簡易檢索 / 詳目顯示

研究生: 顏孝庭
Yen, Hsiao-Ting
論文名稱: 硼氫化鈉放氫反應後的產物再生之研究
Study on regeneration of spent-sodium borohydride
指導教授: 陳炳宏
Chen, Bing-Hung
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 76
中文關鍵詞: 偏硼酸鈉硼酸硼砂硼氫化鈉化學儲氫球磨工業濕式製程法硼酸三甲酯
外文關鍵詞: Hydrogen storage, Sodium borohydride (NaBH4), Ball milling, Schlesinger method, ( H3BO3), Sodium metaborate (NaBO2), Boric acid (B(OH)3, Trimethyl borate (B(OCH3)3), Borax (Na2B4O7)
相關次數: 點閱:110下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著人類過度使用化石燃料,導致二氧化碳等溫室氣體的過度排放,造成全球氣候異常變遷。氫能汽車及氫燃料電池,因而受到主要工業國家的重視,投入大量的資金及研究人力開發。其中,氫能是否可以普遍化的主要的關鍵,便在於如何能成功地開發具有儲存足夠能源密度的材料。然而,在眾多儲氫材料中,化學儲氫被視為最佳的方式。在這些化學儲氫材料中,硼氫化鈉具有相對穩定及安全的特性,同時又擁有高理論能源儲存密度。但是,其價格昂貴,使得硼氫化鈉每單位能源的價格仍然高出石油甚多。如果要降低硼氫化鈉的價格,那麼如何成功地回收及利用使用過的硼氫化鈉的產物-偏硼酸鈉。也就是說,如何將偏硼酸鈉回收硼氫化鈉成為是主要的挑戰。
    在我們的研究中,我們希望先將偏硼酸鈉轉化成為中間產物-硼酸三甲酯,再將此產物進一步反應成硼氫化鈉。目前,我們已經成功地將偏硼酸鈉反應成硼酸,這一步驟的轉化率大約為40%。接續,也已經成功地將硼酸與甲醇反應得到硼酸三甲酯。使用GC及FT-IR等儀器,顯示的確有少量的硼酸三甲酯的存在。然而,我們也發現在酯化反應中,硼酸甲酯化反應的產物-水,水的存在非常明顯地嚴重影響到硼酸三甲酯的產率。接下來使用工業濕式製程法 (Schlesinger method)將硼酸三甲酯進一步合成硼氫化鈉。經由NMR及碘滴定法分析鑑定,證實了工業濕式製程法確實可以成功得到硼氫化鈉,且產率可達約60%。
    此外,我們也嚐試以高能球磨的方式,將NaBO2混合MgH2得到NaBH4,並經由NMR及XRD的定性鑑定,確定所得產物為NaBH4;經由碘滴定法進行定量分析,可知在長時間的球磨條件之下,產率可達76%,因此利用球磨的方法,確實可以一步到位地將NaBO2合成出NaBH4,而且可以得到不錯的產率。

    With increasing awareness in outcomes of severe climate changes and global warming arising from excessive emission of greenhouse gases, such as carbon dioxide from excessive usage of fossil fuels, since the Industrial Revolution, urgent measures in developing alternative and renewable energies have been implemented by mankind. One strategy to amend this situation is development of hydrogen energy, such as hydrogen fuel cell and hydrogen-powered cars. However, the key to realize the hydrogen economics is the successful development of affordable hydrogen storage materials having enough energy-storage density. Among various hydrogen storage materials, chemical hydrides such as sodium borohydride are of the most promising candidates. Sodium borohydride is liquid and relatively stable at room temperature, and evolves hydrogen of high purity that could be consumed directly by subsequent fuel cell devices. Unfortunately, the cost of using sodium borohydrides based on per unit of energy is still quite expensive compared to fossil fuels. That is, cost-down of such materials is of critical importance to its successful applications.
    In this project, we aim to regenerate sodium borohydride from its spent product, i.e. sodium metaborate, to reduce its cost and to ease any environmental concern on disposal of waste. Our proposal is to convert the sodium metaborate to the intermediate as trimethyl borate and, subsequently, follow the Schlesinger method to regenerate sodium borohydride. Currently, with evidence shown by GC and FT-IR, we have successfully converted sodium metaborate to trimethyl borate. However, presence of water as the byproduct in esterification of boric acid greatly reduces the yield of trimethyl borate. After that, we try to synthesize sodium borohydride via Schlesinger method. By the evidence of NMR analysis, we have successfully regenerated sodium borohydride from trimethyl borate. The corresponding yield is about 60% from the iodimetry analysis data.
    On the other hand, through NMR and XRD analysis, it has been proved that sodium borohydride can be formed by ball-milling sodium metaborate with magnesium hydride at room temperature. The yields of sodium borohydride can be improved by increasing ball milling duration, and a maximum yield of 76% could be reached at present.

    摘要 I Abstract III 致謝 V 目錄 VI 表目錄 IX 圖目錄 X 第一章 簡介 1 第二章 文獻回顧 9 2-1 硼氫化鈉簡介 9 2-2 商業上製造硼氫化鈉的方法 14 2-2-1 Brown-Schlesinger法 14 2-2-2 Bayer法 15 2-3 美國Spent-NaBH4再生技術現況 16 2-4 日本Spent-NaBH4再生技術現況 19 第三章 實驗 26 3-1 實驗藥品 26 3-2 實驗儀器及裝置 27 3-3 實驗方法與步驟 28 3-3-1 硼酸之合成 28 3-3-2 硼酸三甲酯之合成 29 3-3-3 以工業濕式製程法製備硼氫化鈉 30 3-3-4 以球磨法製備硼氫化鈉 30 3-3-4-1 球磨 (機械力化學)的基本概念 31 3-3-5 以碘滴定法定量硼氫化鈉 34 第四章 結果與討論 36 4-1 硼酸之鑑定分析 36 4-2 硼酸三甲酯之鑑定分析 37 4-2-1 IR分析結果 37 4-2-2 GC分析結果 39 4-3 工業濕式製程法製備硼氫化鈉之鑑定分析 41 4-3-1 NMR分析結果 41 4-3-2 以碘滴定法定量硼氫化鈉之分析 41 4-4 球磨法製備硼氫化鈉之鑑定分析 44 4-4-1 XRD分析結果 44 4-4-2 NMR分析結果 45 4-4-3 硼氫化鈉定量之分析 46 4-4-3-1 氫化鎂添加量對硼氫化鈉轉化率的影響 46 4-4-3-2 球磨時間對硼氫化鈉轉化率的影響 47 4-4-3-3 磨珠組合對硼氫化鈉轉化率的影響 48 4-5 工業濕式法與球磨法製備硼氫化鈉之比較 49 第五章 結論 69 參考文獻 71 自述 76

    Anderson S., Bohon RL, Kimpton DD, “Infrared Spectra and Atomic Arrangement in Fused Boron Oxide and Soda Borate Glasses”, Journal of The American Ceramic Society, 38, 370-377 (1955)
    Beke B., “The Process of Fine Grinding”, Budapest Hungary, 51 (1981)
    Broja G., Schabacher W., “Process for the production of alkali metal borohydrides”, DE Patent 1108670 (1959)
    Carney D., “Automotive design: Chrysler’s concept van gives new meaning to clean fuel”,
    http://www.popsci.com/cars/article/2002-02/detergent-tank (2009.3.10)
    Cloutier CR, Alfantazi A., Gyenge E., “Physicochemical Properties of Alkaline Aqueous Sodium Metaborate Solutions”, Journal of Fuel Cell Science and Technology, 4, 88-98 (2007)
    Cunningham GL, “Preparation of trimethyl borate”, US Patent 2830070 (1958)
    Dresselhaus M., “Basic Research Needs for the Hydrogen Economy”, Massachusetts Institute of Technology (2004),
    https://public.ornl.gov/conf/nanosummit2004/talks/3_Dresselhaus.ppt (2009.1.25)
    Guilbault LJ, Sullivan EA, Sullivan NM, Weinberg NL, “Electrolytic method for producing borohydride”, US Patent 20050224364 A1 (2005)
    Haga T., Kojima Y., “Method for Manufacturing Metal Borohydride”, JP Patent 2002241109 (2002)
    Kojima Y., Haga T., “Recycling process of sodium metaborate to sodium borohydride”, International Journal of Hydrogen Energy, 28, 989-993 (2003)
    Kojima Y., Haga T., Suzuki K., Hayashi H., Matsumoto S., Nakanishi H., “Method for Manufacturing Metal Borohydride”, JP Patent 2002193604 (2002)
    Kojima Y., Suzuki KI, Fukumoto K., Kawai Y., Kimbara M., Nakanishi H., Matsumoto S., “Development of 10 kW-scale hydrogen generator using chemical hydride”, Journal of Power Sources, 125, 22-26 (2004)
    Kyoto Protocol, United Nations Framework Convention on Climate Change, http://unfccc.int/kyoto_protocol/items/2830.php (2008.10.3)
    Li ZP, Liu BH, Arai K., Suda S., “Development of the direct borohydride fuel cell”, Journal of Alloys and Compounds, 404-406, 648-652 (2005)
    Li ZP, Liu BH, Morigasaki N., Suda S., “Preparation of potassium borohydride by a mechano-chemical reaction of saline hydrides with dehydrated borate through ball milling”, Journal of Alloys and Compounds, 354, 243-247 (2003)
    Li ZP, Liu BH, Zhu JK, Morigasaki N., Suda S., “NaBH4 formation mechanism by reaction of sodium borate with Mg and H2”, Journal of Alloys and Compounds, 437, 311-316 (2007)
    Li ZP, Morigazaki N., Liu BH, Suda S., “Preparation of sodium borohydride by the reaction of MgH2 with dehydrated borax through ball milling at room temperature”, Journal of Alloys and Compounds, 349, 232-236 (2003)
    Lyttle DA, Jensen EH, Struck WA, “A Simple Volumetric Assay for Sodium Borohydride”, Analytical Chemistry, 24, 1843-1844 (1952)
    Marrero-Alfonso EY, Gray JR, Davis TA, Matthews MA, “Minimizing water utilization in hydrolysis of sodium borohydride: The role of sodium metaborate hydrates”, International Journal of Hydrogen Energy, 32, 4723-4730 (2007)
    Materials & Energy Research Institute Tokyo (MERIT). Ltd., A Borohydride Technology Company for Hydrogen Storage,
    http://www.hydrogen.co.jp/merit/A_Borohydride_Technology_Company_for_Hydrogen_Storage.html (2008.9.12)
    Materials & Energy Research Institute Tokyo (MERIT). Ltd., DBFC (Direct Borohydride Fuel Cell),
    http://www.hydrogen.co.jp/merit/R&D/DBFC/DBFC.html (2009.2.12)
    Moon GY, Lee SS, Lee KY, Kim SH, Song KH, “Behavior of hydrogen evolution of aqueous sodium borohydride solutions”, Journal of Industrial and Engineering Chemistry, 14, 94-99 (2008)
    Moreno OA, Kelly MT, Ortega JV, Wu Y., “Process for the Regeneration of Sodium Borate to Sodium Borohydride”, Millennium Cell Inc. (2007),
    http://www.hydrogen.energy.gov/pdfs/review07/stp_15_moreno.pdf- 870.3KB - SPECIAL (2008.9.13)
    Nakamura M., Nakao H., Tsuchiyama K., Suda S., “Method for Separating Metal Hydrogenated Complex Compound and its Oxidant and Membrane Separation Apparatus”, JP Patent 2002126458 (2002)
    Nakao H., Nakamura M., Tsuchiyama K., Suda S., “Separation Method and Separation Apparatus for Complex Compound Metal Hydride and its Oxide”, JP Patent 2002137906 (2002)
    Ostwald W., “Handbuch. Allg. Chemie.”, Verlagsanstalt, Leipzig Akad, 1: 71 (1919)
    Park EH, Jeong SU, Jung UH, Kim SH, Lee J., Nam SW, Lim TH, Park YJ, Yu YH, “Recycling of sodium metaborate to borax”, International Journal of Hydrogen Energy, 32, 2982-2987 (2007)
    Peters K., “Mechanochemische Reaktionen”, Symposion Zerkleinern, Frankfurt, 78-98 (1962)
    Proceedings of 2008 US DOE Hydrogen Program Annual Merit Review & Peer Evaluation Meeting,
    http://www.hydrogen.energy.gov/annual_review08_proceedings.html (2008.11.2)
    Schlesinger HI, Brown HC, Finholt AE, “The Preparation of Sodium Borohydride by the High Temperature Reaction of Sodium Hydride with Borate Esters”, Journal of the American Chemical Society, 75(1), 205-209 (1953)
    Schlesinger HI, Brown HC, Finholt AE, Gilbreath JR, Hoekstra HR, Hyde EK, “Sodium Borohydride, Its Hydrolysis and its Use as a Reducing Agent and in the Generation of Hydrogen”, Journal of the American Chemical Society, 75, 215-219 (1953)
    Schlesinger HI, Brown HC, Mayfield DL, Gilbreath JR, “Procedures for the Preparation of Methyl Borate”, Journal of the American Chemical Society, 75, 213-215 (1953)
    Schubert F., Lang K., Schabacher W., “Process for the Production of Borohydrides”, DE Patent 1067005 (1957)
    Snover J., Wu Y., “Recycle of discharged sodium borate fuel”, US Patent 6706909 B1 (2004)
    Suda S., “Method of Manufacturing Metal Hydrogen Complex Compound”, JP Patent 2002173306 (2002)
    Suda S., Morigasaki N., Iwase Y., Li ZP, “Production of sodium borohydride by using dynamic behaviors of protide at the extreme surface of magnesium particles”, Journal of Alloys and Compounds, 404-406, 643-647 (2005)
    Tyson GN, Jr., “Preparation of borate esters”, US Patent 2884440 (1959)
    U.S. Department of Energy, HFCIT Hydrogen Storage: Current Technology,
    http://www1.eere.energy.gov/hydrogenandfuelcells/storage/current_technology.html (2008.8.12)
    World Energy Council, Publication No. P001360_3.1.
    Wu Y., Kelly MT, Ortega JV, “Review of Chemical Processes for the Synthesis of Sodium Borohydride”, Millennium Cell Inc. (2004)
    Yokoyama S., Yahe T., ”Process for producing boric ester compound, electrolyte for electrochemical device, and secondary battery”, US Patent 6998465 B2 (2003)
    巴拉姆鮑伊姆著, 汪畹祥, 費鴻良譯, “高分子化合物力化學”, 化學工業出版社, 北京 (1982)
    陶連印, 鄭學家, ”硼化合物的生產與應用”, 成都科技大學出版 (1992)

    下載圖示 校內:2019-07-13公開
    校外:2019-07-13公開
    QR CODE