簡易檢索 / 詳目顯示

研究生: 賴銘彬
Lai, Ming-Pin
論文名稱: 自發熱超焓乾重組產富氫合成氣與二氧化碳轉化之實驗研究
Experimental Study on Dry Auto-thermal Reforming under Excess Enthalpy for Hydrogen-rich Syngas Production and CO2 Conversion
指導教授: 賴維祥
Lai, Wei-Hsiang
共同指導教授: 洪榮芳
Horng, Rong-Fang
學位類別: 博士
Doctor
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 171
中文關鍵詞: 二氧化碳減量自發熱乾重組富氫合成氣多孔介質超焓內部熱回饋
外文關鍵詞: Carbon dioxide mitigation, Dry auto-thermal reforming, Hydrogen-rich syngas, Porous medium, Excess enthalpy, Internal heat recirculation
相關次數: 點閱:155下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究乃探討多孔性介質(PM)輔助生質衍生氣體(BDG)進行自發熱乾重組之超焓特性研究。此設計概念乃藉由多孔介質熱傳遞機制來預熱反應氣體,配合觸媒催化來提高富氫合成氣之產率,並藉由觸媒床內部熱回饋特性,來進行超焓(Excess enthalpy)重組反應。實驗過程中,也藉由觸媒填充床可視化影像觀測、紅外線熱影像觀測、產物濃度分析與多孔介質介面溫度量測來進行交互比對,有助於了解觸媒填充床溫度分佈與觸媒反應區的火焰位置。並可配合實驗參數設定來了解多孔介質於混成式觸媒反應流床之熱傳遞特性、快速冷起動與可操作範圍。控制參數可分為CO2/CH4比、O2/CH4比、觸媒選用、觸媒入口溫度、空間速度與多孔性介質規格選用等。實驗結果證實,自發熱乾重組反應不但可自持重組反應過程所需熱量,又可避開積碳區間以維持穩定的合成氣體產出,且參數設定下多孔介質-觸媒流床混成式設計皆可達到超焓重組反應。並由實驗測試結果也可發現,Pt-Ru/Al2O3觸媒於二氧化碳重組反應有較佳之活性。也藉由軸向溫度量測與觸媒流床影像觀測得知,多孔性介質輔助更有助於反應室內部流場重新分配,降低觸媒入口端之徑向溫度梯度與提高反應物混合程度,且熱量都可以穩駐於重組反應區段,進而有效提高火焰傳播速度與火焰穩定性。經實驗反覆測試過後發現,多孔性介質材料以耐熱震性較佳的OBSiC (Oxide-bonded silicon carbide)為最適合重組反應之進行。此外,也藉由二氧化碳自發熱乾重組反應之可操作邊界得知,重組參數之可操作區間主要受限於積碳反應區間(Carbon formation zone)、吸熱反應區間(Endothermic reaction zone)與觸媒燒結區間(Catalyst sintering zone)。因此參數選用上仍以較高的重組效率與較低的能量損失為目標,故本研究選用O2/CH4比為0.7-0.9之間為重組區間,重組效率最高可達79.5%,能量損失介於12.7-24.6%之間。最後,經實驗結果也證實多孔介質-觸媒混成式設計能有效改善反應過程之重組效率,未來不但可配合定置型二氧化碳排放源直接進行熱化學轉化,更有助於即時轉化移動式載具之汙染排放源。

    Dry auto-thermal reforming (DATR) from biomass derived gas (BDG) under excess enthalpy design concepts with porous medium (PM) is investigated in this study. The reaction zone of the porous media arrangement combines the benefits from both porous media and catalyst, such as enhancing the preheating reactant by heat transfer and improving hydrogen-rich syngas production with the surface reaction of the catalyst. Therefore, the excess enthalpy on reforming reaction could be achieved by internal heat recirculation. In the experimental process. It is used by photographic observation, infrared thermal image analysis, products concentration analysis and temperature measurements in catalyst packed-bed by obtaining temperature distribution and images information. The experimental was also matched with the control parameters to understand the heat transfer path, rapid cold processing and operational range of DATR in PM-catalyst hybrid packed-bed. Controlled parameters included CO2/CH4, O2/CH4, catalyst specification, catalyst inlet temperature, gas hourly space velocity and porous medium specification. The experimental results demonstrated that it not only supplied the energy required for self-sustained reaction, but also avoided the coke formation by dry auto-thermal reforming. It has a wide operation region to maintain the moderate production of the syngas. Moreover, the reforming reaction with the hybrid reformer could achieve excess enthalpy under the tested parameters. Therefore, the temperature measurement along the axial position and image observation of the catalyst packed-bed indicated that the porous media arrangement may have been helpful to the uniformity of gas distribution to decrease the gradients of temperature and concentration in the reaction chamber. The peak temperature can thus be stabilized at the interface of the PM and catalyst bed, significantly improving the propagation and stability of the flame. OBSiC (Oxide-bonded silicon carbide) with excellent thermal shock resistance was selected for the excess enthalpy reforming reaction. Furthermore, the operational boundary of DATR indicates that the reforming parameters are primarily limited to the carbon formation zone, the endothermic reaction zone, and the catalyst sintering zone. Operational boundaries are also slightly offset with the heat release rates. Therefore, the selection of the parameters was determined to achieve high reforming efficiency and low energy loss percentage. The results showed that the energy loss percentage was between 12.7% to 24.6% and reforming efficiency was between 64.4% to 79.5% with the best reforming parameter settings (O2/CH4=0.7 to 0.9 and CO2/CH4=0.0 to 2.0). Finally, the experimental results demonstrated that PM-catalyst hybrid design can improve reforming efficiently. It can be applied to set-based thermal power systems and convert the pollution emissions (CO2-rich gas) of mobile vehicles in real time.

    摘要.i 第一章 介紹.iii 第二章 研究背景與理論基礎.iv 第三章 實驗設備與方法v 第四章 二氧化碳重組之觸媒選用與自發熱乾重組反應可行性評估.vi 第五章 多孔介質-觸媒混成式重組器之反應流床設計vii 第六章 觸媒床內部熱回饋特性與可操作邊界探討.viii 第七章 結論.ix 第八章 未來工作.x 誌謝.xi ABSTRACT.xii CONTENTS.xiv LIST OF TABLES.xviii LIST OF FIGURES..xix NOMENCLATURE.xxiii CHAPTER I INTRODUCTION.1 1.1 Energy Supply and Greenhouse Gas Issues.1 1.2 Carbon Dioxide Mitigation Technology.2 1.3 Why Using Carbon Dioxide Reforming? ..4 1.4 Applications of H2-rich Syngas Produced by Reforming.6 1.4.1 Admixing Combustion.7 1.4.2 Fuel Cell Integration.9 1.4.3 Synthesis Technology.11 1.5 Development of Combustion/Reforming Within PM.11 1.6 Motivation14 CHAPTER II BACKGROUND AND FOUNDAMENTALS.16 2.1 The Technology of Fuel processing.16 2.1.1 Carbon Dioxide Reforming Reactions and Side Reactions.16 2.1.2 Theoretical Analysis of the Chemical Equilibrium.16 2.1.3 Basic Definitions and Calculations.18 2.2 Fundamentals of the Catalyst.21 2.2.1 Mechanism of Adsorption and Desorption on the Catalyst Surface.21 2.2.2 Deactivation of Catalyst by Coking.24 2.2.3 Deactivation of Catalyst by Sintering..25 2.2.4 Catalyst Surface Analysis by Physical and Chemical Properties.26 2.3 Catalyst Selection for Carbon Dioxide Reforming Reaction27 2.4 Heat Transfer and Recirculation Within PM31 CHAPTER III EXPERIMENTAL SETUP AND METHOD.35 3.1 Experimental Architecture..35 3.2 Establishing the Experimental Test Platform.35 3.3 Compact Reformer Design.36 3.4 Porous Medium Assisted Design and Flow Field Configuration.37 3.5 Experimental Design and Parameter Settings39 3.5.1 Reforming Parameter Selection.39 3.5.2 Catalyst Selection.40 3.5.3 Porous Medium Selection41 3.6 Experimental Method42 3.7 Analysis and Identification42 3.7.1 Analysis on Gas Product Concentration.42 3.7.2 Catalyst Analysis on Surface Morphology and Specific Surface Area .43 3.7.3 Image Observation on Catalyst Packed-bed43 CHAPTER IV CATALYST SELECTION FOR REFORMING AND EXCESS ENTHALPY REACTION FEASIBILITY ASSESSMENT.45 4.1 Theoretical Chemical Equilibrium Product Analysis45 4.2 Reforming Catalyst Selection and Testing..48 4.2.1 Catalyst Activity Testing48 4.2.2 Catalyst Surface Analysis.49 4.2.3 Isothermal Heating Experiment..52 4.3 Feasibility Assessment for Porous Medium Assisted Reforming Reactions56 4.3.1 Dry Auto-thermal Reforming.56 4.3.2 Porous Medium Assisted Dry Auto-thermal Reforming59 CHAPTER V PM-CATALYST HYBRID REFORMER DESIGN.66 5.1 Experimental Flowchart for Porous Medium Assisted Catalyst Reforming 66 5.2 PM-catalyst Hybrid Reformer..66 5.2.1 Effect of Gas Hourly Space Velocity66 5.2.2 Effect of Porous Medium Assisted.68 5.2.3 Image Observation of Hybrid Packed-bed.71 5.2.4 IR Thermal Imaging Observation of Hybrid Reformer Wall.72 5.3 Cold start Control Strategy and Feeding Parameter Analysis.74 5.3.1 Cold Start Testing.74 5.3.2 Cold Start Control Strategy.80 CHAPTER VI CHARACTERISTICS OF THE INTERNAL HEAT RECIRCULATION AND ITS OPERATION82 6.1 Internal Heat Recirculation Within Hybrid Packed-bed...82 6.2 Characteristics of Hydrogen Production through Excess Enthalpy Reforming.86 6.2.1 Effect of Reforming Parameters.86 6.2.2 Reforming Performance Index.88 6.3 Operational Range.90 CHAPTER VII CONCLUSIONS.93 CHAPTER VIII FUTURE WORK96 REFERENCES.97 APPENDIX.110 PUBLICATION LIST166 VITA171

    [1] S. Dunn, Hydrogen Futures: Toward a Sustainable Energy System, International Journal of Hydrogen Energy, Vol. 27, pp.235-264, 2002.
    [2] P.P. Edwards, V.L. Kuznetsov, W.I.F. David, N.P. Brandon, Hydrogen and Fuel Cells: Towards a Sustainable Energy Future, Energy Policy, Vol. 36, pp.4356-4362, 2008.
    [3] G. Marban, T. Valdes-Solis, Towards the Hydrogen Economy?, International Journal of Hydrogen Energy, Vol. 32, pp.1625-1637, 2007.
    [4] J. Bekkering, A.A. Broekhuis, W.J.T. van Gemert, Optimisation of a Green Gas Supply Chain-A Review, Bioresource Technology, Vol. 101, pp.450-456, 2010.
    [5] X. Hao, H. Yang, G. Zhang, Tri-generation: A new way for landfill gas utilization and its feasibility in Hong Kong, Energy Policy, Vol. 36, pp.3662-3673, 2008.
    [6] X. Jiang, S.G. Sommer, K.V. Christensen, A Review of The Biogas Industry in China, Energy Policy, Vol. 39, pp.6073-6081, 2011.
    [7] S.C. Tsang, J.B. Claridge, M.L.H. Green, Recent Advances in the Conversion of Methane to Synthesis Gas, Catalysis Today, Vol. 23, pp.3-15, 1995.
    [8] J.H. Lunsford, Catalytic Conversion of Methane to More Useful Chemicals and Fuels: a Challenge for the 21st Century, Catalysis Today, Vol. 63, pp.165-74, 2000.
    [9] E. Ryckebosch, M. Drouillon, H. Vervaeren, Techniques for Transformation of Biogas to Biomethane, Biomass and Bioenergy, Vol. 35, pp.1633-45, 2011.
    [10] J.G. Speight, Synthetic Fuels Handbook: Properties, Process, and Performance. New York: USA McGraw-Hill; 2008.
    [11] M. Persson, O. Jönsson, A. Wellinger, Biogas Upgrading to Vehicle Fuel Standards and Grid Injection, IEA Bioenergy 2006.
    [12] D. Deublein, A. Steinhauser, Biogas from Waste and Renewable Resources-An Introduction. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA; 2008.
    [13] G.A. Olah, A. Goeppert, G.K. Surya Prakash, Beyond Oil and Gas: The Methanol Economy. 2nd ed. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA; 2006.
    [14] P. Alivisatos, Carbon Cycle 2.0 at LBNL, In: International Energy Innovation Conference, Taipei, Taiwan, August 5, 2011.
    [15] C.S. Song, Global Challenges and Strategies for Control, Conversion and Utilization of CO2 for Sustainable Development Involving Energy, Catalysis, Adsorption and Chemical Processing, Catalysis Today, Vol. 115, pp.2-32, 2006.
    [16] P. Webley, CO2 Capture Technology Development in the Cooperative Research Centre for Greenhouse Gas Technologies: Australia. In: International Symposium on Carbon Dioxide Reduction, Taipei, Taiwan, March 3, 2009.
    [17] Y. Shiratori, T. Oshima, K. Sasaki, Feasibility of Direct-biogas SOFC, International Journal of Hydrogen Energy, Vol. 33, pp.6316-6321, 2008.
    [18] G. Goula, V. Kiousis, L. Nalbandian, I.V. Yentekakis, Catalytic and Electrocatalytic Behavior of Ni-based Cermets Anodes under Internal Dry Reforming of CH4+CO2 Mixtures in SOFCs, Solid State Ionics, Vol. 177, pp.2119-2123, 2006.
    [19] A. Shamsi, J.P. Baltrus, J.J. Spivey, Characterization of Coke Deposited on Pt/alumina Catalyst During Reforming of Liquid Hydrocarbons, Applied Catalysis A-General, Vol. 293, pp.145-152, 2005.
    [20] J.H. Kim, D.J. Suh, T.J. Park, K.L. Kim, Effect of Metal Particle Size on Coking during CO2 Reforming of CH4 over Ni–alumina Aerogel Catalysts, Applied Catalysis A-General, Vol. 197, pp.191-200, 2000.
    [21] C. Liu, B. Yan, G. Chen, X.S Bai, Structures and Burning Velocity of Biomass Derived Gas Flames, International Journal of Hydrogen Energy, Vol. 35, pp.542-555, 2010.
    [22] K. Kornbluth, J. Greenwood, Z. McCaffrey, D. Vernon, P. Erickson, Extension of the Lean Limit through Hydrogen Enrichment of a LFG-fueled Spark-ignition Engine and Emissions Reduction, International Journal of Hydrogen Energy, Vol. 35, pp.1412-1419, 2010.
    [23] E. Porpatham, A. Ramesh, B. Nagalingam, Effect of Hydrogen Addition on the Performance of a Biogas Fuelled Spark Ignition Engine, International Journal of Hydrogen Energy, Vol. 32, pp.2057-2065, 2007.
    [24] F. Pompeo, N.N. Nichio, O.A. Ferretti, D. Resasco, Study of Ni Catalysts on Different Supports to Obtain Synthesis Gas, International Journal of Hydrogen Energy, Vol. 30, pp.1399-1405, 2005.
    [25] J.S. Kang, D.H. Kim, S.D. Lee, S.I. Hong, D.J. Moon, Nickel-based Tri-reforming Catalyst for the Production of Synthesis Gas, Applied Catalysis A-general, Vol. 332, pp.153-158, 2007.
    [26] J.P. Frenillot, G. Cabot, M. Cazalens, B. Renou, M.A. Boukhalfa, Impact of H2 Addition on Flame Stability and Pollutant Emissions for an Atmospheric Kerosene/air Swirled Flame of Laboratory Scaled Gas Turbine, International Journal of Hydrogen Energy, Vol. 34, pp.3930-3944, 2009.
    [27] J. Burguburu, G. Cabot, B. Renou, A. Boukhalfa, M. Cazalens, Comparisons of the Impact of Reformer Gas and Hydrogen Enrichment on Flame Stability and Pollutant Emissions for a Kerosene/Air Swirled Flame with an Aeronautical Fuel Injector, International Journal of Hydrogen Energy, Vol. 36, pp.6925-6936, 2011.
    [28] R.F. Horng, M.P. Lai, Y.P. Chang, J.P. Yur, S.F. Hsieh, Plasma-assisted Catalytic Reforming of Propane and an Assessment of Its Applicability on Vehicles, International Journal of Hydrogen Energy, Vol. 34, pp.6280-6289, 2009.
    [29] A. Tsolakis, A. Megaritis, Catalytic Exhaust Gas Fuel Reforming for Diesel Engines-Effects of Water Addition on Hydrogen Production and Fuel Conversion Efficiency, International Journal of Hydrogen Energy,Vol. 29, pp.1409-1419, 2004.
    [30] A. Tsolakis, A. Megaritis, Exhaust Gas Assisted Reforming of Rapeseed Methyl Ester for Reduced Exhaust Emissions of CI Engines, Biomass and Bioenergy, Vol. 27, pp.493-505, 2004.
    [31] S. Assabumrungrat, N. Laosiripojana, P. Piroonlerkgul, Determination of The Boundary of Carbon Formation for Dry Reforming of Methane in a Solid Oxide Fuel Cell, Journal of Power Sources, Vol. 159, pp.1274-1282, 2006.
    [32] D.J. Wilhelm, D.R. Simbeck, A.D. Karp, R.L. Dickenson, Syngas Production for Gas-to-liquids Applications: Technologies, Issues and Outlook, Fuel Processing Technology, Vol. 71, pp.139-48, 2001.
    [33] P.L. Spath, D.C. Dayton, Preliminary Screening-Technical and Economic Assessment of Synthesis Gas to Fuels and Chemicals with Emphasis on the Potential for Biomass Derived Syngas. Tech. Rep. NREL/TP-510–34929. National Renewable Energy Laboratory 2003.
    [34] R. Zubrin, B. Frankie, T. Kito, T. Muscatello, MARS in Situ Propellant Production Utilizing the Reverse Water Gas Shift. In Situ Resource Utilization (ISRU III) Technical Interchange Meeting, February 11–12, Lockheed Martin Astronautics, Denver, Colorado, 1999.
    [35] F.J. Weinberg, Combustion Temperature: The Future?, Nature, Vol. 233, pp.239-241, 1971.
    [36] S.A. Lloyd, F.J. Weinberg, Limits to Energy Release and Utilisation from Chemical Fuels, Nature, Vol. 257, pp.367-370,1975.
    [37] A.K. Gupta, Thermal Characteristics of Gaseous Fuel Flames Using High Temperature Air, Journal of Engineering for Gas Turbines and Power, Vol. 126, pp.9-19, 2004.
    [38] K. Kitagawa, N. Konishi, N. Arai, A.K. Gupta, Two Dimensional Distribution of Flame Fluctuation During Highly Preheated Air Combustion. In: Proc. ASME Int. Jt. Power Gener. Conf. (IJPGC) Vol. 22. ASME FACT; 1998. pp.239-42.
    [39] V.S. Babkin, Propagation of Premixed Gaseous Explosion Flame in Porous Media, Combustion and Flame, Vol. 87, pp.182-190, 1991.
    [40] D. Trimis, F. Durst, Combustion in a Porous Medium-Advances and Applications, Combustion Science and Technology, Vol. 121, pp.153-168, 1996.
    [41] D. Trimis, K. Wawrzinek. Flame Stabilization of Highly Diffusive Gas Mixtures in Porous Inert Media, Journal of Computational and Applied Mechanics, Vol. 5, pp.367-381, 2004.
    [42] T.L. Marbach, A.K. Agrawal, Experimental Study of Surface and Interior Combustion Using Composite Porous Inert Media, Journal of Engineering for Gas Turbines and Power, Vol. 127, pp.307-313, 2005.
    [43] R. Viskanta, J.P. Gore, Overview of Cellular Ceramics Based Porous Radiant Burners for Supporting Combustion, Clean Air, Vol. 1, pp.167-203, 2000.
    [44] V. Bubnovich, M. Toledo, L. Henríquez, C. Rosas, J. Romero, Flame Stabilization Between Two Beds of Alumina Balls in a Porous Burner, Applied Thermal Engineering, Vol. 30, pp.92-95, 2010.
    [45] Z. Al-Hamamre, S. Diezinger, P. Talukdar, F. von Issendorff, D. Trimis, Combustion of Low Calorific Gases from Landfills and Wasre Pyrolysis Using Porous Medium Burner Technology, Process Safety and Environmental Protection, Vol. 84, pp.297-308, 2006.
    [46] S. Jugjai, N. Wongpanit, T. Laoketkan, S. Nokkaew, The Combustion of Liquid Fuels Using a Porous Medium, Experimental Thermal and Fluid Science, Vol. 26, pp.15-23, 2002.
    [47] S. Vijaykant, A.K. Agrawal, Liquid Fuel Combustion Within Silicon-carbide Coated Carbon Foam, Experimental Thermal and Fluid Science, Vol. 32, pp.117-125, 2007.
    [48] S. Jugjai, N. Polmart, Enhancement of Evaporation and Combustion of Liquid Fuels through Porous Media, Experimental Thermal and Fluid Science, Vol. 27, pp.901-909, 2003.
    [49] Z. Al-Hamamre, A. Al-Zoubi, The Use of Inert Porous Media Based Reactors for Hydrogen Production, International Journal of Hydrogen Energy, Vol. 35, pp.1971-1986, 2010.
    [50] H. Pedersen-Mjaanes, L. Chan, E. Mastorakos, Hydrogen Production from Rich Combustion in Porous Media, International Journal of Hydrogen Energy, Vol. 30, pp.579-592, 2005.
    [51] A. Pastore, E. Mastorakos, Rich n-heptane and Diesel Combustion in Porous Media, Experimental Thermal and Fluid Science, Vol. 34, pp.359-365, 2010.
    [52] A. Pastore, E. Mastorakos, Syngas Production from Liquid Fuels in a Non-catalytic Porous Burner, Fuel, Vol. 90, pp.64-76, 2011.
    [53] M.J. Dixon, I. Schoegl, C.B. Hull, J.L. Ellzey, Experimental and Numerical Conversion of Liquid Heptane to Syngas through Combustion in Porous Media, Combustion and Flame, Vol. 154, pp.217-231, 2008.
    [54] M. Toledo, E. Vergara, A.V. Saveliev, Syngas Production in Hybrid Filtration Combustion, International Journal of Hydrogen Energy, Vol. 36, pp.3907-3912, 2011.
    [55] R.S. Dhamrat, J.L. Ellzey, Numerical and Experimental Study of the Conversion of Methane to Hydrogen in a Porous Media Reactor, Combustion and Flame, Vol. 144, pp.698-709, 2006.
    [56] Z. Al-Hamamre, S. Voß, D. Trimis, Hydrogen Production by Thermal Partial Oxidation of Hydrocarbon Fuels in Porous Media Based Reformer, International Journal of Hydrogen Energy, Vol. 34, pp.827-832, 2009.
    [57] R.H. Perry, D.W. Green, J.O. Maloney, Perry’s Chemical Engineers’ Handbook, McGraw-Hill, New York, 1999.
    [58] N.A.S. Amin, T.C. Yaw, Thermodynamic Equilibrium Analysis of Combined Carbon Dioxide Reforming with Partial Oxidation of Methane to Syngas, International Journal of Hydrogen Energy, Vol. 32, pp.1789-1798, 2007.
    [59] C. Zhou, L. Zhang, A. Swiderski, W. Yang, W. Blasiak, Study and Development of a High Temperature Process of Multi-reformation of CH4 with CO2 for Remediation of Greenhouse Gas, Energy, Vol. 36, pp.5450-5459, 2011.
    [60] Outokumpu, HSC Chemistry for Windows. 2002, Chemical Reaction and Equilibrium Software with Extensive Thermochemical Database. Version 5.1, ISBN 952-9507-08-9.
    [61] C.H. Kuo, P.D. Ronney, Numerical Modeling of Non-adiabatic Heat-recirculating Combustors, Proceedings of the Combustion Institute, Vol. 31, pp.3277-3284, 2007.
    [62] J. Hagen, Industrial Catalysis - A Practical Approach. 2nd ed. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA; 2006.
    [63] G.C. Bond, Heterogeneous Catalysis: Principles and Applications. 2nd ed. Oxford Science Publications; 1987.
    [64] J. Hagen, Chemische Reaktionstechnik: Eine Einführung mit Übungen, Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA; 1993.
    [65] I. Chorkendorff, J.W. Niemantsverdriet Concepts of Modern Catalysis and Kinetics. 2nd ed. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA; 2007.
    [66] Z.Y. Hou, T. Yashima, Small Amounts of Rh-promoted Ni Catalysts for Methane Reforming with CO2, Catalysis Letters, Vol. 89, pp.193-197, 2003.
    [67] W. Hally, J.H. Bitter, K. Seshan, J.A. Lercher, R.H. Ross, Problem of Coke Formation on Ni/ZrO2 Catalysts During the Carbon Dioxide Reforming of Methane, Catalyst Deactivation, Vol. 88, pp.167-173, 1994.
    [68] J.H. Edwards, A.M. Maitra, The Chemistry of Methane Reforming with Carbon Dioxide and Its Current Potential Applications, Fuel Processing Technology, Vol. 42, pp.269-289, 1995.
    [69] S. Therdthianwong, C. Siangchin, A. Therdthianwong, Improvement of Coke Resistance of Ni/Al2O3 Catalyst in CH4/CO2 Reforming by ZrO2 Addition, Fuel Processing Technology, Vol. 89, pp.160-168, 2008.
    [70] Y. Sone, H. Kishida, M. Kobayashi, T. Watanabe, A Study of Carbon Deposition on Fuel Cell Power Plants-morphology of Deposited Carbon and Catalytic Metal in Carbon Deposition Reactions on Stainless Steel, Journal of Power Sources, Vol. 86, pp.334-349, 2000.
    [71] S. Wang, G.Q. Lu, Carbon Dioxide Reforming of Methane to Produce Synthesis Gas over Metal-supported Catalysts: State of the Art, Energy and Fuels, Vol. 10, pp.896-904, 1996.
    [72] A.M. O'Connor, J.R.H. Ross, The Effect of O2 Addition on the Carbon Dioxide Reforming of Methane over Pt/ZrO2 Catalysts, Catalysis Today, Vol. 46, pp.203-210, 1998.
    [73] Q.S. Jing, H. Lou, L. Mo, X. Zheng, Comparative Study Between Fluidized Bed and Fixed Bed Reactors in Methane Reforming with CO2 and O2 to Produce Syngas, Energy Conversion and Management, Vol. 47, pp.459-469, 2006.
    [74] M.N. Rahaman, Ceramic Processing. CRC Press; 2006.
    [75] D.E. Angove, N.W. Cant, Position Dependent Phenomena during Deactivation of Three-way Catalytic Converters on Vehicles, Catalysis today, Vol. 63, pp.371-378, 2000.
    [76] Z.Y. Hou, O. Yokota, T. Tanaka, T. Yashima, Investigation of CH4 Reforming with CO2 on Meso-porous Al2O3-supported Ni Catalyst, Catalyst Letters, Vol. 89, pp.121-127, 2003.
    [77] Y.X. Pan, C.J. Liu, P. Shi, Preparation and Characterization of Coke Resistant Ni/SiO2 Catalyst for Carbon Dioxide Reforming of Methane, Journal of Power Sources, Vol. 176, pp.46-53, 2008.
    [78] G.S. Gallego, F. Mondragon, J.M. Tatibouet, J. Barrault, C. Batiot-Dupeyrat, Carbon Dioxide Reforming of Methane over La2NiO4 as Catalyst Precursor-Characterization of Carbon Deposition, Catalysis Today, Vol. 133-135, pp.200-209, 2008.
    [79] V.F. Fischer, H. Tropsch, Conversion of Methane into Hydrogen and Carbon Monoxide, Brennstoff Chemie, Vol. 3, pp.39-46, 1928.
    [80] C.S. Song, W. Pan, Tri-reforming of Methane: A Novel Concept for Catalytic Production of Industrially Useful Synthesis Gas with Desired H2/CO ratios, Catalysis Today, Vol. 986, pp.463-484, 2004.
    [81] Z. Hou, P. Chen, H. Fang, X. Zheng, T. Yashima, Production of Synthesis Gas via Methane Reforming with CO2 on Noble Metals and Small Amount of Noble-(Rh-) Promoted Ni Catalysts, International Journal of Hydrogen Energy, Vol. 31, pp.555-561, 2006.
    [82] F. Pompeo, N.N. Nichio, M.M.V.M. Souza, D.V. Cesar, O.A. Ferretti, M. Schmal, Study of Ni and Pt Catalysts Supported on α-Al2O3 and ZrO2 Applied in Methane Reforming with CO2, Catalysis Today, Vol. 316, pp.175-183, 2007.
    [83] L.B. Råberg, M.B. Jensen, U. Olsbye, C. Daniel, S. Haag, C. Mirodatos, A. Olafsen Sjåstad, Propane Dry Reforming to Synthesis Gas over Ni-based Catalysts: Influence of Support and Operating Parameters on Catalyst Activity and Stability, Journal of Catalysis, Vol. 249, pp.250-260, 2007.
    [84] K.J. Puolakka, S. Juutilainen, A.O.I. Krause, Combined CO2 Reforming and Partial Oxidation of n-Heptane on Noble Metal Zirconia Catalysts, Catalysis Today, Vol. 115, pp.217-221, 2006.
    [85] A. Effendi, K. Hellgardt, Z.G. Zhang, T. Yoshida, Optimising H2 Production from Model Biogas via Combined Steam Reforming and CO Shift Reactions, Fuel, Vol. 84, pp.869-874, 2005.
    [86] P. Kolbitsch, C. Pfeifer, H. Hofbauer, Catalytic Steam Reforming of Model Biogas, Fuel, Vol. 87, pp.701-706, 2008.
    [87] S. Araki, N. Hino, T. Mori, T. Shimizu, S. Hikazudani, Reforming Reactions of Model Biogas over Honeycomb Supported Ni, Journal of the Japan Petroleum Institute, Vol. 52, pp.120-127, 2009.
    [88] D.G. Avraam, T.I. Halkides, D.K. Liguras, O.A. Bereketidou, M.A. Goula, An Experimental and Theoretical Approach for the Biogas Steam Reforming Reaction, International Journal of Hydrogen Energy, Vol. 35, pp.9818-9827, 2010.
    [89] N. Muradov, F. Smith, Thermocatalytic Conversion of Landfill Gas and Biogas to Alternative Transportation Fuels, Energy and Fuel, Vol. 22, pp.2053-2060, 2008.
    [90] A.T. Ashcroft, A.K. Cheetham, M.L.H. Green, P.D.F. Vernon, Partial Oxidation of Methane to Synthesis Gas Using Carbon Dioxide, Nature, Vol. 352, pp.225-226, 1991.
    [91] Z. Hou, P. Chen, H. Fang, X. Zheng, T. Yashima, Production of Synthesis Gas via Methane Reforming with CO2 on Noble Metals and Small Amount of Noble-(Rh-) Promoted Ni Catalysts, International Journal of Hydrogen Energy, Vol. 31, pp.555-561, 2006.
    [92] E. Ruckenstein, Y.H. Hu, Carbon Dioxide Reforming of Methane over Nickel/alkaline Earth Metal Oxide Catalysts, Applied Catalysis A-General, Vol. 133, pp.149-161,1995.
    [93] T. Horiuchi, K. Sakuma, T. Fukui, Y. Kubo, T. Osaki, T. Mori, Suppression of Carbon Deposition in the CO2-reforming of CH4 by Adding Basic Metal Oxides to a Ni/Al2O3 Catalyst, Applied Catalysis A-General, Vol. 144, pp.111-120, 1996.
    [94] A. Donazzi, A. Beretta, G. Groppi, P. Forzatti, Catalytic Partial Oxidation of Methane over a 4% Rh/α-Al2O3 Catalyst Part II: Role of CO2 Reforming, Journal of Catalysis, Vol. 255, pp.259-268, 2008.
    [95] J.H. Bitter, K. Seshan, J.A. Lercher, Mono and Bifunctional Pathways of CO2/CH4 Reforming over Pt and Rh Based Catalysts, Journal of Catalysis, Vol. 176, pp.93-101, 1998.
    [96] J.R.H. Ross, Natural Gas Reforming and CO2 Mitigation, Catalysis Today, Vol. 100, pp.151-158, 2005.
    [97] A.M. O’Connor, F.C. Meunier, J.R.H. Ross, An In-situ DRIFTS Study of the Mechanism of the CO2 reforming of CH4 over a Pt/ZrO2 Catalyst, Studies in Surface Science Catalysis, Vol. 119, pp.819-824, 1998.
    [98] G.R. Kale, B.D. Kulkarni, An Alternative Process for Gasoline Fuel Processors, International Journal of Hydrogen Energy, Vol. 36, pp.2118-2127, 2011.
    [99] G.R. Kale, B.D. Kulkarni, Thermodynamic Analysis of Dry Autothermal Reforming of Glycerol, Fuel Processing Technology, Vol. 91, pp.520-530, 2010.
    [100] S. Jugjai, C. Pongsai Liquid Fuels-Fired Porous Burner, Combustion Science and Technology, Vol. 179, pp.1823-1840, 2007.
    [101] S.A. Lloyd, F.J. Weinberg, A Burner for Mixtures of Very Low Heat Content, Nature, Vol. 251, pp.47-49, 1974.
    [102] M.A. Mujeebu, M.Z. Abdullah, M.Z. Abu-Bakar, A.A. Mohamad, R.M.N. Muhad, M.K. Abdullah, Combustion in Porous Media and Its Applications–A Comprehensive Survey, Journal of Environmental Management, Vol. 90, pp.2287-2312, 2009.
    [103] M.A. Mujeebu, M.Z. Abdullah, M.Z. Abu Bakar, A.A. Mohamad, M.K. Abdullah, Applications of Porous Media Combustion Technology-A Review, Applied Energy, Vol. 86, pp.1365-1375, 2009.
    [104] A.A. Mohamad, Combustion in Porous Media: Fundamentals and Application. In: Transport Phenomena in Porous Media III, pp.287-304, 2005.
    [105] G.W. Hallum, T.P. Herbell, High Temperature Effect of Hydrogen on Sintered Alpha-silicon Carbide. In: Eighty Eighth Annual Meeting of the American Ceramic Society, Chicago, Illinois, April 27–May 1, 1986.
    [106] A.A.M. Oliveira, M. Kaviany, Non-equilibrium in the Transport of Heat and Reactants in Combustion in Porous Media, Progress in Energy and Combustion Science, Vol. 27, pp.523-545, 2001.
    [107] C. Tierney, A.T. Harris, Materials Design and Selection Issues in Ultra-lean Porous Burners, Journal of the Australian Ceramic Societ, Vol. 45, pp.20-29. 2009.
    [108] M. Simeone, L. Salemme, C. Allouis, Reactor Temperature Profile during Autothermal Methane Reforming on Rh/Al2O3 Catalyst by IR Imaging, International Journal of Hydrogen Energy, Vol. 33, pp.4798-4808, 2008.
    [109] B. Li, K. Maruyama, M. Nurunnabi, K. Kunimori, K. Tomishige, Temperature Profiles of Alumina-supported Noble Metal Catalysts in Autothermal Reforming of Methane, Applied Catalysis A-genernal, Vol. 275, pp.157-172, 2004.
    [110] H.C. Yoon, J.L. Dorr, P.A. Erickson, Fuel-lean and Fuel-rich Start-up and Shut-down Processes in an Autothermal Reformer, International Journal of Hydrogen Energy, Vol. 33, pp.2942-2949, 2008.
    [111] S. Araki, N. Hino, T. Mori, S. Hikazudani, Start-up Procedures in Autothermal Reforming of Biogas over a Ni Based Catalytic Monolith, Catalysis Communications Vol. 10, pp.1300-1304, 2009.
    [112] S. Lee, W.R. Schwartz, J.R. Choi, J.G. Ahn, D.H. Kim, I.H. Son, W.C. Shin, J.Y. Kim, Start-up Characteristics of Commercial Propane Steam Reformer for 200 We Portable Fuel Cell System, International Journal of Hydrogen Energy, Vol. 35, pp.12286-12294, 2010.
    [113] M. Abdul Mujeebu, M. Zulkifly Abdullah, A.A. Mohamad, M.Z. Abu Bakar, Trends in Modeling of Porous Media Combustion, Progress in Energy and Combustion Science, Vol. 36, pp.627-650, 2010.
    [114] R.B. Abernethy, R.P. Benedict, R.B. Dowdell, ASME Measurement Uncertainty, Journal of Fluids Engineering-Transactions of the ASME, Vol. 107, pp.161-164, 1985.

    下載圖示 校內:2014-08-07公開
    校外:2014-08-07公開
    QR CODE