| 研究生: |
鍾旻憲 Chung, Min-Hsien |
|---|---|
| 論文名稱: |
迷宮式軸封性能之計算流體力學分析 Investigations on the Performance of Labyrinth Seals Using Computation Fluid Dynamics Analysis |
| 指導教授: |
陳鐵城
Chen, Tei-Chen |
| 共同指導教授: |
鄭友仁
Jeng, Yeau-Ren |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 66 |
| 中文關鍵詞: | 迷宮式軸封 、CFD 、k-?紊流模型 、排放係數 、壓降 |
| 外文關鍵詞: | labyrinth seal, CFD, k-? turbulence model, discharge coefficient, pressure drop |
| 相關次數: | 點閱:146 下載:9 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究分析壓力比、間隙、齒距、齒厚及齒長分別對迷宮式軸封性能的影響。利用CFD軟體ANSYS FLUENT對迷宮式軸封內流場進行模擬計算,Navier-Stokes方程式是應用有限體積法配合紊流模型來求解,本文選擇使用k-ε紊流模型,由計算所得之排放係數、速度、壓力及壓降與不同軸封參數進行比較。數值分析結果顯示壓力比及間隙為主要影響軸封性能的參數,其次為齒距及齒厚,齒長幾乎不影響,並且越小的壓力比及間隙、越大的齒距及齒厚,其軸封密封能力會越好。
This study analyzed the effects of pressure ratio, clearance, tooth pitch, tooth thickness and tooth height on the performance of labyrinth seals. The CFD software ANSYS FLUENT is used to predict the flow field in the labyrinth seal. Navier-Stokes equations are solved using finite volume method by employing turbulence model. This study used k-ε turbulence model. The discharge coefficient, velocity, pressure and pressure drop obtained from the calculation are compared with different seal parameters. Numerical analysis results show that the pressure ratio and clearance are the main parameters that affect the performance of the seal, followed by the tooth pitch and tooth thickness, and the tooth height has almost no effect. Finally, the seal leakage performance becomes better as pressure ratio and clearance decrease and as tooth pitch and tooth thickness increase.
[1] Parsons C. J., “The Labyrinth Packing, ” Engineer, Vol. 165, No. 4280, pp. 23-84,(1938).
[2] Lattime S. B, Steinetz B. M., “Turbine engine clearance control systems: current
practices and future directions,” Journal of Propulsion and Power, Vol. 20, pp. 302-311 (2004).
[3] Denecke J., Schramm V., Kin S., “Influence of Rub-Grooves on Labyrinth Seal
Leakage,” Journal of Turbomachinery, Vol.125, pp. 387-393, (2003).
[4] Chupp R. E., Hendricks R. C., Lattime S B, et al., “Sealing in turbo machinery,
Journal of Propulsion and Power,” Vol. 22, pp. 313-349, (2006).
[5] Vermes G., “A fluid mechanics approach to the labyrinth seal leakage problem,”Trans, ASME J. Eng. Power, pp. 161-169, (1961).
[6] Stocker H. L., Cox D. M., Holle G. F., “Aerodynamic performance of conventional and advanced design labyrinth seals with solid-smooth, abradable, and honeycomb lands,” NASA CR-135307, (1977).
[7] Wittig S., Doerr L. and Kim S., “Scaling effects on leakage losses in labyrinth seals,”Trans. ASME J. Eng. Power, Vol. 105, pp. 305-309, (1983).
[8] Tipton D. L., Scott T. E. and Vogel R. E., “Labyrinth seal analysis – Vol. III :
analytical and experimental development of a design model for labyrinth seals,”
AFWAL-TR-85-2103, Vol. III, (1986).
[9] Zimmermann H. and Wolff K. H., “Air system correlations, Part 1: labyrinth seals,”ASME paper 98- GT-206, (1998).
[10] Moore, J. J., “Three-Dimensional CFD Rotordynamic Analysis of Gas Labyrinth
Seals,” ASME J. Vibr. Acoust., Vol. 125, pp. 427–433,(2003).
[11] EI-Gamal H. A., Awad T. H. and Saber E., “Leakage from Labyrinth Seals Under
Satationary and Rotating Conditions,” Tribology International, Vol. 29, No. 4, pp.
291-297,(1996).
[12] Jiang J., Yang Y., Li Y., et al., “Numerical and experimental investigation on
uniformity of pressure loads in labyrinth seals,” Adv Mech Eng. Epub ahead of print 7 September, (2017).
[13] Kim T. S. and Cha K. S., “Comparative analysis of the influence of labyrinth seal configuration on leakage behavior,” J. Mech. Sci. Technol., Vol. 23, no. 10, pp. 2830–2838, (2009).
[14] Gamal A. J. M. and Vance J. M., “Labyrinth seal leakage tests: tooth profile,
tooththickness, and eccentricity effects,” Journal of Engineering for Gas Turbinesand Power 2008;130(1):012510.
[15] Rhode D. L., “Hibbs R. Tooth thickness effect on the performance of gas labyrinth seals,” ASME Journal of Tribology, Vol.114, pp. 790-795, (1992).
[16] Afzal S, Hassan, S. M., Sohaib M. et al., “Numerical analysis of flow in cavities of labyrinth seals,” In: Proceedings of 2012 9th international Bhurban conference on applied sciences & technology (IBCAST), pp. 208–212, (2012).
[17] Suryanarayanan, S. and Morrison, G. L., “Analysis of Flow Parameters Influencing Carry-Over Coefficient of Labyrinth Seals,” ASME Paper No. GT2009-59245, (2009).
[18] Suryanarayanan, S. and Morrison, G. L., “Effect of Tooth Height, Tooth Width and Shaft Diameter on Carry-Over Coefficient of Labyrinth Seals”, ASME Paper No. GT2009-59246, (2009).
[19] Wittig S., Schelling U., Kim S. et al., “Numerical predictions and measurements of discharge coefficients in labyrinth seals,” In: ASME 32nd international gas turbine conference and exhibition, Anaheim, CA, ASME Paper No. GT1987-188, (1987).
[20] Subramanian S., Sekhar A. S. and Prasad B. V. S. S. S., “Performance analysis of a rotating labyrinth seal with radial growth,” ASME Turbo Expo 2013, ASME Paper
GT2013-95708, San Antonio, USA (2013).
[21] Zimmermann H. and Wolff K. H., “Comparison Between Empirical and Numerical Labyrinth Flow Correlations,” ASME Paper 87-GT-86 (1987).
[22] Rhode D. L., Ko, S. and Morrison G., “Leakage Optimization of Labyrinth Seals
Using a Navier-Stokes Code,” Tribol. Trans., 37, No. 1, pp. 105– 110 (1994).
[23] Rhode D. L., Ko, S. and Morrison G., “Experimental and numerical assessment of an advanced labyrinth seal,” STLE Tribology Transactions, Vol. 37(4): pp. 743-750 (1994).
[24] Rhode D. L., Broussard D. H. and Veldanda, S. B., “Labyrinth Seal Leakage
Resistance and Visualization Experiments in a Novel,” VariableConfiguration
Facility, Tribol. Trans., Vol. 36, pp. 213–218 (1993).
[25] Yakhot V., Orszag S.A., Thangam S., Gatski T. B. and Speziale C. G., “Development of turbulence models for shear flows by a double expansion technique,” Physics of Fluids A, Vol. 4, No. 7, pp. 1510-1520 (1992).
[26] Launder B. E. and Spalding D. B., “The numerical computation of turbulent flows,”Computer Methods in Applied Mechanics and Engineering, Vol. 3, pp. 269-289, (1974).
[27] Viegas J. R., Rubesin M. W. and Horstman C. C.. “On the Use of Wall Functions as Boundary Conditions for Two-Dimensional Separated Compressible Flows,” Technical Report AIAA-85-0180. AIAA 23rd Aerospace Sciences Meeting, Reno,
Nevada, (1985).
[28] Janicka J. and Kollmann W., “A Numerical Study of Oscillating Flow Around a
Circular Cylinder,” Combustion and Flame, Vol. 44, pp. 319–336, (1982).
[29] Thakur A. G., Rao T. E., Mukhedkar M. S. and Nandedkar V. M., “Application of
Taguchi Method for Resistance Spot Welding of Galvanized Steel, ” Journal of
Engineering and Applied Sciences, Vol. 5, No. 11, pp. 22-26, (2010).