簡易檢索 / 詳目顯示

研究生: 鍾旻憲
Chung, Min-Hsien
論文名稱: 迷宮式軸封性能之計算流體力學分析
Investigations on the Performance of Labyrinth Seals Using Computation Fluid Dynamics Analysis
指導教授: 陳鐵城
Chen, Tei-Chen
共同指導教授: 鄭友仁
Jeng, Yeau-Ren
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 66
中文關鍵詞: 迷宮式軸封CFDk-?紊流模型排放係數壓降
外文關鍵詞: labyrinth seal, CFD, k-? turbulence model, discharge coefficient, pressure drop
相關次數: 點閱:146下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究分析壓力比、間隙、齒距、齒厚及齒長分別對迷宮式軸封性能的影響。利用CFD軟體ANSYS FLUENT對迷宮式軸封內流場進行模擬計算,Navier-Stokes方程式是應用有限體積法配合紊流模型來求解,本文選擇使用k-ε紊流模型,由計算所得之排放係數、速度、壓力及壓降與不同軸封參數進行比較。數值分析結果顯示壓力比及間隙為主要影響軸封性能的參數,其次為齒距及齒厚,齒長幾乎不影響,並且越小的壓力比及間隙、越大的齒距及齒厚,其軸封密封能力會越好。

    This study analyzed the effects of pressure ratio, clearance, tooth pitch, tooth thickness and tooth height on the performance of labyrinth seals. The CFD software ANSYS FLUENT is used to predict the flow field in the labyrinth seal. Navier-Stokes equations are solved using finite volume method by employing turbulence model. This study used k-ε turbulence model. The discharge coefficient, velocity, pressure and pressure drop obtained from the calculation are compared with different seal parameters. Numerical analysis results show that the pressure ratio and clearance are the main parameters that affect the performance of the seal, followed by the tooth pitch and tooth thickness, and the tooth height has almost no effect. Finally, the seal leakage performance becomes better as pressure ratio and clearance decrease and as tooth pitch and tooth thickness increase.

    摘要 i 誌謝 xiii 目錄 xiv 表目錄 xvii 圖目錄 xviii 符號 xx 第一章 緒論 1 1-1 前言 1 1-2 文獻回顧 4 1-3 研究動機及目的 7 1-4 本文架構 9 第二章 迷宮式軸封概述 10 2-1 迷宮式軸封之幾何外型 10 2-2 無因次化(Non-dimensionlization) 11 2-3 紊流(Turbulent) 11 2-4 排放係數(Discharge coefficient) 12 第三章 CFD軟體分析與基礎理論 13 3-1 基本假設 13 3-2 統御方程式(Navier-Stokes equations) 13 3-3 數值分析軟體(ANSYS FLUENT) 15 3-4 雙參數方程式紊流模型(k-εTurbulence Model) 15 3-4-1 RNG k-ε紊流模型 15 3-4-2 有效黏滯係數 16 3-4-3 RNG渦流修正 17 3-4-4 有效普朗特數(Prandtl number)的倒數 17 3-4-5 Rε附加項 18 3-5 標準壁面函數(Standard wall functions) 19 3-5-1 動量 19 3-5-2 能量 20 3-5-3 紊流 21 3-6 邊界條件 21 3-6-1 邊界條件設定 21 3-6-2 紊流參數設定 22 3-7 網格設計 23 3-7-1 邊界層網格 23 3-7-2 網格密度獨立性 24 3-8 求解器設置 27 3-9 鬆弛因子 27 3-10 收斂條件 28 3-11 模擬流程 30 第四章 結果與討論 31 4-1 壓力比(PR)對軸封性能之影響 32 4-1-1 壓力比(PR)對排放係數C_D之影響 32 4-1-2 壓力比(PR)對軸封內流場壓力與速度之影響 34 4-2 間隙(c)對軸封性能之影響 40 4-2-1 間隙(c)對排放係數C_D之影響 40 4-2-2 間隙(c)對軸封內流場壓力與速度之影響 41 4-3 齒距(W)對軸封性能之影響 44 4-3-1 齒距(W)對排放係數C_D之影響 44 4-3-2 齒距(W)對軸封內流場壓力與速度之影響 44 4-4 齒厚(t)對軸封性能之影響 47 4-4-1 齒厚(t)對排放係數C_D之影響 47 4-4-2 齒厚(t)對軸封內流場壓力與速度之影響 48 4-5 齒長(H)對軸封性能之影響 51 4-5-1 齒長(H)對排放係數C_D之影響 51 4-5-2 齒長(H)對軸封內流場壓力與速度之影響 51 4-6 各參數影響軸封性能之貢獻度 54 4-6-1 田口法 54 4-6-2 參數影響排放係數C_D之貢獻度 57 第五章 結論與未來展望 61 5-1 結論 61 5-2 未來展望 62 參考文獻 63

    [1] Parsons C. J., “The Labyrinth Packing, ” Engineer, Vol. 165, No. 4280, pp. 23-84,(1938).
    [2] Lattime S. B, Steinetz B. M., “Turbine engine clearance control systems: current
    practices and future directions,” Journal of Propulsion and Power, Vol. 20, pp. 302-311 (2004).
    [3] Denecke J., Schramm V., Kin S., “Influence of Rub-Grooves on Labyrinth Seal
    Leakage,” Journal of Turbomachinery, Vol.125, pp. 387-393, (2003).
    [4] Chupp R. E., Hendricks R. C., Lattime S B, et al., “Sealing in turbo machinery,
    Journal of Propulsion and Power,” Vol. 22, pp. 313-349, (2006).
    [5] Vermes G., “A fluid mechanics approach to the labyrinth seal leakage problem,”Trans, ASME J. Eng. Power, pp. 161-169, (1961).
    [6] Stocker H. L., Cox D. M., Holle G. F., “Aerodynamic performance of conventional and advanced design labyrinth seals with solid-smooth, abradable, and honeycomb lands,” NASA CR-135307, (1977).
    [7] Wittig S., Doerr L. and Kim S., “Scaling effects on leakage losses in labyrinth seals,”Trans. ASME J. Eng. Power, Vol. 105, pp. 305-309, (1983).
    [8] Tipton D. L., Scott T. E. and Vogel R. E., “Labyrinth seal analysis – Vol. III :
    analytical and experimental development of a design model for labyrinth seals,”
    AFWAL-TR-85-2103, Vol. III, (1986).
    [9] Zimmermann H. and Wolff K. H., “Air system correlations, Part 1: labyrinth seals,”ASME paper 98- GT-206, (1998).
    [10] Moore, J. J., “Three-Dimensional CFD Rotordynamic Analysis of Gas Labyrinth
    Seals,” ASME J. Vibr. Acoust., Vol. 125, pp. 427–433,(2003).
    [11] EI-Gamal H. A., Awad T. H. and Saber E., “Leakage from Labyrinth Seals Under
    Satationary and Rotating Conditions,” Tribology International, Vol. 29, No. 4, pp.
    291-297,(1996).
    [12] Jiang J., Yang Y., Li Y., et al., “Numerical and experimental investigation on
    uniformity of pressure loads in labyrinth seals,” Adv Mech Eng. Epub ahead of print 7 September, (2017).
    [13] Kim T. S. and Cha K. S., “Comparative analysis of the influence of labyrinth seal configuration on leakage behavior,” J. Mech. Sci. Technol., Vol. 23, no. 10, pp. 2830–2838, (2009).
    [14] Gamal A. J. M. and Vance J. M., “Labyrinth seal leakage tests: tooth profile,
    tooththickness, and eccentricity effects,” Journal of Engineering for Gas Turbinesand Power 2008;130(1):012510.
    [15] Rhode D. L., “Hibbs R. Tooth thickness effect on the performance of gas labyrinth seals,” ASME Journal of Tribology, Vol.114, pp. 790-795, (1992).
    [16] Afzal S, Hassan, S. M., Sohaib M. et al., “Numerical analysis of flow in cavities of labyrinth seals,” In: Proceedings of 2012 9th international Bhurban conference on applied sciences & technology (IBCAST), pp. 208–212, (2012).
    [17] Suryanarayanan, S. and Morrison, G. L., “Analysis of Flow Parameters Influencing Carry-Over Coefficient of Labyrinth Seals,” ASME Paper No. GT2009-59245, (2009).
    [18] Suryanarayanan, S. and Morrison, G. L., “Effect of Tooth Height, Tooth Width and Shaft Diameter on Carry-Over Coefficient of Labyrinth Seals”, ASME Paper No. GT2009-59246, (2009).
    [19] Wittig S., Schelling U., Kim S. et al., “Numerical predictions and measurements of discharge coefficients in labyrinth seals,” In: ASME 32nd international gas turbine conference and exhibition, Anaheim, CA, ASME Paper No. GT1987-188, (1987).
    [20] Subramanian S., Sekhar A. S. and Prasad B. V. S. S. S., “Performance analysis of a rotating labyrinth seal with radial growth,” ASME Turbo Expo 2013, ASME Paper
    GT2013-95708, San Antonio, USA (2013).
    [21] Zimmermann H. and Wolff K. H., “Comparison Between Empirical and Numerical Labyrinth Flow Correlations,” ASME Paper 87-GT-86 (1987).
    [22] Rhode D. L., Ko, S. and Morrison G., “Leakage Optimization of Labyrinth Seals
    Using a Navier-Stokes Code,” Tribol. Trans., 37, No. 1, pp. 105– 110 (1994).
    [23] Rhode D. L., Ko, S. and Morrison G., “Experimental and numerical assessment of an advanced labyrinth seal,” STLE Tribology Transactions, Vol. 37(4): pp. 743-750 (1994).
    [24] Rhode D. L., Broussard D. H. and Veldanda, S. B., “Labyrinth Seal Leakage
    Resistance and Visualization Experiments in a Novel,” VariableConfiguration
    Facility, Tribol. Trans., Vol. 36, pp. 213–218 (1993).
    [25] Yakhot V., Orszag S.A., Thangam S., Gatski T. B. and Speziale C. G., “Development of turbulence models for shear flows by a double expansion technique,” Physics of Fluids A, Vol. 4, No. 7, pp. 1510-1520 (1992).
    [26] Launder B. E. and Spalding D. B., “The numerical computation of turbulent flows,”Computer Methods in Applied Mechanics and Engineering, Vol. 3, pp. 269-289, (1974).
    [27] Viegas J. R., Rubesin M. W. and Horstman C. C.. “On the Use of Wall Functions as Boundary Conditions for Two-Dimensional Separated Compressible Flows,” Technical Report AIAA-85-0180. AIAA 23rd Aerospace Sciences Meeting, Reno,
    Nevada, (1985).
    [28] Janicka J. and Kollmann W., “A Numerical Study of Oscillating Flow Around a
    Circular Cylinder,” Combustion and Flame, Vol. 44, pp. 319–336, (1982).
    [29] Thakur A. G., Rao T. E., Mukhedkar M. S. and Nandedkar V. M., “Application of
    Taguchi Method for Resistance Spot Welding of Galvanized Steel, ” Journal of
    Engineering and Applied Sciences, Vol. 5, No. 11, pp. 22-26, (2010).

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE