Design of Tungsten Complex Gratings for Thermophotovoltaic radiators," Optics Communications 269, 411-417 (2007).
    11. E. I. Thorsos, "The Validity of The Kirchhoff Approximation for Rough Surface Scattering Using a Gaussian Roughness Spectrum," The Journal of the Acoustical Society of America 83, 78-92 (1988).
    12. F. D. Hastings, J. B. Schneider, and S. L. Broschat, "A Monte-Carlo FDTD Technique for Rough Surface Scattering," IEEE Transactions on Antennas and Propagation, 43, 1183-1191 (1995).
    13. K. A. O'Donnell, and M. E. Knotts, "Polarization Dependence of Scattering from One-dimensional Rough Surfaces," Journal of Optical Society America A 8, 1126-1131 (1991).
    14. Z. Q. Tian, B. Ren, and D.-Y. Wu, "Surface-Enhanced Raman Scattering:  From Noble to Transition Metals and from Rough Surfaces to Ordered Nanostructures," The Journal of Physical Chemistry B 106, 9463-9483 (2002).
    15. Q. Z. Zhu, and Z. M. Zhang, "Correlation of Angle-resolved Light Scattering with The Microfacet Orientation of Rough Silicon Surfaces," Optice 44, 073601-073601-073612 (2005).
    16. T. Salditt, T. H. Metzger, J. Peisl, B. Reinker, M. Moske, and K. Samwer, "Determination of the Height-Height Correlation-Function of Rough Surfaces from Diffuse-X-Ray Scattering," Europhys Letters 32, 331-336 (1995).
    17. J. J. Wu, "Simulation of Rough Surfaces with FFT," Tribology International 33, 47-58 (2000).
    18. J. J. Wu, "Simulation of Non-Gaussian Surfaces with FFT," Tribology International 37, 339-346 (2004).
    19. T. D. Wu, K. S. Chen, S. Jiancheng, and A. K. Fung, "A Transition Model for The Reflection coefficient in surface scattering," IEEE Transactions on Geoscience and Remote Sensing 39, 2040-2050 (2001).
    20. H. J. Lee, Y. B. Chen, and Z. M. Zhang, "Directional Radiative Properties of Anisotropic Rough Silicon and Gold surfaces," International Journal of Heat and Mass Transfer 49, 4482-4495 (2006).
    21. 古閔中(2013),「建立等向及非等向隨機粗糙表面並計算其輻射性質」,國立成功大學機械工程學系碩士論文。
    22. D. Witte, "Dynamical Systems on Homogenous Spaces," Bulletin of the London Mathematical Society 33, 492-512 (2001).
    23. D. Stirzaker, Elementary probability, Cambridge University Press, New York, (2003).
    24. MathWorks,"http://www.mathworks.com/help/stats/normcdf.html," (2014).
    25. P. F. Dunn, Measurement and data analysis for engineering and science, CRC Press/Taylor & Francis, Boca Raton, ( 2010).
    26. P. Abrahamsen, and N. regnesentral, A Review of Gaussian Random Fields and Correlation Functions, Norsk Regnesentral/Norwegian Computing Center, Norway, (1997).
    27. A. K. Fung, M. R. Shah, and S. Tjuatja, "Numerical-Simulation of Scattering from 3-Dimensional Randomly Rough Surfaces," IEEE Transactions on Geoscience and Remote Sensing 32, 986-994 (1994).
    28. F. D. Hastings, J. B. Schneider, and S. L. Broschat, "A Monte-Carlo Fdtd Technique for Rough-Surface Scattering," IEEE Trancations on Antenn Propag 43, 1183-1191 (1995).
    29. Y. M. Xuan, Y. G. Han, and Y. Zhou, "Spectral Radiative Properties of Two-Dimensional Rough Surfaces," International Journal of Thermophys 33, 2291-2310 (2012).
    30. U. S. Inan, and A. S. Inan, Electromagnetic Waves, Prentice Hall, New York, (2000).
    31. A. Taflove, and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, Artech House, London, (2005).
    32. A. Taflove, and M. E. Brodwin, "Numerical-Solution of Steady-State Electromagnetic Scattering Problems Using Time-Dependent Maxwells Equations," IEEE Truncations on Microw Theory 23, 623-630 (1975).
    33. K. Umashankar, and A. Taflove, "A Novel Method to Analyze Electromagnetic Scattering of Complex Objects," IEEE Troncations on Electromagn C 24, 397-405 (1982).
    34. M. F. Modest, Radiative Heat Transfer, Academic Press, New York , (2003).
    35. J. A. Newell, "Ultrasonics in Medicine," Physics in Medicine and Biology 8, 241 (1963).
    36. 國網中心應用材料庫, "http://nampd.nchc.org.tw/zh/content/%E6%AD%A1%E8%BF%8E%E4%BE%86%E5%88%B0-%E5%9C%8B%E7%B6%B2%E4%B8%AD%E5%BF%83%E6%87%89%E7%94%A8%E6%9D%90%E6%96%99%E8%B3%87%E6%96%99%E5%BA%AB.", (2012)
    37. W. G. Sawyer, K. I. Diaz, M. A. Hamilton, and B. Micklos, "Evaluation of a Model for the Evolution of Wear in a Scotch-Yoke Mechanism," Journal of Tribology 125, 678-681 (2003).
    38. C. Galinski, and R. Zbikowski, "Insect-like Flapping Wing Mechanism Based on a Double Spherical Scotch Yoke," Journal of the Royal Society Interface 2, 223-235 (2005).
    39. ANSYS Workbench Platform, "http://www.ansys.com/Products/Workflow+Technology/ANSYS+Workbench+Platform.", (2013)
    40. D. H. Myszka, Machines and Mechanisms : Applied Kinematics Analysis , Prentice Hall, New Jercy, (1999).
    41. J. Yu, Y. Hu, J. Huo, and L. Wang, "Dolphin-like Propulsive Mechanism Based on an Adjustable Scotch Yoke," Mechanism and Machine Theory 44, 603-614 (2009).
    42. BANNER, "http://www.bannerengineering.com/en-US/search?k=LT3PU&search_type=all&x=0&y=0.", (2014)
    43. Tektronix, "http://www.tekcomms.com/.", (2014)
    44. Y. B. Chen, I. C. Ho, F. C. Chiu, and C. S. Chang, "In-plane Scattering Patterns from a Complex Dielectric Grating at The Normal and Oblique Incidence," Journal of the Optics Society America A 31, 879-885 (2014).
    45. E. D. Palik, Handbook of Optical Constants of Solids, Academic Press, Orlando, (1985).
    46. E. Hecht, Optic, Addison-Wesley, New York, ( 2002).
    47. Y. B. Chen, J. S. Chen, and P. F. Hsu, "Impacts of Geometric Modifications on Infrared Optical Responses of Metallic Slit Arrays," Optics Express 17, 9789-9803 (2009).
    48. FEPA, "http://www.fepa-abrasives.org/Abrasiveproducts/Grains/Pgritsizescoated.aspx.", (2014)
    49. M. Abramowitz, and I. A. Stegun, Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables, Dover Publications, New York, (1972).

    無法下載圖示 校內:2019-08-28公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE