簡易檢索 / 詳目顯示

研究生: 張維峻
Chang, Wei-Chun
論文名稱: 渦流產生器對可壓縮背向階梯流效應之實驗研究
An Experimental Study on Compressible Backward-Facing Step Flow with Micro Vortex Generators
指導教授: 張克勤
Chang, Keh-Chin
共同指導教授: 鍾光民
Chung, Kung-Ming
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 64
中文關鍵詞: 可壓縮流背向階梯流渦流產生器油流可視化
外文關鍵詞: Compressible flow, Backward-facing step flow, Oil flow visualization, Vortex generator
相關次數: 點閱:113下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用背向階梯流研究對於飛行載具上外型不連續處(例如火箭噴嘴),探討在背向階梯上游加裝不同外形以及高度的渦流產生器對不同階梯高度的流場影響。本研究的自由流馬赫數為0.81;背向階梯模型高度(H)為3、5及7 mm;3種的渦流產生器為反向旋轉渦流產生器(Counter Rotating Vane Micro Vortex Generators-CRV MVGs)、同向旋轉渦流產生器(Co-Rotating Vane Micro Vortex Generators-CoV MVGs)以及三角斜坡渦流產生器(Triangular Ramp Micro Vortex Generators-TR MVGs),渦流產生器高度 h 分別為1.4 mm和3.5 mm,h* (h⁄δ) = 0.2和0.5,h 為渦流產生器高度;δ 為邊界層厚度。本研究利用動態壓力傳感器進行量測,並且分析平均表面壓力以及擾動壓力;利用快速傅立葉及Welch方法分析頻譜;透過油流法判斷再循環區長度。
    首先探討H的變化造成的表面壓力影響,背向階梯上游因黏滯-非黏滯作用(Inviscid-viscous interaction)造成流體膨脹的現象使表面壓力降低,此現象隨H的增加而上升,H的增加會使壓力回復的區域延長,代表再循環區長度會隨H的增加而增加,加裝MVGs所產生的渦流造成下游膨脹使表面壓力降低,其中CRV MVGs最為明顯,當增加 h 時會造成較強的下游膨脹,但此現象會隨H的增加而衰減。
    背向階梯形成分離剪切流中的渦流撞擊到下游壁面為背向階梯流最主要的表面壓力擾動原因,表面壓力擾動量在H = 5 mm達到最大值。在上游因膨脹現象使表面壓力擾動壓量降低,此現象也在階梯下游發現,CRV MVGs為最能夠降低表面壓力擾動量,TR和CoV MVGs效果較差,增加 h 並不能提升降低表面壓力擾動量,當增加H,MVGs降低表面壓力擾動量的效果會降低。
    從頻譜分布可以得知在下游最主要的現象為Step mode,即為渦流撞擊壁面所造成,當H增加時可以觀察到更多尺度渦流的訊號,加裝CRV14為最有效消除Step mode的能量。對於Flapping mode加裝MVGs並不能消除能量,反而會加劇其擾動,原因為Flapping mode的出現為剪切層與再循環區動量交換導致其震盪,MVGs的功用是利用渦流進行動量交換,因此造成Flapping mode的強度上升。
    流場可視化油流法可以看出油料堆積線成二維分布,再循環區長度會和H呈線性增加,階梯處渦流堆積範圍隨 h 的增加而增加,加裝MVGs能夠使在循環區長度下降,最多能降低約30%。

    This study determines the effect of micro vortex generators on a compressible backward-facing step flow. The free-stream Mach number for this study is 0.81 and the step height is 3, 5, and 7 mm (the ratio between the step height and the incoming boundary layer thickness = 0.43, 0.71 and 1.0). Three types of vortex generators are used: Counter Rotating Vane Micro Vortex Generators (CRV MVGs), Co-Rotating Vane Micro Vortex Generators (CoV MVGs) and Triangular Ramp Micro Vortex Generators (TR MVGs). The height of vortex generators is 1.4 mm and 3.5 mm (the ratio between the height of vortex generators and the incoming boundary layer thickness = 0.2 and 0.5). The experimental data shows that an increase in the height of the step results in stronger downstream flow expansion. The presence of micro vortex generators induces vortical structure and downstream expansion. There is a decrease in the value of minimum surface pressure, particularly for the CRV MVGs. The height of vortex generators is another important factor. An increase in the height of vortex generators results in stronger downstream expansion, but this effect diminishes as H increases. Peak pressure fluctuations are determined near the reattachment location. The presence of vortex generators results in a reduction in the value of peak pressure fluctuations, particularly for the CRV MVGs. A reduction in the peak pressure fluctuations in more significant when there is an increase in the height of the step, but this is not true as the height of vortex generators increases. The spectral analysis determines that downstream flow is dominated by the Step mode, particularly when there is an increase in the height of the step. The presence of vortex generators enhances the momentum exchange which leads to an increase in the intensity of the Flapping mode. The Step mode is alleviated using CRV14 vortex generators. Oil surface flow visualization shows a two-dimensional flow. The length of recirculation zone increases linearly with the height of the step and there is a reduction when the vortex generators are installed.

    中文摘要 I 英文摘要 III 誌謝 VIII 圖目錄 XII 表目錄 XV 實驗參數表 XVI 第1章 緒論 1 1-1 研究動機 1 1-2 研究目的 1 第2章 文獻回顧 3 2-1 壓力分佈 3 2-2 再循環區長度 3 2-3 渦流產生器 7 2-4 背向階梯流頻譜特性 10 第3章 實驗設備與模型 13 3-1 穿音速風洞 13 3-2 實驗模型 14 3-3 實驗條件 16 3-4 實驗擷取系統以及設備 16 3-5 油流流場可視化 17 3-6 資料分析 17 3-6-1 統計分析 17 3-6-2 頻譜分析 18 第4章 實驗結果與討論 19 4-1 平均表面壓力 19 4-1-1 階梯高度效應 19 4-1-2 渦流產生器效應 20 4-1-3 渦流產生器高度效應 25 4-2 表面擾動壓力 30 4-2-1 階梯高度效應 30 4-2-2 渦流產生器效應 31 4-2-3 渦流產生器高度效應 35 4-3 頻譜分析 39 4-3-1 Step mode 39 4-3-2 Flapping mode 41 4-4 油流流場可視化 53 第5章 結論 59 未來工作 60 參考文獻 61

    1. Adams, E. W. and J. P. Johnston (1988). "Effects of the separating shear layer on the reattachment flow structure part 2 Reattachment length and wall shear stress." Experiments in Fluids: 493-499.
    2. Armaly, B. F., F. Durst, J. C. F. Pereira and B. Schonung (1983). "Experimental and theoretical investigation of backward-facing step flow." Journal of Fluid Mechanics 127: 473-496.
    3. Ashill, P. R., J. L. Fulker and K. C. Hackett (2001). Research at DERA on sub boundary layer vortex generators (SBVGs). 39th Aerospace Sciences Meeting and Exhibit: p.887.
    4. Ashill, P. R., J. L. Fulker and K. C. Hackett (2002). Studies of flows induced by Sub Boundary Layer Vortex Generators (SBVGs). 40th American Institute of Aeronautics and Astronautics aerospace sciences meeting & exhibit: p.968.
    5. Back, L. H. and E. J. Roschke (1972). "Shear-Layer Flow Regimes and Wave Instabilities and Reattachment Lengths Downstream of an Abrupt Circular Channel Expansion." Journal of Applied Mechanics 39(3): 677-681.
    6. Badri Narayanan, M. A., Y. N. Khadgi and P. R. Viswanath (1974). "Similarities in Pressure Distribution in Separated Flow Behind Backward-Facing Steps." Aeronautical Quarterly 25(4): 305-312.
    7. Benard, N., P. Sujar-Garrido, J.-P. Bonnet and E. Moreau (2016). "Control of the coherent structure dynamics downstream of a backward facing step by DBD plasma actuator." International Journal of Heat and Fluid Flow 61: 158-173.
    8. Bolgar, I., S. Scharnowski and C. J. Kähler (2018). "The Effect of the Mach Number on a Turbulent Backward-Facing Step Flow." Flow, Turbulence and Combustion 101(3): 653-680.
    9. Bolgar, I., S. Scharnowski and C. J. Kähler (2019). "Passive Flow Control for Reduced Load Dynamics Aft of a Backward-Facing Step." AIAA Journal 57: 120-131.
    10. Bradshaw, P. and F. Y. F. Wong (1972). "The reattachment and relaxation of a turbulent shear layer." Journal of Fluid Mechanics 52(1): 113-135.
    11. Chen, L., T. Suzuki, T. Nonomura and K. Asai (2020). "Flow visualization and transient behavior analysis of luminescent mini-tufts after a backward-facing step." Flow Measurement and Instrumentation 71: 101657.
    12. Cherry, N. J., R. Hillier and M. E. M. P. Latour (1984). "Unsteady measurements in a separated and reattching flow." J. Fluid Mech. 144: 13-46.
    13. Chovet, C., M. Lippert and J.-M. Foucaut (2017). "Dynamical aspects of a backward-facing step flow at large Reynolds numbers." Experiments in Fluids 58(11): 162.
    14. Chung, K.-M. (2000). "Transition of Subsonic and Transonic Expansion-Corner Flows." Journal of Aircraft 37(6): 1079-1082.
    15. Chung, K.-M. (2002). "Investigation on Transonic Convex-Corner Flows." Journal of Aircraft 39(6): 1014-1018.
    16. Cohen, G. S. and F. Motallebi (2006). "Sub boundary-layer vortex generators for the control of shock induced separation." The Aeronautical Journal 110(1106): 215-225.
    17. Durst, F. and C. Tropea (1983). Flows over Two-Dimensional Backward-Facing Steps. Structure of Complex Turbulent Shear Flow: Symposium. Marseille, France 41-52.
    18. Eaton, J. K. and J. P. Johnston (1981). "A Review of Research on Subsonic Turbulent Flow Reattachment." AIAA Journal 19(9): 1093-1100.
    19. Eaton, J. K. and J. P. Johnston (1982). "Low Frequency Unsteadyness of a Reattaching Turbulent Shear Layer." Turbulent Shear Flows 3: 162-170.
    20. Gai, S. L. and S. D. Sharma (1987). "Pressure distributions behind a rearward facing segmented step." Experiments in Fluids 5: 154-158.
    21. Hasan, M. A. Z. (1992). "The flow over a backward-facing step under controlled perturbation laminar separation." Journal of Fluid Mechanics 238: 73-96.
    22. Heenan, A. F. and J. F. Morrison (1998). "Passive Control of Pressure Fluctuations Generated by Separated Flow." AIAA Journal 36(6): 1014-1022.
    23. Ho, C.-M. and P. Huerre (1984). "Perturbed Free Shear." Annual review of fluid mechanics 16(1): 365-424.
    24. Holden, H. and H. Babinsky (2007). "Effect of Microvortex Generators On Seperated Normal Shock/ Boundary Layer Interactions." Journal of Aircraft 44(1): 170-174.
    25. Holmes, A. E., P. K. Hickey, W. R. Murphy and D. A. Hilton (1995). "The application of sub-boundary layer vortex generators to reduce canopy 'Mach rumble' interior noise on the Gulfstream III. 25th AIAA Aerospace Sciences Meeting p.84.
    26. Isomoto, K. and S. Honami (1989). "The Effect of Inlet Turbulence Intensity on the Reattachment Process Over a Backward-Facing Step." Journal of Fluids Engineering 111: 87-92.
    27. Kuethe, A. M. (1972). "Effect of streamwise vortices on wake properties associated with sound generation." Journal of Aircraft 9: 715-719.
    28. Lee, I. and H. J. Sung (2001). "Characteristics of wall pressure fluctuations in separated and reattaching flows over a backward-facing step pt1. Time-mean statistics and cross-spectral analyses." Experiments in Fluids 30(3): 262-272.
    29. Lin, J. C. (2002). "Review of research on low-profile vortex generators to control boundary-layer separation." Progress in Aerospace Sciences 38(4-5): 389–420.
    30. Lin, J. C., F. G. Howard, D. M. Bushnell and G. V. Selby (1990). "Investigation of several passive and active methods for turbulent flow separation control. 21st Fluid Dynamics, Plasma Dynamics and Lasers Conference.
    31. Lin, J. C., F. G. Howard and G. V. Selby (1990). "Small submerged vortex generators for turbulent flow separation control." Journal of Spacecraft and Rockets 27(5): 503-507.
    32. Lin, J. C., S. K. Robinson, R. J. McGhee and W. O. Valarezo (1994). "Separation control on high-lift airfoils via micro-vortex generators." Journal of Aircraft 31(6): 1317-1323.
    33. Lina, L. J. and W. H. Reed (1950). A preliminary flight investigation of the effects of vortex generators on separation due to shock. No. NACA-RML50J02.
    34. Ma, X. and A. Schröder (2017). "Analysis of flapping motion of reattaching shear layer behind a two-dimensional backward-facing step." Physics of Fluids 29(11). 115104.
    35. Miau, J. J., Cheng, J., Chung, K.-M., & Chou, J. (1998). The effect of surface roughness on the boundary layer transition. In 7th international symposium in flow modeling and turbulent measurement (p. 609-616). Tainan, Taiwan.
    36. Moss, W. D. and S. Baker (1980). "Re-Circulating Flows Associated with Two-Dimensional Steps." Aeronautical Quarterly 31(3): 151-172.
    37. N. J. Cherry, R. Hillier and M. E. M. P. Latour (1984). "Unsteady measurements in a separated and reattching flow." J. Fluid Mech. 144: 13-46.
    38. Nadge, P. M. and R. N. Govardhan (2014). "High Reynolds number flow over a backward-facing step: structure of the mean separation bubble." Experiments in Fluids 55(1): 1-22.
    39. Pearcey, H. H. (1961). "Shock-induced separation and its prevention by design and boundary layer control." Boundary Layer and Flow Control 2: 1170-1344.
    40. Roos, F. W. and J. T. Kegelman (1986). "Control of coherent structures in reattaching laminar and turbulent shear layers." AIAA Journal 24(12): 1956-1963.
    41. Statnikov, V., T. Sayadi, M. Meinke, P. Schmid and W. Schröder (2015). "Analysis of pressure perturbation sources on a generic space launcher after-body in supersonic flow using zonal turbulence modeling and dynamic mode decomposition." Physics of Fluids 27(1). 016103.
    42. Troutt, T. R., B. Scheelke and T. R. Norman (1984). "Organized structures in a reattaching separated flow field." J. Fluid Mech. 143: 413-427
    43. Wang, S. and S. Ghaemi (2019). "Effect of vane sweep angle on vortex generator wake." Experiments in Fluids 60(1): 1-16.
    44. Wee, D., T. Yi, A. Annaswamy and A. F. Ghoniem (2004). "Self-sustained oscillations and vortex shedding in backward-facing step flows: Simulation and linear instability analysis." Physics of Fluids 16(9): 3361-3373.
    45. Welch, P. D. (1967). "The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms." IEEE Transactions on Audio and Electroacoustics 15: 70-73.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE