| 研究生: |
林雨謙 Lin, Yu-Chien |
|---|---|
| 論文名稱: |
燃煤底灰添加碳酸鈉-碳酸鈣轉化微晶玻璃之非等溫法結晶動力學研究 Non-isothermal crystallization kinetics studies on glass ceramics transformed from coal bottom ash with CaCO3-Na2CO3 additives |
| 指導教授: |
黃紀嚴
Huang, Chi-Yen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 54 |
| 中文關鍵詞: | 動力學 、非等溫法 、碳酸鈣 、碳酸鈉 、微晶玻璃 、片狀晶 、底灰 |
| 外文關鍵詞: | kinetics, non-isothermal method, glass ceramics, bottom ash |
| 相關次數: | 點閱:131 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
台灣地區電力供應除核能發電廠以外,最主要的就是火力發電廠及天然氣,而台灣每年燃煤發電所產生的煤灰高達200萬噸,分別為80%的飛灰和20%的底灰。為了減少煤灰對環境的衝擊,各界持續對煤灰展開研究,經過十多年努力,飛灰的利用已經有相當成效,然而底灰的處理仍然是以堆置在灰塘為主,長期下來將產生空間不足的問題。故底灰資源化再利用已經是當今重要的課題。
底灰中豐富的化學元素正是製造玻璃的主要原料,故本研究以底灰為原料,加入玻璃修飾劑(15wt%CaCO3, 10wt%Na2CO3)後以熔融法製成玻璃,以DTA分析後得知玻璃轉移溫度約在801℃,而軟化點則在832℃出現,且1200℃以前只出現一放熱峰約在931℃。用XRD分析熱處理過的微晶玻璃,皆為鈣長石相(Anorthite),但在各溫度時組成稍異。
用DTA所得資料配合NETZSCH - TA4此套軟體求出結晶分率χ,作出不同升溫速率(5, 10, 15, 20, 25℃/min)的結晶分率分佈圖配合K.Matusita所推導非晶質材料活化能與動力學參數的方程式求出本研究的反應階數n=3,晶體成長維度m=2。將求得的動力學參數值代入Marotta與Kissinger的方程式,求得活化能分別為524.5kJ/mol與378.3kJ/mol。比較後發現非晶質材料的結晶與熱處理機制,對活化能推算是不宜忽略。
晶體成長維度m=2涵意為片狀。在SEM觀察微晶玻璃截面與表面求證,顯示確實有片狀晶的生成,亦符合實驗計算的結果。用光學顯微鏡觀察發現微晶玻璃截面,發現微晶玻璃較原玻璃緻密,而孔隙率上升,推測是由於淬冷操作過程與燒結過程體積收縮以致內部出現孔洞。
The major electric power supply is thermal power plant in Taiwan, instead of nuclear power plant. It is estimated that above 2,000,000 tons of coal ash was produced annually in Taiwan, the other fly ash of 80% and another bottom ash of 20%. Coal ash has been investigated continuously in the world in order to reduce effect of coal ash on environment. Reuse of fly ash has rather fruitage in ten years, treatment of bottom ash is restricted in landfill, lack of place is produced in the further. Therefore, resource recycle of the bottom ash has become an urgent subject recently.
The chemical composition of bottom ashes are the same with the raw materials of glasses. The research used bottom ashes as materials to produce glass by melt after adding network modifier (15wt%CaCO3, 10wt%Na2CO3). Base on Differential Thermal Analysis, the glass transition temperature is 801℃ and the softing point appears in 832℃. There is a crystallization exothermic peaks in 931℃ before 1200℃. After heat treated on the glass and analyzed by X-ray diffraction, the crystal phase is anorthite, but has different composition in several temperatures.
Representative DTA thermographs taken at different heating rates can get the volume fraction of crystallites, χ. This study find that the mean value of the kinetic exponent, n, is three and the growth mechanism of crystal particles, m, is two using the equation derived by K. Matusita. From the kinetic exponent, the activation energies of crystallization were caculated to be 524.5kJ mol-1 for Marotta`s equation and 378.3kJ mol-1 for Kissinger`s equation. It shows that the activation energies have deviation without considering the crystallization and heat treated mechanism.
The growth mechanism of crystal particles is two, so the crystal habit is tabular. The surface and cross-section of the glass ceramic show the tabular crystal`s growth by scanning electron microscopy, and the calculation was proved by this. The cross-section of the glass ceramic by optical microscopy shows that it is denser and more porous than the initial glass.
1. 陳蒼霈,「燃煤底灰添加碳酸鎂製造玻璃陶瓷結晶行為之研究」,國立成功大學資源工程研究所,碩士論文,2003.7
2. C.T. Kniess, C.D.G de Borba, E. Neves, N.C. Kuhnen, H.G. Riella, “Obtaining and Characterizing Li2O-Al2O3-SiO2 Glass-Ceramics Using Coal Bottom Ash as Raw Material,” Interceram.Vol.51.No.2,2002
3. A.Goel, E. R. Shaaban, F. C. L. Melo, M. J. Ribeiro, J. M. F. Ferreira, “Non-isothermal crystallization kinetic studies on MgO-Al2O3-SiO2-TiO2 glass,” Journal of Non-Crystalline Soilds 353 (2007) 2383-2391.
4. 韓雄文、盧志昌、黃紀嚴,「利用燃煤電廠底灰製造玻璃陶瓷之研究」(NSC 90-2626-E-239-002)
5. Esmat M.A. Hamzawy, Emad M. El-Meliegy, “Crystallization in the Na2O-CaO-Al2O3-SiO2-(LiF) glass compositions,” Ceramics International 33 (2007) 227-231.
6. Kazumasa Matusita, Takayuki Komatsu, Ryosuke Yokota, “Kinetics of non-isothermal crystallization process and activation energy for crystal growth in amorphous,” Journal of Materials Science 19 (1984) 291-296.
7. 吳振名,「玻璃陶瓷」,陶瓷技術手冊,第二十八章
8. 葉仁君,「燃煤底灰添加碳酸鋰轉化結晶玻璃其熱處理程序之研究」,國立成功大學資源工程研究所,碩士論文,2004.6
9. Warren, B. E., “Kristallogy. Mineralog.Petrogr.,” 86,349(1933)
10. 王木琴,「Li2O-CaO-Al2O3-SiO2系玻璃陶瓷結晶相變態之研究」,國立成功大學礦冶及材料科學研究所,博士論文,1988
11. Kingery Bowen Uhlmann著,陳皇鈞譯,「陶瓷材料概論(上)(下)」,曉園出版社
12. M. E. FINE, “Introduction to Phase Transformation in Condensed System,” (Macmillan, New York,1964) Chap. 3.
13. C. Klein, C. S. Hurlbut, Jr., “Manual of Mineralogy 21st edition,” Wiley.
14. R. C. C. Monteiro, C. F. Figueiredo, M. S. Alendouro, M. C. Ferro, E. J. R. Davim, M. H. V. Fernandes, “Characterization of MSWI bottom ashes towards utilization as glass raw material,” Waste Management (2007).
15. A. A. Francis, “Crystallization kinetics of magnetic glass-ceramics prepared by the process of waste materials,” Materials Research Bulletin 41 (2006) 1146-1154.
16. M. G. Rasteiro, Tiago Gassman, R. Santos, E. Antunes, “Crystalline phase characterization of glass-ceramic glazes,” Ceramics International 33 (2007) 345-354. 17. Marotta, A., F. Branda, A. Buri, “Surface and bulk crystallization in non-isothermal devitrification of glasses,” Thermochim. Acta, 40 (1980) 397-403
18. Marotta, A., A. Buri, “Kinetics of devitrification and differential thermal analysis,” Thermochim. Acta, 25 (1978) 155-160
19. Marotta, A., A. Buri, F. Branda, “Nucleation in glass and differential thermal analysis,” J. Mater. Sci., 16 (1981) 341-344
20. J. Colmenero, J. M. Barandiaran, J. Non-Cryst. Solids 30 (1979) 263
21. J. Colmenero, J. Ilarraz, Thermochim. Acta 35 (1980) 381.