簡易檢索 / 詳目顯示

研究生: 許聯輝
Hsu, Lien-Hui
論文名稱: 肺癌疾病預後之DNA甲基化分子指標之鑑定
Identification of DNA methylation biomarkers for disease outcome prediction of lung cancer
指導教授: 王憶卿
Wang, Yi-Ching
學位類別: 碩士
Master
系所名稱: 醫學院 - 臨床醫學研究所
Institute of Clinical Medicine
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 79
中文關鍵詞: 甲基化分子指標非小細胞肺癌預後
外文關鍵詞: methylation biomakers, non-small cell lung cancer, prognosis
相關次數: 點閱:65下載:21
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要
    研究背景及目的:肺癌目前在全世界屬癌症死亡率之首位,五年之存活率只有14%,高死亡率的原因主要是由於肺癌不易早期偵測及治療後的高復發率所致。對於早期(第一期)的非小細胞之肺癌,手術治療是對於此群病人的標準方式;僅管如此,第一期的非小細胞肺癌在手術後仍有30-40%的病人死於疾病的復發。因此,建立準確的預後(prognosis)分子指標一直是肺癌臨床研究的重要課題,也是對於此類病人輔於化學治療的新思維。目前傳統上預測肺癌預後之工具為腫瘤TNM分期,然而其準確性仍有其限制;因此,發展更準確預後工具實有其必要性。過去研究顯示,抑癌基因 (Tumor suppress genes) 啟動子過度甲基化 (promoter hypermethylation) 與癌症形成 (initiation) 及惡化 (progression) 有關,我們得到經由全基因組之啟動子過度甲基化的篩檢,可以找出預測早期非小細胞肺癌預後的過度甲基化基因。

    研究方法及結果:此研究有兩個主要結果:(1)利用Illumina基因體甲基化分析法,以篩檢族群 (screening cohort) 之配對癌組織及血漿建立台灣肺癌基因體甲基化變異圖譜,綜合鑑別出高頻率甲基化區域,並配合病人病理資料分析,找出與肺癌形成與預後有關的甲基化基因體區域;(2)以驗證族群 (validation cohort) 研究肺癌病患及正常人之組織中基因啟動子甲基化之變異情形,計算出所篩檢之高頻率甲基化基因分子指標之敏感性及專一性。以新穎的Illumina基因體甲基化圖譜及Pyrosequencing定量甲基化分析法,挑選並鑑定與肺癌有關之抑癌基因過度甲基化指標,建立預測肺癌預後甲基化pyrosequencing平台。本研究完成了75位(51位screening cohort、24位validation cohort)具有預後資料(存活率、癌症復發及轉移)的早期肺癌病人 (stages I & II) 之基因體甲基化圖譜,確定了目標(1)與目標(2)肺癌預後較差有關的37個甲基化指標(肺腺癌18個,鱗狀上皮肺癌18個,兩種都有1個),28個基因於24位病人完成了pyrosequencing 甲基化定量分析,基因Probe 1、2、9、10、11、12、17、21、22、25 和28在肺腺癌與正常組織有顯著不同的統計意義,確定他們可能為肺腺癌患者分子指標。另一方面,基因Probe 25、26和27在鱗狀細胞肺癌與正常組織有顯著不同的統計意義,確定他們可能為鱗狀細胞肺癌患者分子指標。再從中挑出4個基因probe 25、26、27及28於120位病人以pyrosequencing 甲基化分析,確定基因Probe 25、26和27其肺癌組織甲基化程度顯著高於正常肺組織 (P<0.0001~P=0.018),而且基因Probe 27和26的甲基化可預測肺癌的預後 (Cox regression, P=0.0011~0.0102)。

    結論: 基因Probe 26和27的甲基化可預測肺癌的預後。

    英文摘要
    Background and Purpose: Lung cancer is the leading cause of cancer-related deaths worldwide. A more sensitive biomarker panel would allow for more accurate prognostic prediction of lung cancer than the current TNM stage methods. CpG island hypermethylation is known to be associated with tumor suppressor gene (TSG) silencing and can be detected in tissue. In addition, promoter hypermethylation of TSGs has been shown to correlate with cancer initiation and progression. Therefore, we performed epigenome-screening approach for analysis of methylation profiles of thousands of gene in parallel and aimed for the identification of methylation biomarkers critical to lung tumorigenesis. The potential methylation biomarkers were validated by pyrosequencing methylation assay. The goal of our study is to develop promotor gene methylation by pyrosequencing for survival prognosis of lung cancer.

    Methods and Results: We performed epigenome-screening to select multiple methylation biomarkers in tumor tissue of a screening cohort of early staged (stages I and II) patients with known survival data. We confirmed the specificity and sensitivity of these multiple methylation biomarkers in a validation cohort. We evaluated if these methylated regions can be used as effective biomarkers for prognostic prediction. We have adapted the Illumina’s Infinium methylation assay (28,000 CpG dinucleotides for 14,000 genes) and pyrosequencing quantitative methylation assay to identify 37 hypermethylated regions (18 for lung adenocarcinoma; 18 for lung squamous carcinoma; 1 for lung adenocarcinoma and lung squamous carcinoma) with prognostic potential in 75 stages I and II lung cancer patients (51 in screening cohort; 24 in validation cohort) with survival data available. Among the 28 hypermethylated regions were validated for methylation status using pyrosequencing in DNA from 24 pair’s tumor and normal tissues from 12 ADC patients. Gene probes 1, 2, 9, 10, 11, 12, 17, 21, 22, 25 and 28 showed a significantly differential power between tumor and normal tissues, suggesting their association with lung cancer in 12 ADC patients. On the other hand, Gene probes 25, 26 and 27 showed a significantly differential power between tumor and normal tissues, confirming their association with lung cancer in 12 SCC patients. Gene probes 25, 26 and 27 with significantly differential power between tumor and normal tissues were further confirmed for their association with lung cancer in 120 patients (P<0.0001~P=0.018). The hypermethylation of gene probes 27 and 26 could predict the survival of the lung caner in 120 patients (Cox regression, P=0.0011~0.0102).

    Conclusion: The hypermethylation of Gene probes 26 and 27 could predict the survival of the lung caner in 120 patients.

    目錄 頁次 壹、文獻總論---------------------------------- 1 1.肺癌---------------------------------------- 1 1.1.台灣地區肺癌的發生現況------------------ 1 1.2.肺癌的分類------------------------------ 2 1.3.肺癌分期與存活時間---------------------- 5 1.4.目前可用的早期肺癌預測預後工具----------- 7 2.基因甲基化致癌機制研究現況------------------ 10 2.1.分子致癌機制研究現況------------------- 10 2.2.基因體甲基化之分子指標研究現況---------- 12 A.基因體甲基化圖譜技術概況---------------- 12 B.應用基因體甲基化圖譜分析尋找癌症的分子 標記研究概況---------------------------- 13 C.應用基因體甲基化圖譜分析尋找肺癌的分子標記 研究概況--------------------------------- 16 2.3.後選基因甲基化鑑定技術概況----------------- 18 A. Methylation-specific PCR-------------- 19 B. Bisulfite sequencing methylation assay- 20 C. Pyrosequencing methylation assay-------- 20 貳. 研究目的---------------------------------- 22 參. 研究方法---------------------------------- 24 1. 研究構想--------------------------------- 24 2. 技術平台--------------------------------- 24 2.1.外顯基因體(epigenomic) 的研究平台------- 24 A. Illumina微陣式之差異甲基化雜交分析法----- 24 B.基因體之甲基化圖譜統計分析方法------------ 25 2.2.後選基因甲基化鑑定(validation) 的研究 平台---------------------------------- 26 A. Pyrosequencing之定量甲基化分析法--------- 26 B. Pyrosequencing之定量甲基化之統計分析方法-- 27 3. 病人收案標準與檢體庫管理-------------------- 27 4. 病人存活率與癌症復發之統計分析方法---------- 29 肆. 結果與討論------------------------------- 31 1. 肺癌預後指標之甲基化基因體分析-------------- 31 2. 肺癌預後指標之甲基化鑑定分析---------------- 32 3. Pyrosequencing之定量甲基化在肺腺癌的預後 指標-------------------------------------- 33 4. Pyrosequencing之定量甲基化在鱗狀細胞肺癌的 預後指標---------------------------------- 34 5. 討論------------------------------------ 35 5.1 以DNA啟動子甲基化作為分子指標的代替TNM分期 來預測早期肺癌預後--------------------- 35 5.2 肺腺癌與鱗狀細胞肺癌的病理形態不同,應該找出 各自的預後指標------------------------ 37 5.3 Gene 27 和Gene 26與預後相關基因的生理功能- 38 5.4 GeneGO pathway biomarker analysis 後相 關路徑的探討--------------------------- 39 5.4-1 PKA與CREB的致癌訊號路徑探討---------- 39 5.4-2 β-Adrenergic Receptor 與NNK致癌路徑 之探討----------------------------- 42 伍. 結論--------------------------------------- 45 陸. 參考文獻---------------------------------- 47 柒. 附表--------------------------------------- 57 捌. 附圖--------------------------------------- 64 玖. 附錄--------------------------------------- 73

    Abramovitch, R., Tavor, E., Jacob-Hirsch, J., Zeira, E., Amariglio, N., Pappo, O., Rechavi, G., Galun, E., and Honigman, A. (2004). A pivotal role of cyclic AMP-responsive element binding protein in tumor progression. Cancer Res. 64, 1338−1346.
    Adrien, L.R., Schlecht, N.F., Kawachi, N., Smith, R.V., Brandwein-Gensler, M., Massimi, A., Chen, S., Prystowsky, M.B., Childs, G., and Belbin, T.J. (2006). Classification of DNA methylation patterns in tumor cell genomes using a CpG island microarray. Cytogenet Genome Res. 114, 16-23.
    Anglim, P.P., Galler, J.S., Koss, M.N., Hagen, J.A., Turla, S., Campan, M., Weisenberger, D.J., Laird, P.W., Siegmund, K.D., and Laird-Offringa, I.A. (2008) Identification of a panel of sensitive and specific DNA methylation markers for squamous cell lung cancer. Mol Cancer, 7:62-74
    Antequera, F., and Bird, A. (1993). Number of CpG islands and genes in human and mouse. Proc Natl Acad Sci U S A. 90, 11995-11999.
    Antequera F, Boyes J, Bird A (1990). High levels of de novo methylation and altered chromatin structure at CpG islands in cell lines. Cell. 62, 503-514.
    Barbes, P.J. (1995) β-Adrenergic receptors and their regulation. Am J Respir Crit Care Med. 152, 838–860.
    Barski, A., Cuddapah, S., Cui, K., Roh, T.Y., Schones, D.E., Wang, Z., Wei, G., Chepelev, I., and Zhao, K. (2007). High-resolution profiling of histone methylations in the human genome. Cell. 129, 823-837.
    Belinsky, S.A. (2004). Gene-promoter hypermethylation as a biomarker in lung cancer. Nat Rev Cancer. 4, 707-717.
    Bergers, G., Brekken, R., McMahon, G., Vu, T.H., Itoh, T., Tamaki, K., Tanzawa, K., Thorpe, P., Itohara, S., Werb, Z., and Hanahan D. (2000). Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat Cell Biol. 2, 737−744.
    Bibikova, M., Lin, Z., Zhou, L., Chudin, E., Garcia, E.W., Wu, B., Doucet, D., Thomas, N.J., Wang, Y., Vollmer, E., Goldmann, T., Seifart, C., Jiang, W., Barker, D.L., Chee, M.S., Floros, J., and Fan, J.B. (2006). High-throughput DNA methylation profiling using universal bead arrays. Genome Res. 16, 383-393.
    Blobe, G.C., Khan, W.A., and Hannum, Y.A. (1995). Protein kinase C: cellular target of the second messenger arachidonic acid. Prostaglandins Leukot Essent Fatty Acids. 52, 129–135.
    Borsa, E.S., Tenenbaum, A., Sales, M.E., Rumi, L., and Sterin-Borda, L. (1998). Role of arachidonic acid metabolites in the action of a b adrenergic agonist on human monocytes. Prostaglandins Leukot Essent Fatty Acids. 58, 85–90.
    Brandeis, M., Frank, D., Keshet, I., Siegfried, Z., Mendelsohn, M., Nemes, A., Temper, V., Razin, A., and Cedar, H. (1994). Sp1 elements protect a CpG island from de novo methylation. Nature 371, 435-438.
    Brena, RM., Morrison, C., Liyanarachchi, S., Jarjoura, D., Davuluri, R.V., Gregory A.O., Reisman, D., Glaros, S., Rush, L.J., and Plass, C. (2007). Aberrant DNA Methylation of OLIG1, a Novel Prognostic Factor in Non-Small Cell Lung Cancer. PLoS Med. 108, 572-584.
    Brock, M.V., Hooker, C.M., Ota-Machida, E., Han, Y., Guo, M., Ames, Stephen., Glöckner, S., Piantadosi, S., Gabrielson, E., Pridham, G., Pelosky, K., Belinsky, S.A., Yang, S.C., Baylin, S.B., and Herman, J.G. (2008). DNA methylation markers and early recurrence in stage I lung cancer. N Engl J Med. 358, 1118–1128.
    Brundage, M. D., Davies, D., and Mackillop, W.J. (2002). Prognostic factors in non-small cell lung cancer: a decade of progress. Chest. 122, 1037-57.
    Burbee, D.G., Forgacs, E., Zochbauer-Muller, S., Shivakumar, L., Fong, K., Gao, B., Randle, D., Kondo, M., Virmani, A., Bader, S., Sekido, Y., Latif, F., Milchgrub, S., Toyooka, S., Gazdar, A.F., Lerman, M., Zabarovsky, E., White, M., and Minna J.D. (2001). Epigenetic inactivation of RASSF1A in lung and breast cancers and malignant phenotype suppression. J Natl Cancer Inst. 93, 691-699.
    Campan, M., Weisenberger, D.J., Trinh, B., and Laird, P.W. (2009). MethyLight. Methods Mol Biol. 507, 325-337.
    Castonguay, A., and Rioux, N. (1997). Inhibition of lung tumourigenesis by sulindac: comparison of two experimental protocols. Carcinogenesis. 18: 491–496.
    Chahn T.A., Morin, P.J., Vogelstein, B., and Kinzler, K.W. (1998). Mechanisms underlying nonsteroidal antiinflammatory drug-mediated apoptosis. Proc Natl Acad Sci. 95, 681–686.
    Chen, H.Y., Yu, S.L., Chen, C.H., Chang, G.-C., Chen, C.Y., Yuan, A., Cheng, C.L., Wang, C.H., Terng, H.J., Kao, S.F., Chan, W.K., Li, H.N., Liu, C.C., Singh, S., Chen, W.J., Chen, J.J.W., and Yang, P.C. (2007). A five-gene signature and clinical outcome in non-small cell lung cancer. N Engl J Med. 356, 11–20.
    Cho, M.K., Cho, Y.H., Lee, G.H., and Kim, S.G. (2004). Induction of cyclooxygenase-2 by bovine type I collagen in macrophages via C/EBP and CREB activation by multiple cell signaling pathways. Biochem Pharmacol. 67, 2239−2250.
    Christensen, B.C., Marsit, C.J., Houseman, E.A., Godleski, J.J., Longacker, J.L., Zheng, S., Yeh, R.F., Wrensch, M.R., Wiemels, J.L., Karagas, M.R., Bueno, R., Sugarbaker, D.J., Nelson, H.H., Wiencke, J.K., and Kelsey, K.T. (2009). Differentiation of lung adenocarcinoma, pleural mesothelioma, and nonmalignant pulmonary tissues using DNA methylation profiles. Cancer Res. 69, 6315–6321.
    Colella, S., Shen, L., Baggerly, K.A., Issa, J.P., and Krahe, R. (2003). Sensitive and quantitative universal Pyrosequencing methylation analysis of CpG sites. Biotechniques 35, 146-150.
    Dai, Z., Lakshmanan, R.R., Zhu, W.G., Smiraglia, D.J., Rush, L.J., Fruhwald, M.C., Brena, R.M., Li, B., Wright, F.A., Ross, P., Otterson, G.A., and Plass, C. (2001). Global methylation profiling of lung cancer identifies novel methylated genes. Neoplasia. 3, 314–323.
    Dalma-Weiszhausz, D.D., Warrington, J., Tanimoto, E.Y., and Miyada, C.G. (2006). The affymetrix GeneChip platform: an overview. Methods Enzymol. 410, 3-28.
    Dammann, R., Li, C., Yoon, J.H., Chin, P.L., Bates, S., and Pfeifer, G.P. (2000). Epigenetic inactivation of a RAS association domain family protein from the lung tumour suppressor locus 3p21.3. Nat Genet. 25, 315-319.
    Danesi, R., de Braud, F., Fogli, S., de Pas, T.M., Di Paolo, A., Curigliano, G., and Del Tacca, M. (2003). Pharmacogenetics of anticancer drug sensitivity in non-small cell lung cancer. Pharmacol Rev. 55, 57-103.
    Di Maio, M., Gallo, C., De Maio, E., Morabito, A., Piccirillo, M.C., Gridelli, C., and Perrone, F. (2010). Methodological aspects of lung cancer clinical trials in the era of targeted agents. Lung Cancer. 67, 127-135.
    Department of Health (2009). The executive Yuan, Republic of China: General health statistics. In: Health and vital statistics, Republic of China. R. O. C. Press, Taipei.
    Esteller, M., Corn, P.G., Baylin, S.B., and Herman, J.G. (2001). A gene hypermethylation profile of human cancer. Cancer Res. 61, 3225-3229.
    Fang, D., Zhang, D., Huang, G., Zhang, R., Wang, L., and Zhang, D. (2001). Results of surgical resection of patients with primary lung cancer: a retrospective analysis of 1,905 cases. Ann Thorac Surg. 72, 1155-9.
    Fiona, E. M., Mark, R.M., Dean, G., Laura, W., Dilair, B., Jiannis, R., Noel, W.C., Michael, D.B., Takeshi, K., Masahiro, Y., Farida, L., and Eamonn, R.M. (2009). CpG methylation profiling in VHL related and VHL unrelated renal cell carcinoma. Mol Cancer. 8, 4598-4609.
    Freant, L.J., Joseph, W.L., and Adkins, P.C. (1974) Scar carcinoma of the lung. Ann. Thorac. Surg. 17, 531–537.
    Garcia-Yuste, M., Matilla, J.M., Alvarez-Gago, T., Duque, J.L., Heras, F., Cerezal, L.J., and Ramos, G. (2000). Prognostic factors in neuroendocrine lung tumors: a Spanish Multicenter Study. Ann Thorac Surg. 70, 258-263.
    Gebhard, C., Schwarzfischer, L., Pham, T.H., Schilling, E., Klug, M., Andreesen, R., and Rehli, M. (2006). Genome-wide profiling of CpG methylation identifies novel targets of aberrant hypermethylation in myeloid leukemia. Cancer Res. 66, 6118-6128.
    Gil, J., and Peters, G. (2006). Regulation of the INK4b-ARF-INK4a tumour suppressor locus: all for one or one for all. Nat Rev Mol Cell Biol. 7, 667-677.
    Goldstraw, P., Crowley, J., Chansky, K., Giroux, D.J., Groome, P.A., Rami-Porta, R., Postmus, P.E., Rusch, V., and Sobin, L. (2007). The IASLC Lung Cancer Staging Project: Proposals for the revision of the TNM stage groupings in the forthcoming (seventh) edition of the TNM Classification of malignant tumours. J Thorac Oncol. 2, 706- 714.
    Gonzalez, G. A. and Montminy, M. R. (1989). Cyclic AMP stimulates somatostatin gene transcription by phosphorylation of CREB at serine 133. Cell. 59, 675−680.
    Haraguchi, M., Miyadera, K., Uemura, K., Sumizawa, T., Furukawa, T., Yamada, K., Akiyama, S., and Yamada, Y. (1994). Angiogenic activity of enzymes. Nature. 368, 198.
    Hildegard, M.S., Patricia, K.S., Michelle, W., and Howard, P. (1999). The Tobacco-specific Carcinogen 4-(Methylnitrosamino)-1-(3-pyridyl)- 1-butanone Is a b-Adrenergic Agonist and Stimulates DNA Synthesis in Lung Adenocarcinomavia b-Adrenergic Receptor-mediated Release of Arachidonic Acid. Cancer Res. 59, 4510–4515.
    Hirsch, F.R., Franklin, W.A., Gazdar, A.F., and Bunn, P.A. (2001). Early detection of lung cancer: clinical perspectives of recent advances in biology and radiology. Clin Cancer Res. 7, 5-22.
    Hoque, M.O., Topaloglu, O., Begum, S., Henrique, R., Rosenbaum, E., Criekinge, W.V., Westra, W.H., and Sidransky, D. (2005). Quantitative Methylation-Specific Polymerase Chain Reaction Gene Patterns in Urine Sediment Distinguish Prostate Cancer Patients From Control Subjects. J Clin Oncol. 23, 6569-6575.
    Houseman, E.A., Christensen, B.C., Yeh, R.F., Marsit, C.J., Karagas, M.R., Wrensch, M., Nelson, H.H., Wiemels, J., Zheng, S., Wiencke, J.K., and Kelsey K.T. (2008). Model-based clustering of DNA methylation array data: a recursive-partitioning algorithm for high-dimensional data arising as a mixture of beta distributions. BMC Bioinformatics. 9, 365.
    Jeon, S. H., Chae, B. C., Kim, H. A., Seo, G. Y., Seo, D. W., Chun, G.T., Yie, S.W., Eom, S.H., and Kim, P,H. (2006). The PKA/CREB pathway is closely involved in VEGF expression in mouse macrophages. Mol. Cells. 23, 23-29
    Jeon, S. H., Chae, B. C., Kim, H. A., Seo, G. Y., Seo, D. W., Chun, G.T., Kim, N.S., Yie, S.W., Byeon, W.H., Eom, S.H., Ha, K.S., Kim, Y.M., and Kim P.H. (2007). Mechanisms underlying TGF-{beta}1-induced expression of VEGF and Flk-1 in mouse macrophages and their implications for angiogenesis. J. Leukoc. Biol. 81, 557−566.
    Johansson C.C.,. Dahle M. K., Blomqvist S. R. and Grønning L. M., Aandahl, E.M., Enerba¨ck, S., and aske´n, K. (2003). A Winged Helix Forkhead (FOXD2) Tunes Sensitivity to cAMP in T Lymphocytes through Regulation of cAMP-dependent Protein Kinase RIα. The J of Biological Chemistry. 278, 17573–17579.
    Kagan, J., Srivastava, S., Barker, P.E., Belinsky, S.A., and Cairns, P. (2007). Towards Clinical Application of Methylated DNA Sequences as Cancer Biomarkers: A Joint NCI's EDRN and NIST Workshop on Standards, Methods, Assays, Reagents and Tools. Cancer Res. 67, 4545-4549.
    Kameyama, K., Takahashi, M.Ohata, K., Igai, H., Yamashina, A., Matsuoka, T., Nakagawa T., and Okumura, N. (2009). Evaluation of the new TNM staging system proposed by the International Association for the Study of Lung Cancer at a single institution . J Thorac Cardiovasc Surg. 137, 1180-1184.
    Kelly, M., Leander, V.N., Leslie, C., Joyce, E.O., James, G.H., Wim, V.C., cKornel, E.S., and Stephen, B.B. (2008). Defining a Chromatin Pattern that Characterizes DNAHypermethylated. Cancer Res. 68, 5753-5759.
    Laag, E., Majidi, M., Cekanova, M., Masi, T., Takahashi, T. and Schuller, H.M. (2006). NNK activates ERK1/2 and CREB/ATF-1 via b-1-AR and EGFR signaling in human lung adenocarcinoma and small airway epithelial cells Int. J Cancer. 119, 1547–1552
    Mao, L. (2002). Recent advances in the molecular diagnosis of lung cancer. Oncogene. 21, 6960-6969.
    Melnikov, A.A., Scholtens, D.M., Wiley, E.L., Khan, S.A., and Levenson, V.V. (2008). Array-based multiplex analysis of DNA methylation in breast cancer tissues. J Mol Diagn. 10, 93-101.
    Michael, A.J, Yan, L., Yan, L., Haris, G.V., and Ming, Y. (2009) RGS17, an Overexpressed Gene in Human Lung and Prostate Cancer, Induces Tumor Cell Proliferation Through the Cyclic AMP-PKA-CREB Pathway. Cancer Res. 69,2108–2116.
    Min, K.M., and Kim, P.H. (2003). Macrophage-derived TGFbeta1 induces IgA isotype expression. Mol Cells. 16, 245−250.
    Momparler, R.L. (2003). Cancer epigenetics. Oncogene. 22, 6479-6483
    Mountain C.F. (1997) Revisions in the International System for Staging Lung Cancer. Chest. 111, 1710–1717.
    Mountain C.F. (2000). The international system for staging lung cancer. Semin Surg Oncol. 18, 106-115.
    Mummaneni, P., Walker, K.A., Bishop, P.L., and Turker, M.S. (1995). Epigenetic gene inactivation induced by a cis-acting methylation center. J Biol Chem. 270, 788-792.
    Nakajima, T., Shimosato, Y., Morinaga, S., Terasaki, T., Tsumuraya, M., Yamaguchi, K., Ichinose, H., Nagatsu, T., Kato, K., Nakazato, Y. (1986). Immunohistochemical Study of Small Cell Lung Carcinoma; With Special Reference to the Neuroendocrine Markers Aromatic L-Amino Acid Decarboxylase and Gastrin-Releasing Peptide. Jpn J Clin Oncol. 16,223-233.
    Nicholson, S.A, Beasley, M.B., Brambilla, E., Hasleton, P.S., Colby, T.V., Sheppard, M.N., Falk, R., and Travis, W.D. (2002). Small Cell Lung Carcinoma (SCLC): A Clinicopathologic Study of 100 Cases With Surgical Specimens. Am J Surg Pathol. 26, 1184-1197
    Olaussen, K.A., Dunant, A., Fouret, P., Brambilla, E., André, F., Haddad, V., Taranchon, E., Filipits, M., Pirker, R., Popper, H.H., Stahel, R., Sabatier, L., Pignon, J.P., Tursz, T., Le Chevalier, T., and Soria, J.C. (2006). DNA repair by ERCC1 in non-small-cell lung cancer and cisplatin-based adjuvant chemotherapy. N Engl J Med. 355, 983–991.
    Ordway, J.M., Budiman, M.A., Korshunova, Y., Maloney, .RK., Bedell, J.A., Citek, R.W., Bacher, B., Peterson, S., Rohlfing, T., Hall, J., Brown, R., Lakey, N., Doerge, R.W., Martienssen, R.A., Leon, J., McPherson, J.D., and Jeddeloh, J.A. (2007). Identification of novel high-frequency DNA methylation changes in breast cancer. PLoS ONE . 12, 1-12.
    Pfannschmidt J, Muley T, Bülzebruck, H., Hoffmann, H., and Dienemann, H. (2007). Prognostic assessment after surgical resection for non-small cell lung cancer: experiences in 2083 patients. Lung Cancer. 55, 371-7.
    Pino, M. S., Nawrocki, S. T., Cognetti, F., Abruzzese, J. L., Xiong, H. Q., and McConkey, D.J. (2005). Prostaglandin E2 drives cyclooxygenase-2 expression via cyclic AMP response element activation in human pancreatic cancer cells. Cancer Biol. 4, 1263−1269.
    Ramalingam, S., Pawlish, K., Gadgeel, S., Demers, R., and Kalemkerian, G.F. (1998). Lung cancer in young patients: analysis of a surveillance, epidemiology, and end results database. J Clin Oncol. 16, 651–657.
    Rammon, R.P, John, J.C., Peter, G., (2009). The revised TNM staging system for lung cancer. Ann Thorac Cardiovasc Surg. 14, 4-9.
    Rao, G., Baas, A., Glasgow, W., Eling, T., Runge, M., and Alexander, R. (1994). Activation of mitogen-activated protein kinases by arachidonic acid and its metabolites in vascular smooth muscle cells. J Biol Chem. 269, 32586–32591.
    Rauch, T., Li, H., Wu, X., and Pfeifer, G.P. (2006). MIRA-assisted microarray analysis, a new technology for the determination of DNA methylation patterns, identifies frequent methylation of homeodomain-containing genes in lung cancer cells. Cancer Res. 66, 7939-7947.
    Rauch, T., Wang, Z., Zhang, X., Zhong, X., Wu, X., Lau, S.K., Kernstine, K.H., Riggs, A.D., and Pfeifer, G.P. (2007). Homeobox gene methylation in lung cancer studied by genome-wide analysis with a microarray-based methylated CpG island recovery assay. Proc Natl Acad Sci U S A. 104, 5527-5532.
    Rauch, T. A., Zhong, X., Wu, X., Wang, M., Kernstine, K. H., Wang, Z., Riggs, A.D., and Pfeifer, G.P. (2008). High-resolution mapping of DNA hypermethylation and hypomethylation in lung cancer. Proc Natl Acad Sci U S A, 105, 252–257.
    Roy, S.H., John, V. H., and Scott, M. L. (2008). Lung Cancer. N Engl J Med. 359, 1367-1380.
    Richard, J.S., Emily, K.A., Janet, M.R., John, K.F., and Triantafillos, L. (2006). Methylation enrichment pyrosequencing: combining the specificity of MSP with validation by pyrosequencing. Nucleic Acids Res. 34, 1093-1097
    Rioux, N., and Castonguay, A. (1998). Inhibitors of lipoxygenase: a new class of cancer chemopreventive agents. Carcinogenesis. 19, 1393–1400.
    Rosenberg, D., Goussin, L., Jullian, E., Perlemoine, K., Bertagna, X., and Bertherat, J. (2002). Role of the PKA-Regulated Transcription Factor CREB in Development and Tumorigenesis of Endocrine Tissues. Ann N Y Acad Sci. 968, 65–74.
    Sanchez, I., Xu, C.J., Juo, P., Kakizaka, A., Biens, J., and Yuan, J. (1999). Caspase 8 is required for cell death induced by expanded polyglutamine repeats. Neuron. 22, 623–633.
    Schottenfeld, D.E. and epidemiology of lung cancer. In: Pass HI, Mitchell, J.B., Johnson, D.H., Turrisi, A.T., Minna, J.D. (2000). Lung Cancer: Principles and Practice. 367–388.
    Schro¨r, K., Zimmermann, K. C., and Tannha¨user, R. (1998). Augmented myocardial ischemia by nicotine: mechanisms and their possible significance. Br J Pharmacol.125, 79–86.
    Seng, T. J., Currey, N., Cooper, W. A., Lee, C. S., Chan, C., Horvath, L., Sutherland, R.L., Kennedy, C., McCaughan, B., Kohonen-Corish M.R. (2008). DLEC1 and MLH1 promoter methylation are associated with poor prognosis in non-small cell lung carcinoma. Br J Cancer. 99, 375–382.
    Spira, A., and Ettinger, D.S. (2004). Multidisciplinary management of lung cancer. N Engl J Med. 350, 379-92.
    Spiro, S.G., and Silvestri, G.A. (2005). One hundred years of lung cancer. Am J Respir Crit Care Med. 172, 523-9.
    Sova, P., Feng, Q., Geiss, G., Wood, T., Strauss, R., Rudolf, V., Lieber, A., and Kiviat, N. (2006). Discovery of novel methylation biomarkers in cervical carcinoma by global demethylation and microarray analysis. Cancer Epidemiol Biomarkers Prev. 15, 114-123.
    Steven, D.S., Joshua, E.M., Seth, T., Dietrich, H., and Ernst, L.W. (1997). Risk of squamous cell carcinoma and adenocarcinoma of the lung in relation to lifetime filter cigarette smoking. Cancer. 80, 382-288.
    Swasti, R., Mithun, S., Debashis, M., and Nitai P. B. (2008). HYPK, a Huntingtin interacting protein, reduces aggregates and apoptosis induced by N-terminal Huntingtin with 40 glutamines in Neuro2a cells and exhibits chaperone-like activity. Hum Mol Genet. 17, 240–255
    Takai, D., and Jones, P.A.( 2002). Comprehensive analysis of CpG islands in human chromosomes 21 and 22. Proc Natl Acad Sci U S A. 99, 3740-3745.
    Tang, X., Khuri, F.R., Lee, J.J., Kemp, B.L., Liu, D., Hong, W.K., and Mao, L. (2000). Hypermethylation of the death-associated protein (DAP) kinase promoter and aggressiveness in stage I non-small-cell lung cancer. J Natl Cancer Inst. 92, 1511–1516.
    Taron, M., Rosell, R., Felip, E., Mendez, P., Souglakos, J., Ronco, M.S., Queralt, C., Majo, J., Sanchez, J.M., Sanchez, J.J., and Maestre, J. (2004). BRCA1 mRNA expresion levels as an indicador of chemoresistance in lung cancer. Hum Mol Genet. 13, 2443–2449.
    The World Health Organization histological typing of lung tumours. (1982). Second edition. Am J Clin Pathol. 77, 123-136.
    Tomizawa, Y., Kohno, T., Kondo, H., Otsuka, A., Nishioka, M., Niki, T., Yamada, T., Maeshima, A., Yoshimura, K., Saito, R., Minna, J.D., and Yokota, J. (2002). Clinicopathological significance of epigenetic inactivation of RASSF1A at 3p21.3 in stage I lung adenocarcinoma. Clin Cancer Res. 8, 2362–2368.
    Toyooka, K.O., Toyooka, S., Virmani, A.K., Sathyanarayana, U.G., Euhus, D.M., Gilcrease, M., Minna, J.D., and Gazdar, A.F. (2001). Loss of expression and aberrant methylation of the CDH13 (H-cadherin) gene in breast and lung carcinomas. Cancer Res. 61, 4556-4560.
    Toyooka, S., Suzuki, M., Maruyama, R., Toyooka, K. O., Tsukuda, K., Fukuyama, Y., Iizasa, T., Aoe, M., Date, H., Fujisawa, T., Shimizu, N., Gazdar, A.F. (2004). The relationship between aberrant methylation and survival in non-small-cell lung cancers. Br J Cancer. 91, 771–774.
    Tsao, M., Aviel-Ronen, S., Ding, K., Lau, D., Liu, N., Sakurada, A., Whitehead, M., Zhu, C.Q., Livingston, R., Johnson, D.H., Rigas, J., Seymour, L., Winton, T., and Shepherd, F.A. (2007) Prognostic and Predictive Importante of p53 and RAS for adjuvant chemotherapy in non-smallcell lung cancer. J Clin Oncol. 25, 5240 –5247.
    Tsao, J.A., Hagen, J.A., Carpenter, C.L., and Laird-Offringa, I.A. (2002). DNA methylation analysis: a powerful new tool for lung cancer diagnosis. Oncogene. 21, 5450-5461.
    Tsou, J.A., Galler, J.S., Siegmund, K.D, Laird, P.W., Turla, S., Cozen, W., Hagen, J.A., Koss, M.N., and Laird-Offringa I.A. (2007). Identification of a panel of sensitive and specific DNA methylation markers for lung adenocarcinoma. Mol Cancer. 6, 70-82
    Van Doorn, R., Zoutman, W.H., Dijkman, R., de Menezes, R.X., Commandeur, S., Mulder, A.A., van der Velden, P.A., Vermeer, M.H., Willemze, R., Yan, P.S., Huang, T.H., and Tensen, C.P. (2005). Epigenetic profiling of cutaneous T-cell lymphoma: promoter hypermethylation of multiple tumor suppressor genes including BCL7a, PTPRG, and p73. J Clin Oncol. 23, 3886-3896.
    Viet, C.T., and Schmidt, B.L. (2008). Methylation array analysis of preoperative and postoperative saliva DNA in oral cancer patients. Cancer Epidemiol Biomarkers Prev. 17, 3603-3611.
    Virmani, A.K., Rathi, A., Zochbauer-Muller, S., Sacchi, N., Fukuyama, Y., Bryant, D., Maitra, A., Heda, S., Fong, K.M., Thunnissen, F., Minna, J.D., Gazdar, A.F. (2000). Promoter methylation and silencing of the retinoic acid receptor-beta gene in lung carcinomas. J Natl Cancer Inst. 92, 1303-1307.
    Wang, Y.C., Lu, Y.P., Tseng, R.C., Lin, R.K., Chang, J.W., Chen, J.T., Shih, C.M., and Chen, C.Y. (2003). Inactivation of hMLH1 and hMSH2 by promoter methylation in primary non-small cell lung tumors and matched sputum samples. J Clin Invest. 111, 887-895.
    Weber, M., Hellmann, I., Stadler, M.B., Ramos, L., Paabo, S., Rebhan, M., and Schubeler, D. (2007). Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome. Nat Genet. 39, 457-466.
    Wei, S.H., Balch, C., Paik, H.H., Kim, Y.S., Baldwin, R.L., Liyanarachchi, S., Li, L., Wang, Z., Wan, J.C., Davuluri, R.V., Karlan, B.Y., Gifford, G., Brown, R., Kim, S., Huang, T.H., and Nephew, K.P. (2006). Prognostic DNA methylation biomarkers in ovarian cancer. Clin Cancer Res. 12, 2788-2794.
    WHO Histological Typing of lung cancers 2nd ed. 1981Geneva/London
    Wolf, H., Saukkonen, K., Anttila, S., Karjaleinen, A., Vainio, H., and Ristikami, A. (1998). Expression of cyclooxygenase-2 in human lung carcinoma. Cancer Res. 58, 4997–5001.
    Wolber, P.K., Collins, P.J., Lucas, A.B., De Witte, A., and Shannon, K.W. (2006). The Agilent in situ-synthesized microarray platform. Methods Enzymol. 410, 28-57.
    Xiong, M., Elson, G., Legarda, D., and Leibovich, S. J. (1998). Production of vascular endothelial growth factor by murine macrophages: regulation by hypoxia, lactate, and the inducible nitric oxide synthase pathway. Am J Pathol. 153, 587− 598.
    Zheng, Z., Chen, T., Li, X., Haura, E., Sharma, A., and Bepler, G. (2007). DNA synthesis and repair genes RRM1 and ERCC1 in lung cancer. N Engl J Med. 356, 800–808.

    下載圖示 校內:2014-08-26公開
    校外:2015-08-26公開
    QR CODE