簡易檢索 / 詳目顯示

研究生: 許瑞峰
Hsu, R-F
論文名稱: 微小材料機械特性測試系統之設計製作與其在電子封裝與高分子材料上之應用
Design and Fabrication of a Small Scale Material Testing System and Its Application on the Characterization of Electronics Packaging and Polymer Materials
指導教授: 陳國聲
Chen, Kuo-Shen
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 200
中文關鍵詞: 材料測試熱循環潛變高分子材料電子封裝材料
外文關鍵詞: PMMA, Material Testing, Thermal Cycling, Electronic Packaging, Creep
相關次數: 點閱:130下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 對於一個設計者而言,選擇合適的材料往往都是產品成功的先決條件,材料的適用性往往根據測試結果得知。隨著高科技的發達,許多的材料都必須應用於小尺寸的結構下,如電子封裝中的鍚球、生物晶片等結構,若要對這些材料做測試,傳統的測試機構都太過於龐大,商業上的小尺寸測試機構又太過昂貴且彈性不高,而以微機電系統所發展出之微材料測試之尺度又太過微小。有鑑於此,本文的目標在於發展一微小尺寸多功能材料測試系統,能針對小尺寸材料特性與產品之實際運用作完善的測試,加速測試過程以獲得值得信賴的測試結果,並應用於高分子材料及BGA電子封裝中之接線材料(銲錫)的測試。本文在材料測試系統之設計製作部分,首先針對本文之系統作概念性設計,接下來各別針對材料測試機構與熱循環室之次系統作設計,如溫度控制系統、機構設計,夾具設計等次系統之設計。系統整合完成後接下來作系統之校準與驗証,經實驗結果的驗証,証明本系統應用於金屬材料或高分子材料之實驗結果可達與MTS的微拉力機構同等級之準確度。在材料測試實驗,我們分別對PMMA與銲錫材料作測試,經機械性質測試實驗結果,可探討溫度與濕度對PMMA材料性質的影響及建立PMMA的潛變模型,與錫球的熱疲勞破壞、溫度對錫球材料性質改變等關係,可提供給設計者作為研究設計時的依據。
    本文期望在未來能以現有之系統對其他重要材料進行測試,另外針對試片與夾具作設計以增加其他測試方式,如彎曲、扭轉等測試,並且加入濕度控制系統,可與原有的溫控系統同時進測試環境的濕度與溫度控制,最後期望與其他系統如壓電式適應控制材料測試系統,作搭配做更進一步的應用。

    To a designer, choosing appropriate materials is a prerequisite factor for success since the testing result always determine the suitability of the material. With the advancement of modern technology, mechanical properties of materials apply to small scale structure, such as solder joints in electronic packaging or fluid channels in biochip construction become important to be explored. However, the conventional testing apparatus is too huge to perform appropriate testing and the commercial testing apparatus in small scale is too expensive and lacks flexibility.

    For the reason above, the objective of this thesis is to develop a multi-functional testing system for materials characterization in small scale , to reduce the cost of the testing equipment , to enhance the flexibility of the testing facility , and to accelerate the testing process while maintains the reliability of the testing results. We also apply this system to test polymer materials and solder joints used in electronic packaging. In design and fabrication of this system, we begin with a conceptual design, followed by a series of detail design sub-system for machinery and thermal cycle chamber respectively. After integrating these sub-systems, we calibrate them and used the experiment data of copper film and PMMA obtained via MTS Tytron to verify this system. The results show that the system is able to achieve the same accuracy level as that obtained by the MTS Tytron. In material testing experiment, we test the PMMA and solder joints. From the test results, we can understand the influence of temperature and humidity on the material properties, the relationship between temperature factor, and the thermal fatigue for solder and develop the creep model for PMMA. These results can provide designer necessary information for design.

    In the future, we plan to test other important materials using this system. In addition, with changing the design for specimens and fixtures, this system should have more testing options such as bending and twisting. Finally after integrating humidity control system with the original temperature control unit, the testing environment should be better simulated. In parallel, we also like to incorporate this system with other system such as PZT system for more sophisticated applications.

    中文摘要 I 英文摘要 II 致謝 III 目錄 IV 表目錄 VIII 圖目錄 IX 符號說明 XV 第一章 緒論 1 1.1 材料測試 1 1.2研究目標 2 1.3 本文架構 3 第二章 背景介紹 5 2.1 前言 5 2.2標準測試方式 5 2.3 微小材料測試系統之簡介 12 2.4 高分子材料之背景介紹 20 2.5電子封裝(鍚球)材料之背景介紹 22 2.6 結綸 25 第三章 測試系統設計 26 3.1前言 26 3.2 概念性設計 26 3.3 微小尺寸材料測試機構之功能設計 30 3.3.1 微小尺寸材料測試之機構設計 31 3.3.2 夾具之設計 32 3.3.3 隔熱室剛度模擬 32 3.4 熱循環室之功能設計 39 3.5溫控系統 43 3.5.1 建立隔熱室之轉移函數 43 3.5.2 熱電偶溫度感測器 46 3.5.3 PI控制器 47 3.6致動器與感測器 55 3.7 資料擷取卡的使用與介紹 57 3.8 系統整合與總結 58 3.8.1 微小尺寸材料測試系統之整合 59 3.8.2 熱循環測試系統之整合 59 3.9 結論 61 第四章 測試系統之校準與驗証 62 4.1 前言 62 4.2 感測器之校準 62 4.3測試系統之剛度測試 67 4.4 隔熱室之溫度分佈測試 71 4.5 測試系統之實驗驗証 72 4.6 結論 82 第五章 高分子材料機械性質測試實驗 83 5.1前言 83 5.2 PMMA拉伸測試 83 5.3 PMMA 拉伸測試之實驗結果討論 98 5.4 PMMA潛變測試 103 5.5 PMMA潛變測試之實驗結果討論 114 5.6 結綸 121 第六章 電子封裝材料機械性質測試實驗 123 6.1 前言 123 6.2 焊鍚的拉伸測試 123 6.3 焊點的拉伸與剪切測試 130 6.4 銲接點的熱循環測試 137 6.5 結綸 143 第七章 結論與未來展望 145 7.1 全文歸鈉 145 7.2 結論 146 7.3 本文貢獻 148 7.4 未來工作與展望 149 參考文獻 150 附錄一 實驗設備設計圖 155 附錄1.1 溫控室設計圖 155 附錄1.2 熱循環室設計圖 160 附錄1.3 夾具設計圖 162 附錄1.4 試片設計圖 170 附錄二 電壓轉電流放大電路 172 附錄三 材料測試程式 173 附錄四 熱循環測試程式 195

    [1] J. R. Oliver. et al., “Effect of Thermal Aging on The Shear Strength of Lead-Free Solder Joint, ” International Symposium on Advanced Packaging Materials, pp.152-157, 2000.
    [2] J. S Hwang, Z.Guo and G. Lucey, “ Strengthened Solder Materials for Electronic Packaging, ” Surface Mount International Conference San Jose, California, USA, Auguet/September, pp. 45-51, 1993.
    [3] L. Heiner, ” Development of Low Loop, Long Length, Hydrostatically Extruded Bonding Wire, ” International Symposium on Advanced Packaging Materials, 1997.
    [4] M. Pecht, P. Lall and D. Barker, “Development of an Alternative Wire Bond Test Technology, ” IEEE Transactions on Components, Packaging, and Manufacturing Technology, Part A, Vol. 17, No. 4, pp. 610-615, 1994.
    [5] 王佳新,應用三維有限元素模型探討銲線製程參數對銲線迴路形狀影響之研究, 國立中正大學機械研究所碩士論文,民國90年。
    [6]. 趙永清,金線熱機械性質量測與熱音波銲線路徑模擬, 國立中正大學機械研究所碩士論文,民國87。
    [7] 陳信龍,“當分子變成了一條長鏈-窺探高分子的微觀世界”, 科學發展,第359期,1999年11月。
    [8] 郭建志,高分子的高科技應用,高立圖書有限公司,台北,民國77年。
    [9] 林建中,高分子加工與工程,文京圖書有限公司,台北,民國71年。
    [10] A. M. S. Hamouda, “The influence of humidity on the deformation and fracture behaviour of PMMA, ” Journal of Materials Processing Technology, Vol. 124, pp. 238–243, 2002.
    [11] 張家禎編譯,聚合物黏彈性概論,復文圖書有限公司,台北,民國75年。
    [12] 劉國雄、林樹均、李勝隆、鄭晃忠、葉均蔚,工程材料力學,全華科技圖書股份有限公司,1996。
    [13] 楊省樞,“覆晶技術”,工業材料,Vol. 127,pp.90~96,1997.
    [14] J. W. Morris, “Fatigue Lives on 60Sn/40Pb Solder Joints Made with Different Cooling Rates,” , Transactions of the ASME, J. of Electronic Packaging, vol. 114, pp.104-108, 1992.
    [15] P. L. Hacke . et al., “Modeling of Thermomechanical Fatigue of 63Sn-37Pb Alloy” , Thermomechanical Fatigue Behavior of Materials Vol.1, Huseyin Sehitoglu edit, ASTM STP 1186, 1993.
    [16] 馮克林,“簡談電子元件銲錫可靠度”,工業材料,Vol. 124, pp. 93~99, 1997.
    [17] Z. Mei, J. W. Morris, and M. C. Shine, “Superplastic Creep of Eutectic Tin-Lead Solder Joints,” Journal of Electronic Packaging, Vol. 113, No. 6, pp. 109~114, 1991.
    [18] 楊傳鏈,添加Sb對Sn-Ag無鉛銲料銲點微結構與剪切強度之影響, 國立成功大學機械研究所碩士論文,民國91年。
    [19] 林進誠、鄧惠源等編著,材料實驗,高立圖書有限公司,台北,民國80年。
    [20] 廖顯大,材料力學,高立圖書有限公司,台北,民國80年。
    [21] 林樹均等編著,材料工程實驗與原理,全華科技圖書有限公司,台北,民國79年。
    [22] K-S. Chen, Materials Characterization and Structural Design of Ceramic Micro Turbomachinery, Ph. D. Thesis, Dept, of Mechanical Engineering, Massachusetts Institute of Technology, 1999.
    [23] 周安琪、張士欽編著,實驗材料科學,文京圖書有限公司,台北,民國66年。
    [24] 姚枚、陳鴻賓,金屬機械性能,全華科技圖書有限公司,台北,民國84年。
    [25] Instron 綱站http://www.instron.com/products/index.asp
    [26] ESPEC綱站http://www.espec.com/features/reports/tecrep9.pdf
    [27] 陳壽康,“The application of reliability test in IC assembly process”,成功大學機械系專題討論講義,2000年5月2日。
    [28] T. M. Niu, E. J. Burke, W. E. Black and J. R. Case, “6-Axis Sub- micro Fatigue Tester,” Proceeding of the ASME/JSME Conference on Electronic Packaging , pp. 937~945, 1992.
    [29] K. N. Kapur. et al., “Multi-Axis Stiffness Measurements on surface Mounted Fine Pitch Leads,” Advance in Electronic Packaging, Vol. 10-2, pp. 1273~1280, 1995.
    [30] M. Lu and S. Liu, “A Multi-axial Thermo-Mechanical Fatigue Tester for Electronic Packaging Materials,” Sensing Modeling and Simulation in Emerging Electronic Packaging, Vol. 17, pp.87~92, 1996.
    [31] C. Marano, M. Rink, “Shear yielding threshold and viscoelasticity in an amorphous glassy polymer: a study – acrylonitrile copolymer,” Polymer, Vol. 42, pp. 2113~2119, 2001.
    [32] E. Andreassen, “Stress relaxation of polypropylene fibres with various morphologies,” Polymer , Vol. 40, pp. 3909~3918, 1999.
    [33] M. Ohring, Reliability and failure of electronic materials and devices, Academic Press, New York, 1998.
    [34] P. L. Hacke, et al., “Modeling of Thermomechanical Fatigue of 63Sn-37Pb Alloy,” Thermomechanical Fatigue Behavior of Materials Vol.1, Huseyin Sehitoglu Edit, ASTM STP 1186, 1993.
    [35] T. S. E. Summers and J. W. Morris, Jr, “Isothermal fatigue behavior of Sn-Pb solder joints,” Journal of Electronic Packaging, Vol. 112, pp. 94~100, 1990.
    [36] M. A. Palmer, et al.,“Thermomechanical fatigue testing and analysis of solder alloys,” Journal of Electronic Packaging, Vol. 122, pp. 48~54, 2000.
    [37] C. L. Sanders, Piezo-induced fatigue of solder joints, MIT, M. S. thesis, 2000.
    [38] D. T. Read, J.W. Dally, “Fatigue of microlithographically- patterned free-standing aluminum thin film under axial stresses,” Journal of Electronic Packaging, Vol. 117, pp. 1~5, 1995.
    [39] 陳柏榮,壓電驅動材料測試系統之實現與其在電子封裝上之應用,國立成功大學機械系碩士論文,民國91年。
    [40] G. Pahl and W, Beitz, Engineering Design , The Design Council, 1984.
    [41] C. M. Close, et al., Modeling and Analysis of Dynamic Systems , 3th Edition , John Wiley & Sons, 2002.
    [42] 張碩,Automatic Control System , 4th Edition , 鼎茂圖書,台北市,86年。
    [43] MTI instruments division of mechanical technology inc., “MTI accumeasure 1500, catalog,” NY, 2001.
    [44] “中斷的認識與應用” ,成功大學機械系機器人控制與實習課程講義
    [45] S. T. Smith and D. G. Chetwynd, Foundations of Ultraprecision Mechanism Design , USA. Gordon & Breach Science Pub, 1994.
    [46] ABAQUS/Standard 5.8 User’s Manual, Hibbit, Karlsson, and Sorensen, Inc., Pawtucket, Rl, 1998.
    [47] 栗原福次,高分子材料使用法,徐氏基金會,台北,民國79年。
    [48] 陳劉旺,丁金超,高分子加工,高立圖書有限公司,台北,民國77年。
    [49] Goodflellow綱站http://www.goodfellow.com/csp/active/static/A/
    ME30.HTML
    [50] “準分子雷射微細加工機一般使用者訓鋉教材”,成功大學機械系準分子雷射共同實驗室暑期訓練課程講義,2000.
    [51] A. C. Ugural, Mechanics of Materials , McGraw-Hill, New York, 1996.
    [52] 藍立功,材料力學,立功文化事業股份有限公司,桃園市,民國88年,5月。
    [53] M. F. Ashby, et al., , Engineering Materials , Jordan Hill, New York, 1996.
    [54] T. H. Courtney, Mechanical Behavior of Materials , McGraw-Hill, New York, 1990.
    [55] F. Wilhelm., Viscoelasticity , Springer-verlag, New York, 1975.
    [56] Y. M. Haddad, Viscoelasticity of engineering materials , Chapman & Hall, New York, 1995.
    [57] J. Gittus, Creep, viscoelasticity and creep fracture in solids , Applied Science Publishers, New York, 1975.
    [58] J. H. Lau, Solder joint reliability, Van Nostrand Reinhold, New York, 1991.
    [59] R. K. Mahidhara, K. L. Murty and F. M. Haggag, “Creep and Mechanical Properties of SN-5%SB Solder,” Symposium Proceeding, Feb.10-13, 1997. Orlando, Fl. pp.75-83,
    [60] Manko, Howard H, Solders and soldering, McGraw-Hill, New York, 1979.
    [61] K. R. Mahidhara, et al., Design & reliability of solders and solder interconnections, TMS, Warrendale, Penn., 1997.
    [62] J. H. Lau, Thermal Stress and Strain in Microelectronics Packaging, Van Nostrand Reinhold, Now York, 1993.

    下載圖示 校內:立即公開
    校外:2003-07-25公開
    QR CODE