簡易檢索 / 詳目顯示

研究生: 張以潔
Chang, Yi-Chieh
論文名稱: 氧化矽孔洞材料與金屬矽酸鹽複合材料之合成與應用
Synthesis and Application of Porous Silica and Metal-silicate Composite Materials
指導教授: 林弘萍
Lin, Hong-Ping
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 92
中文關鍵詞: 囊泡狀氧化矽Fe-silicate共沉澱法
外文關鍵詞: mesocellular silica foam, Fe-silicate, co-precipitation
相關次數: 點閱:74下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要研究兩種材料:囊泡狀的孔洞氧化矽、金屬矽酸鹽複合材料,並從材料的製備以及實際應用兩方面進行討論。
    第一部分:水相中製備囊泡狀孔洞氧化矽材料作為消光劑之應用
    藉由有機模板法製備氧化矽孔洞材料時,受限於界面活性劑分子的大小,要合成孔洞大的材料需要額外添加擴孔劑,如1,3,5-trimethyl benzene(TMB)。製程中牽涉到有機物的添加,對人體及環境往往是一大負擔,有鑑於此,本研究嘗試發展新的合成實驗方法,在無任何有機溶劑的添加下,經由反應條件的調整,調控囊泡狀氧化矽的孔洞性質。最後將囊泡狀氧化矽應用在工業上的皮革消光劑,具有散射光線的效果。
    第二部分:製備Fe-silicate複合材料
    水合氧化鐵是一種優良的吸附劑,對於多種汙染物質都有吸附的效果,且低毒性,但水合氧化鐵以膠體粒子的形式懸浮在溶液中,在應用上有不易回收的缺點;再者,奈米等級的水合氧化鐵易自身聚集,而降低活性。為克服上述的缺點,本研究以氧化矽為載體(氧化矽前驅物為矽酸鈉),使用共沉澱法合成出Fe-silicate。在應用方面,針對低濃度Ni2+、Cu2+溶液,Fe-silicate展現良好的金屬離子移除效果。
    第三部分:製備Cu/Fe-silicate及Ni-silicate複合材料
    對於金屬矽酸鹽(metal-silicate) 複合材料的合成具有一定的基礎後,將金屬來源改為日月光半導體封裝廠提供的銅鐵廢水,合成出Cu/Fe-silicate複合材料,比表面積約400 m2g-1;反應後的水質經由檢測,金屬殘留量在1.0 ppm以下,同時達到淨化水質的效果,也經實驗發現,Cu/Fe-silicate對於台塑氨氮廢液,有良好的氨氮移除率。
    另外,改良「共沉澱法」成為「多重塗佈法」,突破一般製備metal-silicate的合成法有金屬擔載量上的限制,。將製備出高金屬單載量的材料應用在電池電極材料上,有良好的電容量,及電容保留率。

    This research is to develop two kind of material. Mesocellular silica foam (MCF), consisting of silica spheres with a hollow void space in the order of nanometers, is synthesized using tri-block copolymer Pluronic® P123 as a structure-directing template and TEOS as a silica precursor. The effects of the stirring temperature and hydrothermal treatment on the porosity of the MCF are systematically examined. It is shown that the MCF has significant potential as a matting agent for synthetic leather. Fe-silicates are prepared by mixing Fe(NO3)3(s) with acidified sodium silicate and then adjusting the pH value through the addition of NaOH(aq). The effects of the pH value on the solubility of the Fe(OH)3(s) are examined. In addition, the use of a water-washing treatment to increase the specific surface area of the synthesized Fe-silicates is explored. It is shown that the Fe-silicates have considerable potential as adsorbents of Ni2+ and Cu2+ in solution at the ppm level.

    目錄 第一章 緒論 1 1.1 孔洞材料 1 1.1.1 中孔洞材料的介紹 1 1.1.2 中孔洞材料的主要研究範疇 2 1.2 界面活性劑 4 1.2.1 界面活性劑的分類 4 1.2.2 微胞的形成 5 1.2.3 塊狀高分子的微胞 6 1.3 氧化矽前驅物的基本概念 7 1.3.1 矽酸鈉(sodium silicate,S.S.) 7 1.3.2 四乙氧基矽烷(tetraethoxysilane,TEOS) 8 1.4 結合金屬氧化物與氧化矽的中孔洞複合材料 10 1.4.1 常見的合成方法 10 1.4.2 頁矽酸鹽(phyllosilicate)的簡介 11 1.5 概述消光劑 12 1.6 鋰離子電池簡介 12 1.7 研究動機 14 第二章 實驗部份及儀器設備介紹 15 2.1 實驗藥品 15 2.2 實驗步驟與流程示意圖 16 2.2.1 囊泡狀孔洞氧化矽材料 16 2.2.2 metal-silicate複合材料_共沉澱法 17 2.2.3 Fe-silicate複合材料_反滴定法(適用於Fe/Si為0.2及以下之比例) 18 2.2.4 metal-silicate複合材料_多重塗佈法 19 2.3 儀器鑑定分析 20 2.3.1 穿透式電子顯微鏡(Transmi矽酸鈉ion electron microscope;TEM) 20 2.3.2 掃描式電子顯微鏡(Scanning Electron Microscopy; SEM) 20 2.3.3 熱重分析儀(Thermogravimetry Analysis; TGA) 20 2.3.4 氮氣等溫吸附/脫附測量(N2 adsorption / desorption isotherm) 21 2.3.5 X-射線粉末繞射光譜 (Powder X-Ray Diffraction;PXRD) 24 2.3.6 能量分散光譜儀(Energy Dispersive Spectroscopy;EDS) 25 2.3.7 全反射红外光谱法(Attenuated Total Reflectance;ATR) 26 2.3.8 火焰原子吸收光譜儀 26 2.3.9 銨離子電極(Ammonium Ion Electrode) 27 第三章 水相中製備囊泡狀孔洞氧化矽材料作為消光劑之應用 28 3.1 實驗設計 28 3.2 囊泡狀氧化矽孔洞材料(Mesocellular Silica Foams,MCFs) 28 3.3 不同反應溫度對MCF silica結構的影響 29 3.4 不同P123/TEOS比例對MCF silica結構的影響 31 3.5 水熱處理對MCF silica孔洞結構的影響 33 3.6 不同反應(攪拌)時間對MCF silica的影響 34 3.7 使用不同酸源調控pH值對MCFs構型的影響 35 3.8 應用─皮革消光劑 36 第四章 製備Fe-silicate複合材料 42 4.1 實驗設計 42 4.2 製備Fe-silicate複合材料 42 4.2.1 反應pH值的影響 42 4.2.2 鐵離子濃度的影響 44 4.2.3 水洗處理 46 4.2.4 水熱處理的影響 48 4.2.5 Fe/Si莫耳的影響 49 4.3 應用─以Fe-silicate複合材料應用於吸附水中低濃度重金屬離子 51 4.3.1 吸附不同ppm濃度的鎳、銅離子水溶液 53 4.3.2 仿工業處理廢水模式 58 4.3.3 Fe-silicate對溶液中的Ni2+吸附之吸附模式(model)及吸附機構(mechanism) 59 4.3.4 反應機制的推導 62 第五章 製備Cu/Fe-silicate及Ni-silicate複合材料 63 5.1 實驗設計 63 5.2 以日月光銅鐵廢液製備Cu/Fe-silicate複合材料 63 5.2.1 不同pH值的影響 63 5.2.2 不同矽酸鈉添加量的影響 65 5.2.3 水洗處理的影響 67 5.2.4 不同水熱處理條件的影響 68 5.2.5 應用─台塑氨氮廢水處理 69 5.3 以多重塗佈法製備metal-silicate 75 5.3.1 Ni-silicate複合材料 (金屬前驅物:試藥級硝酸鎳) 76 5.3.2 Cu/Ni-silicate複合材料 (金屬前驅物:試藥級硝酸鎳、硝酸銅) 79 5.3.3 Ni-silicate、Cu/Fe-silicate複合材料 (金屬前驅物:日月光鎳、銅鐵廢水) 82 5.3.4 反應機制推導 84 5.3.5 應用─以Ni-silicate複合材料應用於鋰離子電池之電極材料 85 第六章 總結 88 參考文獻 89

    參考文獻
    1. J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitt, C. T. W. Chu, D. H. Olson and E. W. Sheppard, J. Am. Chem. Soc., 1992, 114, 10834
    2. F. Hoffmann, M. Cornelius, J. Morell and M. Froba, Angew. Chem., Int. Ed., 2006, 45,3216
    3. W. Wang, S. Xie, W. Zhou and A. Sayari, Chem. Mater., 2004, 16, 1756-1762.
    4. J. Fan, C. Z. Yu, T. Gao, J. Lei, B. Z. Tian, L. M. Wang, Q. Luo, B. Tu, W. Z.
    Zhou and D. Y. Zhao, Angew. Chem. Int. Ed. 2003, 42, 3146-3150.
    5. A. Vinu, V. Murugesan and M. Hartmann, Chem Mater, 2003, 15, 1385-1393.
    6. H. P. Lin, C. L. Kuo, B. Z. Wan and C. Y. Mou, J Chin Chem Soc-Taip, 2002, 49, 899-906.
    7. V. Alfredsson and M. W. Anderson, Chem Mater, 1996, 8, 1141-1146.
    8. H. P. Lin and C. Y. Mou, Accounts Chem Res, 2002, 35, 927-935
    9. J. M. Kim, Y. Sakamoto, Y. K. Hwang, Y. U. Kwon, O. Terasaki, S. E. Park and G. D. Stucky, J Phys Chem B, 2002, 106, 2552-2558.
    10. A. Bhaumik and S. Inagaki, J Am Chem Soc, 2001, 123, 691-696.
    11. Z. T. Zhang, Y. Han, L. Zhu, R. W. Wang, Y. Yu, S. L. Qiu, D. Y. Zhao and F. S. Xiao, Angew Chem Int Edit, 2001, 40, 1258.
    12. A. Walcarius, M. Etienne and B. Lebeau, Chem Mater, 2003, 15, 2161-2173.
    13. T. Yokoi, H. Yoshitake and T. Tatsumi, J Mater Chem, 2004, 14, 951-957.
    14. J. N. Cha, T. J. Deming, D. E. Morse and G. D. Stucky, Abstr Pap Am Chem S, 2000, 219, U837-U837.
    15. Z. R. R. Tian, J. Liu, J. A. Voigt, B. McKenzie and H. F. Xu, Angew. Chem. Int. Ed., 2003, 42, 414.
    16. F. Noll, M. Sumper and N. Hampp, Nano Lett, 2002, 2, 91-95.
    17. Z. Y. Zhong, Y. D. Yin, B. Gates and Y. N. Xia, Adv Mater, 2000, 12, 206-+.
    18. P. Jiang, J. F. Bertone and V. L. Colvin, Science, 2001, 291, 453-457.
    19. C. E. Fowler, D. Khushalani and S. Mann, Chem Commun, 2001, 2028-2029.
    20. Q. S. Huo, J. L. Feng, F. Schuth and G. D. Stucky, Chem Mater, 1997, 9, 14-&.
    21. Y. F. Lu, H. Y. Fan, A. Stump, T. L. Ward, T. Rieker and C. J. Brinker, Nature, 1999, 398, 223-226.
    22. C. E. Fowler, D. Khushalani, B. Lebeau and S. Mann, Adv Mater, 2001, 13, 649-652.
    23. T. F. Todros, Surfactants, Academic Press : London, 1984.
    24. D. Zhao, Q. Huo, J. Feng, B. F. Chmelka, G. D. Stucky, J. Am. Chem. Soc., 1998, 120, 6024
    25. R. K. Iler, The Chemistry of Silica , John Wiley, New York, 1979.
    26. H. P. Lin and C. Y. Mou Acc. Chem. Rev., 2002, 35, 927.
    27. M. G. Clerici, G. Bellussi and U. Romano, J Catal, 1991, 129, 159-167.
    28. C. B. Dartt, C. B. Khouw, H. X. Li and M. E. Davis, Abstr Pap Am Chem S, 1993, 206, 57-Petr.
    29. J. C. van der Waal, P. J. Kooyman, J. C. Jansen and H. van Bekkum, Micropor Mesopor Mat, 1998, 25, 43-57.
    30. C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli and J. S. Beck, Nature, 1992, 359, 710-712.
    31. A. Corma, V. Fornes, M. T. Navarro and J. Perezpariente, J Catal, 1994, 148, 569-574.
    32. M. D. Alba, Z. H. Luan and J. Klinowski, J Phys Chem-Us, 1996, 100, 2178-2182.
    33. R. Mokaya, W. Jones, Z. H. Luan, M. D. Alba and J. Klinowski, Catal Lett, 1996, 37, 113-120.
    34. B. L. Newalkar, J. Olanrewaju and S. Komarneni, Chem Mater, 2001, 13, 552-557.
    35. D. R. Rolison, Science, 2003, 299, 1698-1701.
    36. F. A. C. Garcia, J. C. M. Silva, J. L. de Macedo, J. A. Dias, S. C. L. Dias and G. N. R. Filho, Micropor Mesopor Mat, 2008, 113, 562-574.
    37. M. Plabst, L. B. McCusker and T. Bein, J Am Chem Soc, 2009, 131, 18112-18118.
    38. M. Haruta, N. Yamada, T. Kobayashi and S. Iijima, J Catal, 1989, 115, 301-309.
    39. R. Nares, J. Ramirez, A. Gutierrez-Alejandre, C. Louis and T. Klimova, J Phys Chem B, 2002, 106, 13287-13293.
    40. Y. Chi, T. Y. Chou, Y. J. Wang, S. F. Huang, A. J. Carty, L. Scoles, K. A. Udachin, S. M. Peng and G. H. Lee, Organometallics, 2004, 23, 95-103.
    41. James Wittke, Meteorite Book: Glossary P, 2014
    42. E. P. Giannelis, R. Krishnamoorti and E. Manias, Adv Polym Sci, 1999, 138, 107-147
    43. 張曉鐳、張哲,中國皮革,2007,Vol. 36,No.1
    44. 徐峰,二氧化矽消光劑及應用,2001
    45. J.M. Tarascon and M. Armand, Nature, 2001, 414, 359-367
    46. D. Wieboldt, I. Ruff, and M. Hahn, Techniques for Raman Analysis of Lithium-Ion Batteries, 2015, 30,6
    47. G. Ertl, H. Knözinger, F. Schüth, and J. Weitkamp, Handbook Of Heterogeneous Catalysis, 2nd, Wiley-VCH, Weinheim, 2008
    48. 吳宇婷,林弘萍,“以金屬氫氧化物模板法製備metal-silicate孔洞性複合材料之合成與應用”, 2014
    49. 郭美德,林弘萍,“金屬矽酸鹽和鋁酸鹽孔洞性複合材料之合成與應用研究”, 2016
    50. Parker et al ., 1975
    51. 賴佩琳,林弘萍,“利用有機模板法合成中孔洞氧化矽複合材料及其應用”, 2013
    52. J. S. Lettow, Y. J. Han, P. S. Winkel, P. Yang, D. Zhao, G. D. Stucky and J. Y. Ying, Langmuir, 2000, 16, 8291-8295
    53. F. Bauera, U. Deckera, K. Czihala, R. Mehnertb, C. Riedelc, M. Riemschneiderd, R. Schuberta, M. R. Buchmeisera, Progress in Organic Coatings, 2009, 64, 474–481
    54. Lecture notes: Precipitation of Iron Hydroxides, Northwestern University
    55. 行政院環保署,事業、污水下水道系統及建築物污水處理設施之放流水標準
    56. 許建紅、高乃云、唐玉霖、梨雷,水處理技術,2011,37,22-34
    57. D. Ghernaout, A. I. Al-Ghonamy, A. Boucherit, B. Ghernaout, amd M.W. Naceur, American Journal of Environmental Protection , 2015, 4, 1-15
    58. Vuceta & Morgan, Limnology and Oceanography, 1977,22,742
    59. S. Yang, J. Li, D. Shao, J. Hu and X.Wang, J. Haz. Mate., 2009, 166, 109–116
    60. R. Darvishi Cheshmeh Soltani, M. Safari, A. Rezaee, and H. Godinid, Environmental Progress & Sustainable Energy, 2014, Vol.34
    61. O. Yavuz, Y. Altunkaynak, F. Guzel, Water Research, 2003, 37, 948
    62. O. Abollino, A. Giacomino, M. Malandrino, and E. Mentasti, Appl. Clay Sci., 2008, 38, 227–236
    63. E. Alvarez-Ayuso, A. Garcia-Sanchez,Clays and Clay Minerals, 2003, 51, 475
    64. W. Maa, P. Zonga, Z. Chenga, B. Wangb, and Q. Sunb, Journal of Hazardous Materials, 2014, 266, 19–25
    65. S. Coruh, and O.N. Ergun, Environ. Prog. Sustain. Energy, 2009, 28, 162–172
    66. L. Trakal, , R. Šigut, H. Šillerová, D. Faturíková, and M. Komárek, Ara. J. Chem.,2014, 7, 43–52
    67. R. Davarnejad, and P. Panahi, J. Indu. Engi. Chem., 2016, 33, 270–275
    68. 張士元,專論:煉油廠廢水處理與回用,2009,21-45
    69. 物竞化学品数据库:产品名称:邻甲酚,CAS号:95-48-7
    70. 王建文,郭炳林,“雙連續相二氧化矽/碳中空球之合成與其應用於快速充放電鋰離子電池負極”, 2015

    無法下載圖示 校內:2022-07-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE