| 研究生: |
盧彥廷 Lu, Yen-Ting |
|---|---|
| 論文名稱: |
都會區汽油車輛排放對街道鄰近區域大氣有害空氣污染物濃度之影響 Local Impacts on Air Toxics by Gasoline Vehicle Emission in Urban Area |
| 指導教授: |
蔡俊鴻
Tsai, Jiun-Horng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 206 |
| 中文關鍵詞: | 有害空氣污染物 、揮發性有機物 、BTEX特徵比值 、CMAQ空氣品質模式 |
| 外文關鍵詞: | Hazardous Air Pollutants, airborne VOCs, Characteristic Ratio of BTEX, CMAQ model |
| 相關次數: | 點閱:150 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要探討汽油車輛排放揮發性有機污染物(VOCs)對都會區主要道路旁與附近街廓區域之有害空氣污染物濃度影響與特性。研究於臺南都會區主要道路與街廓執行現場大氣採樣,再利用第三代空氣品質模式(Model-3/CMAQ)模擬有害空氣污染物濃度分布,並評估影響因素。
比較道路旁及街廓內大氣VOCs樣品與同時段空氣品質測站VOCs監測濃度之結果顯示,尖峰時段總VOCs濃度趨勢為道路旁>街廓內>>空品測站;道路旁及街廓內總VOCs濃度與空品測站監測值之比值分別為4.9~10.5倍及3.3~3.9倍。以不同VOCs族群來看,現場空氣樣品與空品測站監測值之比值分別為(1)道路旁:烷類(4.8~9.5倍)、烯類(11.2~25.7倍),芳香烴(4.4~10.3倍);(2)街廓內:3.2~3.8倍(烷類)、8.5~11.2倍(烯類)及3~3.4倍(芳香烴)。離峰時段(13-15時)總VOCs濃度趨勢為道路旁>街廓內>空品測站;道路旁空氣樣品濃度與空品測站比值分別為6.8倍(總VOCs)、7倍(烷類)、13.4倍(烯類)及5.9倍(芳香烴);街廓內濃度與空品測站比值則為6.3倍(總VOCs)、5.2倍(烷類)、9.9倍(烯類)及7.1倍(芳香烴)。深夜時段(23-01時)總VOCs濃度為街廓內>道路旁>空品測站。研究結果顯示道路旁尖峰時段VOCs濃度最高,明顯受到道路移動源排放影響,離峰與街廓內採樣數據仍高於空品測站監測數據約2~3倍;表示空品測站VOCs物種數據並不適合用以評估主要道路及街廓區活動民眾暴露濃度。
探討BTEX特徵比值發現,臺南都會區大氣環境揮發性有機污染物來源以車輛排放為主,於道路旁之影響最為顯著,街廓內地面與空品測站則受移動源與其他排放源影響。利用X/B與B/T特徵比值評估氣團年齡結果顯示,道路旁、街廓內地面與空品測站之大氣樣品皆為年輕空氣,附近污染源影響顯著。
利用CMAQ模擬臺南都會區有害空氣污染物不同時段空間分布特性之結果顯示,於白天民眾活動頻繁,人為排放量較多時段,芳香烴類物種(苯、甲苯、二甲苯與乙苯)在市區呈現明顯高濃度;夜晚時段,大氣環境污染物濃度則受到傳輸擴散影響,污染物濃度亦較白天時段低。醛酮類化合物(甲醛、乙醛)模擬分布結果顯示,高濃度非出現在市區內,而是依風向而出現在市區下風處,外地傳輸影響亦為重要因素。實測值與模擬值比較結果顯示,日夜濃度變化趨勢具一致性,但各物種濃度都呈現低估現象;苯濃度差異最大,尖峰時段道路實測值較模擬值平均高出31.2倍;乙苯差異較小,尖峰時段低估,離峰時段呈現高估現象,差異不超過4倍。探討實測值與模擬值差異原因,調整網格大小、氣象檔輸入、排放量及後續CCTM內部設定化學機制,應能提昇模擬正確性。
This study investigates the exposure concentrations of airborne volatile organic compounds (VOCs) at streetside and inside the block in Tainan downtown area. Both air sampling and air quality model (CMAQ) had been conducted. Air samples were collected at six sites surrounding the photochemical monitoring station (AQMS) during rush and non-rush hours. The BTEX data from AQMS is much lower than sampling data at both streetside and inside the block. VOC concentrations at streetside were much higher than those of inside block and AQMS station. The air quality modeling results indicated an overall slight under-prediction as compared to those from AQMS station. The simulation results showed that the high concentrations were observed in the urban area with high population density. It is implied that the temporal distribution of airborne VOCs in the urban area caused by vehicle emissions.
Alghamdi, M. A., Khoder, M., Abdelmaksoud, A. S., Harrison, R. M., Hussein, T., Lihavainen, H., . Hämeri, K. (2014). Seasonal and diurnal variations of BTEX and their potential for ozone formation in the urban background atmosphere of the coastal city Jeddah, Saudi Arabia. Air Quality, Atmosphere & Health, 7(4).
Caselli, M., de Gennaro, G., Marzocca, A., Trizio, L., & Tutino, M. (2010). Assessment of the impact of the vehicular traffic on BTEX concentration in ring roads in urban areas of Bari (Italy). Chemosphere, 81(3), 306-311.
Chan, C. Y., Chan, L. Y., Wang, X. M., Liu, Y. M., Lee, S. C., Zou, S. C., . . . Fu, J. M. (2002). Volatile organic compounds in roadside microenvironments of metropolitan Hong Kong. Atmospheric Environment, 36, 2039-2047.
Chang, C. C., Sree, U., Lin, Y.-S., & Lo, J.-G. (2005). An examination of 7:00–9:00PM ambient air volatile organics in different seasons of Kaohsiung city, southern Taiwan. Atmospheric Environment, 39(5), 867-884.
Chang, C.C., Wang, J.-L., Candice Lung, S.-C., Liu, S.-C., & Shiu, C.-J. (2009). Source characterization of ozone precursors by complementary approaches of vehicular indicator and principal component analysis. Atmospheric Environment, 43(10), 1771-1778.
Chang, C.C., Wang, J. L., Liu, S.-C., & Candice Lung, S.-C. (2006). Assessment of vehicular and non-vehicular contributions to hydrocarbons using exclusive vehicular indicators. Atmospheric Environment, 40(33), 6349-6361.
Chang, C. C., Chen, T. Y., Chou, C., & Liu, S. C. (2004). Assessment of Traffic Contribution to Hydrocarbons Using 2,2-Dimethylbutane as a Vehicular Indicator. Terrestrial, Atmospheric and Oceanic Sciences, 15, 697-711.
Che, W., Zheng, J., Wang, S., Zhong, L., & Lau, A. (2011). Assessment of motor vehicle emission control policies using Model-3/CMAQ model for the Pearl River Delta region, China. Atmospheric Environment, 45(9), 1740-1751.
Cheng, L., Fu, L., Angle, R. P., & Sandhu, H. S. (1997). Seasonal variations of volatile organic compounds in EDMONTON, ALBERTA. Atmospheric Environment, 31, 239-246.
Chiang, H. L., Hwu, C. S., Chen, S. Y., Wu, M. C., Ma, S. Y., & Huang, Y. S. (2007). Emission factors and characteristics of criteria pollutants and volatile organic compounds (VOCs) in a freeway tunnel study. Sci Total Environ, 381(1-3), 200-211.
Chiang, H. L., Tsai, J. H., Chen, S. Y., Lin, K. H., & Ma, s. Y. (2007). VOC concentration profiles in an ozone non-attainment area: A case study in an urban and industrial complex metroplex in southern Taiwan. Atmospheric Environment, 41(9), 1848-1860.
Collet, S., Kidokoro, T., Sonoda, Y., Lohman, K., Karamchandani, P., Chen, S.-Y., & Minoura, H. (2012). Air quality impacts of motor vehicle emissions in the south coast air basin: Current versus more stringent control scenario. Atmospheric Environment, 47, 236-240.
Foley, K. M., Roselle, S. J., Appel, K. W., Bhave, P. V., Pleim, J. E., Otte, T. L., Bash, J. O. (2010). Incremental testing of the Community Multiscale Air Quality (CMAQ) modeling system version 4.7. Geoscientific Model Development, 3, 205-226.
Gelencser, A., Siszler, K., & Hlavay, J. (1997). Toluene–benzene concentration ratio as a tool for characterizing the distance from vehicular emission sources. Environmental Science & Technology, 31, 2869-2872.
Gsella, A., de Meij, A., Kerschbaumer, A., Reimer, E., Thunis, P., & Cuvelier, C. (2014). Evaluation of MM5, WRF and TRAMPER meteorology over the complex terrain of the Po Valley, Italy. Atmospheric Environment, 89, 797-806.
Hagler, G. S. W., Baldauf, R. W., Thoma, E. D., Long, T. R., Snow, R. F., Kinsey, J. S., Gullett, B. K. (2009). Ultrafine particles near a major roadway in Raleigh, North Carolina: Downwind attenuation and correlation with traffic-related pollutants. Atmospheric Environment, 43(6), 1229-1234.
Hsieh, C. C., & Tsai, J. H. (2003). VOC concentration characteristics in Southern Taiwan. Chemosphere, 50, 545-556.
Karner, A. A., Eisinger, D. S., & Niemeier, D. A. (2010). Near-Roadway Air Quality Synthesizing the Findings from Real-World Data. Environmental Science & Technology, 44, 5334-5344.
Lin, T.-Y., Sree, U., Tseng, S.-H., Chiu, K. H., Wu, C.-H., & Lo, J.-G. (2004). Volatile organic compound concentrations in ambient air of Kaohsiung petroleum refinery in Taiwan. Atmospheric Environment, 38(25), 4111-4122.
Liu, P. W., Yao, Y. C., Tsai, J. H., Hsu, Y. C., Chang, L. P., & Chang, K. H. (2008). Source impacts by volatile organic compounds in an industrial city of southern Taiwan. Sci Total Environ, 398(1-3), 154-163.
Luecken, D. J., Hutzell, W. T., & Gipson, G. L. (2006). Development and analysis of air quality modeling simulations for hazardous air pollutants. Atmospheric Environment, 40(26), 5087-5096.
Luecken, D. J., Hutzell, W. T., Strum, M. L., & Pouliot, G. A. (2012). Regional sources of atmospheric formaldehyde and acetaldehyde, and implications for atmospheric modeling. Atmospheric Environment, 47, 477-490.
Luecken, D. J., Phillips, S., Sarwar, G., & Jang, C. (2008). Effects of using the CB05 vs. SAPRC99 vs. CB4 chemical mechanism on model predictions: Ozone and gas-phase photochemical precursor concentrations. Atmospheric Environment, 42(23), 5805-5820.
Marshall, J. D., Nethery, E., & Brauer, M. (2008). Within-urban variability in ambient air pollution: Comparison of estimation methods. Atmospheric Environment, 42(6), 1359-1369.
Mohan Rao, A. M., Pandit, G. G., Sain, P., Sharma, S., Krishnamoorthy, T. M., & Nambi, K. S. V. (1997). Non-methane hydrocarbons in industrial locations of of Bombay. Atmospheric Environment, 31, 1077-1085.
Monod, A., Sive, B. C., Avino, P., Chen, T., Blake, D. R., & Sherwood Rowland, F. (2001). Monoaromatic compounds in ambient air of various sites a focus on correlations between the xylenes and ethylbenzene. Atmospheric Environment, 35, 135-149.
Muezzinoglu, A., Odabasi, M., & Oant, L. (2001). Volatile organic compounds in the air of Izmir, Turkey. Atmospheric Environment, 35, 753-760.
Na, K., & Kim, Y. P. (2001). Seasonal characteristics of ambient volatile organic compounds in Seoul, Korea. Atmospheric Environment, 35, 2603-2614.
Na, K., Kim, Y. P., Moon, I., & Moon, K. C. (2004). Chemical composition of major VOC emission sources in the Seoul atmosphere. Chemosphere, 55(4), 585-594.
Na, K., Kim, Y. P., Moon, K. C., Moon, I., & Fung, K. (2001). Concentrations of volatile organic compounds in an industrial area of Korea. Atmospheric Environment, 35, 2747-2756.
Na, K., Moon, K.-C., & Kim, Y. P. (2005). Source contribution to aromatic VOC concentration and ozone formation potential in the atmosphere of Seoul. Atmospheric Environment, 39(30), 5517-5524.
Ohura, T., Amagai, T., & Fusaya, M. (2006). Regional assessment of ambient volatile organic compounds in an industrial harbor area, Shizuoka, Japan. Atmospheric Environment, 40(2), 238-248.
Olson, D. A., & McDow, S. R. (2009). Near roadway concentrations of organic source markers. Atmospheric Environment, 43(18), 2862-2867.
Padro-Martinez, L. T., Patton, A. P., Trull, J. B., Zamore, W., Brugge, D., & Durant, J. L. (2012). Mobile monitoring of particle number concentration and other traffic-related air pollutants in a near-highway neighborhood over the course of a year. Atmos Environ (1994), 61, 253-264.
Seigneur, C., Pun, B., Lohman, K., & Wu, S. Y. (2003). Regional modeling of the atmospheric fate and transport of benzene and diesel particles. Environmental Science & Technology, 37, 5236-5246.
Sexton, K., Adgate, J. L., Ramachandran, G., Pratt, G. C., Mongin, S. J., STock, T. H., & Morandi, M. T. (2004). Comparison of Personal, Indoor, and Outdoor Exposures to Hazardous Air Pollutants in Three Urban. Environmental Science & Technology, 38, 423-430.
Stein, A. F., Isakov, V., Godowitch, J., & Draxler, R. R. (2007). A hybrid modeling approach to resolve pollutant concentrations in an urban area. Atmospheric Environment, 41(40), 9410-9426.
Suthawaree, J., Tajima, Y., Khunchornyakong, A., Kato, S., Sharp, A., & Kajii, Y. (2012). Identification of volatile organic compounds in suburban Bangkok, Thailand and their potential for ozone formation. Atmospheric Research, 104-105, 245-254.
Thepanondh, S., Varoonphan, J., Sarutichart, P., & Makkasap, T. (2010). Airborne Volatile Organic Compounds and Their Potential Health Impact on the Vicinity of Petrochemical Industrial Complex. Water, Air, & Soil Pollution, 214(1-4), 83-92.
Tiwari, V., Hanai, Y., & Masunaga, S. (2010). Ambient levels of volatile organic compounds in the vicinity of petrochemical industrial area of Yokohama, Japan. Air Qual Atmos Health, 3(2), 65-75.
Tsai, J. H., Hsu, Y. C., & Yang, J. Y. (2004). The relationship between volatile organic profiles and emission sources in ozone episode region-a case study in Southern Taiwan. Sci Total Environ, 328(1-3), 131-142.
Turaga, R. M. R., Noonan, D., & Bostrom, A. (2011). Hot spots regulation and environmental justice. Ecological Economics, 70(7), 1395-1405.
Vette, A., Burke, J., Norris, G., Landis, M., Batterman, S., Breen, M., . . . Community Action Against Asthma Steering, C. (2013). The Near-Road Exposures and Effects of Urban Air Pollutants Study (NEXUS): study design and methods. Sci Total Environ, 448, 38-47.
Wang, X. M., Sheng, G. Y., Fu, J. M., Chan, C. Y., Lee, S. C., Chan, L. Y., & Wang, Z. S. (2002). Urban roadside aromatic hydrocarbons in three cities of the Pearl River Delta, People’s Republic of China. Atmospheric Environment, 36, 5141-5148.
Yao, Y. C., Liu, P. W., Hsu, Y. C., Chang, T. C., & Tsai, J. H. (2009). Characterization of non-methane organic compounds collected in an industrial urban area. Int. J. Enviroment and Pollution, 39, 392-404.
Ying, Q., & Li, J. (2011). Implementation and initial application of the near-explicit Master Chemical Mechanism in the 3D Community Multiscale Air Quality (CMAQ) model. Atmospheric Environment, 45(19), 3244-3256.
Yu, S., Eder, B., Dennis, R., Chu, S.-H., & Schwartz, S. E. (2006). New unbiased symmetric metrics for evaluation of air quality models. Atmospheric Science Letters, 7(1), 26-34.
Yu, Y., Sokhi, R. S., Kitwiroon, N., Middleton, D. R., & Fisher, B. (2008). Performance characteristics of MM5–SMOKE–CMAQ for a summer photochemical episode in southeast England, United Kingdom. Atmospheric Environment, 42(20), 4870-4883.
Yuan, H. W., Yin, H. L., Huang, Y., Qian, S., Xie, Z. W., Su, Q. K., & Qin, Q. (2012). Study on the Pollution Characteristic of VOCs in Ambient Air of Chengdu. Advanced Materials Research, 610-613, 1889-1894.
行政院環保署,2002,「有機性有害空氣污染物排放特性調查與管制策略研究」。
行政院環保署,2009,「亞硝酸(HONO)形成機制對空氣品質模式(CMAQ)模擬結果之影響效應研究」。
行政院環保署,2011,「前往美國田納西大學進行相關空氣品質模式評估工具操作研習」。
工業技術研究院綠能與環境研究所,2012,「固定污染源空氣污染物危害影響
評估暨消費性產品揮發性有機物管制推動計畫」。
桃園縣政府環境保護局,2013,「南加州空氣品質管理實務研習訓練先期計畫
-赴南加州空氣品質管理實務考察觀摩」。
蔡德明,2006,「應用Models-3/CMAQu3PC cluster研究高速公路網與電廠對南高屏比區臭氧濃度之影響」,國立成功大學環境工程學系博士論文,台南。
鄭凱育,2002,「以Models-3及排放源資料之改進模擬近地表大氣之臭氧濃度」,國立成功大學環境工程學系碩士論文。
簡珊萍,2013,「探討區域尺度氣候變遷對台灣地區氣象場及污染物濃度模擬的影響」,國立中央大學大氣科學學系碩士論文。
莊博清,2001,「中尺度 MM5 數值模式與大氣擴散模式之整合應用研究」,國立 中央大學大氣物理研究所碩士論文。
王建鈞,2005,「台灣地區空氣污染物排放處理系統之建立—以SMOKE為基礎」,國立雲林科技大學環境與安全衛生工程系碩士論文。
賴軍佑,2011,「境外傳輸之懸浮微粒及其前驅物對台灣之長期影響模擬分析」,國立雲林科技大學環境與安全衛生工程系碩士論文。
劉家良,2009,「台北都會鄰近區域大氣環境中揮發性有機物之特性研究」,輔英科技大學環境工程與科學系碩士班碩士論文。
空氣品質模是支援中心網站,http://aqmc.epa.gov.tw。
CMAQ空氣品質模式網站,https://www.cmascenter.org/cmaq。
MM5氣象模式網站,http://www2.mmm.ucar.edu/mm5。