簡易檢索 / 詳目顯示

研究生: 紀建安
Chi, Chien-An
論文名稱: 氫端鑽石離子場效感測電晶體之研究
Study on Hydrogen-terminated Diamond Ion-Sensitive Field Effect Transistors
指導教授: 曾永華
Tzeng, Yon-Hua
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 165
中文關鍵詞: 微波電漿輔助化學氣相沉積氫端鑽石離子場效感測電晶體pH值感測器
外文關鍵詞: microwave plasma enhanced chemical vapor deposition, hydrogen-terminated diamond, Ion-sensitive field-effect transistors, pH sensor
相關次數: 點閱:83下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 離子場效感測電晶體(Ion-Sensitive Field Effect Transistors,ISFET)被發展成微小尺寸的固態元件,用來取代傳統體積大、易碎的玻璃膜電極,ISFET被認為是在未來上用來進行生理學上電訊號之偵測,如:酸鹼離子、鹵素離子、葡萄糖、……等。而傳統使用矽作為基礎的ISFET還有許多困難要克服,相較於矽,鑽石在化學及生物量測應用展現了優異的電化學特性、生物相容性、穩定性,尤其是藉由轉移摻雜形成的本質氫端鑽石具有高的P型表面導電度,因電子從鑽石價電帶穿隧至鑽石表面水溶液中空缺的電子態,故在空氣中水溶液層形成的表面導電特性及在水溶液中的氧化還原複合物特性,使得鑽石能作為ISFET的應用。
    本研究以本質的氫端單晶鑽石製作離子感測場效電晶體,並藉由氫端鑽石的表面導電的通道來實現出電晶體的特性,將氫端鑽石浸入水溶液,並以白金電極作為閘極電極置於水溶液中來實現閘極控制電位的效果,而氫端鑽石在水溶液中,不必加入任何絕緣物作為絕緣層,其本身與水溶液的離子即能形成絕緣層,而其閘極電壓與pH之響應為-45.18mV/pH,可透過氫端鑽石的轉移摻雜機制、奈恩斯特方程式、電化學特性去探討。

    Ion-sensitive field-effect transistors (ISFET) are fabricated using intrinsic hydrogen-terminated high temperature high pressure single crystalline diamond (HPHT-SCD) films. The properties of ion-sensitive field-effect transistors (ISFET) are realized by a surface conductive channel on hydrogen-terminated diamond. The gating is realized by immersing the diamond surface into phosphate buffered s solution which is contacted by a platinum electrode. The surface of hydrogen terminated diamond without any additional oxide layer acts as a gate insulation. The response of gate potential to pH is about −45.18 mV/pH. The results are discussed in terms of transfer doping mechanism, Nernst equation, and electrochemical properties of diamond surfaces. They are also compared with ISFETs which employ ion-sensitive gate oxides.

    中文摘要 I Abstract II 誌謝 IX 目錄 X 表目錄 XIV 圖目錄 XVI 第一章 緒論 1 1.1 前言 1 1.2 鑽石的沿革 2 1.3 化性結構的簡介 6 1.4 鑽石薄膜的性質及應用 8 1.4.1 鑽石的性質 8 1.4.2 鑽石薄膜的種類 11 1.4.3 鑽石薄膜的應用 14 第二章 文獻回顧及原理基礎 18 2.1 鑽石薄膜之成長原理 18 2.1.1 前處理介紹 18 2.1.2 化學氣相沉積法的原理及種類 22 2.1.3 製程參數的影響 32 2.2 氫端鑽石的特性 44 2.3 離子感測場效電晶體理論 57 2.3.1 pH定義 59 2.3.2 奈恩斯特方程式( Nernst equation) 59 2.3.3 電雙層(Electrical double layer,EDL)理論 61 2.3.4 吸附鍵結模型(Site-Binding model) 62 2.3.5 ISFET原理 65 第三章 實驗儀器設備 71 3.1 實驗藥品與耗材 71 3.2 實驗製程設備 76 3.2.1 微波電漿輔助化學氣相沉積系統(Microwave Plasma Enhanced Chemical Vapor Deposition, MPECVD) 76 3.2.2 射頻磁控電漿濺鍍系統(Radio Frequency Magnetron Sputtering System) 78 3.2.3 熱阻式蒸鍍系統(Thermal Evaporator) 79 3.2.4 氧電漿乾式蝕刻系統(Oxygen Plasma Dry Etching System ) 80 3.2.5 金線打線機(Gold Wire Bonding) 81 3.3 實驗量測設備 84 3.3.1 光學顯微鏡(Optical microscope,OM) 84 3.3.2 拉曼光譜儀(Raman Spectrum) 85 3.3.3 掃描式電子顯微鏡(Scanning Electron Microscope, SEM) 87 3.3.4 分光光譜儀 (Optical Emission Spectroscopy, OES) 90 3.3.5 霍爾量測系統(Hall measurement system) 91 3.3.6 雙波長光學溫度計(Dual wavelength pyrometer) 96 第四章 實驗方法及結果 98 4.1實驗流程 98 4.2實驗方法 105 4.2.1基板的前置處理 105 4.2.2未參雜鑽石的成長及氫化 108 4.2.2.1 未摻雜鑽石的成長 109 4.2.2.2 鑽石的氫化 111 4.2.3 離子感測場效電晶體的製作 112 4.2.3.1 第一次微影製程(The first lithography) 112 4.2.3.2 第一次電極製作(The first electrode fabrication) 114 4.2.3.3 第二次微影製程(The second lithography) 116 4.2.3.4 第二次電極製作(The second electrode fabrication) 118 4.2.3.5 第三次微影製程(The Third lithography) 119 4.2.3.6 定義氫端通道(Define hydrogen terminated channel) 121 4.2.4離子感測場效電晶體的封裝 122 4.3結果及討論 125 4.3.1 單晶鑽石的氫化及材料分析 125 4.3.1.1 鑽石的成長及氫化 125 4.3.1.2 氫端鑽石的OM及Raman結果 128 4.3.1.3 鑽石的親水性與疏水性探討 129 4.3.1.3 氫端鑽石的霍爾量測結果 131 4.3.1.4 鑽石與金屬附著性探討 132 4.3.2 氫端鑽石離子感測場效電晶體之電性量測 134 4.3.2.1 量測方法 134 4.3.2.2 溶液配置 135 4.3.2.3 氫端鑽石ISFET之濃度響應 135 第五章 結論與未來展望 150 第六章 參考文獻 152

    [1] F.D. Rossini and R. S. J. Jessup, Res. National Bureau of Standards, USA, 21, p. 49, 1983.
    [2] F.P. Bundy, J. Geophys, The Phase and Reaction Diagram for Elemental Carbon, JOURNAL OF GEOPHYSICAL RESEARCH, 85 (B12), pp. 6930-6936, 1980.
    [3] Bundy, F. P., Hall, H. T., Strong, H. M., & Wentorf, R. H, Man-Made Diamonds, Nature, 176, pp. 51-55, 1955.
    [4] DECARLI, Paul S,JAMIESON, John C, Diamond synthesis by explosive shock, Science, 133, pp. 1821-1822, 1961.
    [5] Alder, B. J., & Christian, R. H., Behavior of strongly shocked carbon, Phys. Rev. Lett.,7, pp. 367-369, 1961.
    [6] Matsumoto, Seiichiro, Development of diamond synthesis techniques at low pressures, Thin Solid Films, 368, pp. 231-236, 2000.
    [7] Isberg, J., Hammersberg, J., Johansson, E., Wikström, T., Twitchen, D. J., Whitehead, A. J., ... & Scarsbrook, G. A., High Carrier Mobility in Single-Crystal Plasma-Deposited Diamond, Science, 297, pp. 1670-1672, 2002.
    [8] Burkhard, G., Dan, K., Tanabe, Y., Sawaoka, A. B., & Yamada, K. , Carbon phase transition by dynamic shock compression of a copper/graphite powder mixture, J. Appl. Phys., 33, pp.L876-L879, 1994.
    [9] Roy, R., Cherian, K. A., Chang, J. P., Badzian, A., Langlade, C., Dewan, H., & Drawl, W., New process for 1 atm diamond synthesis: from metallic solutions,Innov. Mater. Res., 1, pp.65-87, 1996.
    [10] Gruen, D. M., Liu, S., Krauss, A. R., & Pan, X., Buckyball microwave plasmas: Fragmentation and diamond‐film growth, J. Appl. Phys., 75, pp. 1758, 1994.
    [11] Regueiro, M. N., Monceau, P., & Hodeau, J. L., Crushing C60 to diamond at room temperature, Nature, 355, pp. 237-239, 1992.
    [12] Yang, Guo-Wei, Jin-Bin Wang, and Qui-Xiang Liu., Preparation of nano-crystalline diamonds using pulsed laser induced reactive quenching, J. Phys.: Condens. Matter, 10, p. 7923, 1998.
    [13] Visscher, G. T., Nesting, D. C., Badding, J. V., & Bianconi, P. A., Poly(phenylcarbyne): A Polymer Precursor to Diamond-Like Carbon, Science, 260( 5113), pp. 1496-1499, 1993.
    [14] Zaiser, Michael, Yuliya Lyutovich, and Florian Banhart., Irradiation-induced transformation of graphite to diamond: A quantitative study, Physical Review, B62.5, 3058, 2000.
    [15] Li, Y., Qian, Y., Liao, H., Ding, Y., Yang, L., Xu, C. & Zhou, G. , A Reduction-Pyrolysis-Catalysis Synthesis of Diamond, Science, 281(5374), pp. 246-247, 1998.
    [16] Lee, S-Tong, Zhangda Lin, and Xin Jiang, CVD diamond films: nucleation and growth, Materials Science & Engineering R-Reports, 25, pp. 123-154, 1999.
    [17] John C, Angus, Diamond and Diamond-Like Films, Thin Solid Films, 216, pp. 126-133, 1992.
    [18] Spear, Karl E., and John P. Dismukes., Synthetic diamond: emerging CVD science and technology. Vol. 25. John Wiley & Sons, 1994.
    [19] Chen, Changle, and Qianwang Chen., Recent development in diamond synthesis, International Journal of Modern Physics B, 22(4), pp. 309-326, 2008.
    [20] Silva, F., Hassouni, K., Bonnin, X., & Gicquel, A., Microwave engineering of plasma-assisted CVD reactors for diamond deposition, Journal of Physics-Condensed Matter, 21, 2009.
    [21] Meng, X. M., Askari, S. J., Tang, W. Z., Hei, L. F., Wang, F. Y., Jiang, C. S., & Lu, F. X., Nano-crystalline CVD diamond films deposited on cemented carbide using high current extended DC arc plasma process, Vacuum, 82, pp. 543-546, 2008.
    [22] D. M. Gruen, Nanocrystalline diamond films, Annual Review of Materials Science, 29, pp. 211-259, 1999.
    [23] Lin, T., Yu, G. Y., Wee, A. T. S., Shen, Z. X., & Loh, K. P. , Compositional mapping of the argon-methane-hydrogen system for polycrystalline to nanocrystalline diamond film growth in a hot-filament chemical vapor deposition system, Applied Physics Letters, 77, pp.2692-2694, 2000.
    [24] Jones, A. N., Ahmed, W., Hassan, I. U., Rego, C. A., Sein, H., Amar, M., & Jackson, M. J.., The impact of inert gases on the structure, properties and growth of nanocrystalline diamond, Journal of Physics-Condensed Matter, 15, pp. S2969-S2975, 2003.
    [25] Liu, Y. K., Tzeng, Y., Liu, C., Tso, P., & Lin, I. N., Growth of microcrystalline and nanocrystalline diamond films by microwave plasmas in a gas mixture of 1% methane/5% hydrogen/94% argon, Diamond and Related Materials,13, pp. 1859-1864, 2004.
    [26] M.I. De Barros and L. Vandenbulcke, Plasma-assisted chemical vapor deposition process for depositing smooth diamond coatings on titanium alloys at moderate temperature, Diamond and Related Materials, 9, pp.1862-1866, 2000.
    [27] Xiao, X., Birrell, J., Gerbi, J. E., Auciello, O., & Carlisle, J. A., Low temperature growth of ultrananocrystalline diamond, Journal of Applied Physical, 96, pp. 2232-2239, 2004.
    [28] May, P. W., Allan, N. L., Ashfold, M. N., Richley, J. C., & Mankelevich, Y. A., Simplified Monte Carlo simulations of chemical vapour deposition diamond growth, Journal of Physics-Condensed Matter, 21, 2009.
    [29] Sumant, A. V., Krauss, A. R., Gruen, D. M., Auciello, O., Erdemir, A., Williams, M., ... & Adams, W., Ultrananocrystalline diamond film as a wear-resistant and protective coating for mechanical seal applications,Tribology Transactions, 48, pp. 24-31, 2005.
    [30] Auciello, O., Pacheco, S., Sumant, A. V., Gudeman, C., Sampath, S., Datta, A.,... & Yuan, H. C., Are diamonds a MEMS' best friend?, IEEE Microwave Magazine, 8, pp. 61-75, 2007.
    [31] 宋健民,工業材料,1995。
    [32] Gracio, J. J., Fan, Q. H., & Madaleno, J. C. , Diamond growth by chemical vapor deposition, Phys. D: Appl. Phys., 43, 2010.
    [33] 田明波與劉德令編譯,薄膜科學與技術手冊(p.1),機械工業出版社,1991。
    [34] Carlsson, Jan-Otto., Processes in interfacial zones during chemical vapour deposition: Aspects of kinetics, mechanisms, adhesion and substrate atom transport, Thin solid films, 130.3, 261-282, 1985.
    [35] C. E. Morosanu, Thin Films by Chemical Vapor Deposition, chapter 5, 1990.
    [36] Sirtl, E., L. P. Hunt, and D. H. Sawyer, High Temperature Reactions in the Silicon‐Hydrogen‐Chlorine System, Journal of the Electrochemical Society,121.7 ,1: 919-925,1974.
    [37] Spitsyn, B. V., Gradoboev, M. N., Galushko, T. B., Karpukhina, T. A., Serebryakova, N. V., Kulakova, I. I., & Melnik, N. N., Purification and functionalization of nanodiamond. In Synthesis, properties and applications of ultrananocrystalline diamond, Springer Netherlands, pp. 241-252, 2005.
    [38] Gurbuz, Y., Esame, O., Tekin, I., Kang, W. P., & Davidson, J. L.., Diamond semiconductor technology for RF device applications, Solid-State Electronics, 49, pp. 1055-1070, 2005.
    [39] M. Schwander and K. Partes, A review of diamond synthesis by CVD process, Diamond and Related Materials, 20, pp. 1287-1301, 2011.
    [40] Murakawa, Masao, and Sadao Takeuchi, Diamond coating using multiple flame torches in an atmospheric chamber, Surface and Coatings Technology, 54, 403-407, 1992.
    [41] Gicquel, A., Hassouni, K., Silva, F., & Achard, J., CVD diamond films: from growth to applications, Curr. Appl. Phys., 1, pp. 479-496, 2011.
    [42] Matsumoto, S., Sato, Y., Tsutsumi, M., & Setaka, N., Growth of diamond particles from methane-hydrogen gas, Journal of Materials Science, 17, pp. 3106-3112, 1982.
    [43] Klein-Douwel, R. J. H., and J. J. Ter Meulen, Spatial distributions of atomic hydrogen and C2 in an oxyacetylene flame in relation to diamond growth, Journal of applied physics 83.9 1998.
    [44] Hanssen, L. M., Carrington, W. A., Butler, J. E., & Snail, K. A., Diamond synthesis using an oxygen-acetylene torch, Materials Letters, 7(7), 289-292, 1988.
    [45] Y. Hirose, S. Amanuma and K. Komaki, Synthesis of Diamond Using a Combustion Flame in the Atmosphere , J. Appl. Phys., 68, pp. 6401, 1990.
    [46] J. B. Donnet, H. Oulanti, T. Le Huu, and M. Schmitt, Synthesis of large single crystal diamond using combustion-flame method, Carbon, 44 p. 374, 2006.
    [47] N.G.Glumac and D.G. Goodwin, Diamond synthesis in a low-pressure flat flame, Thin Solid Films, 212, p.122, 1992.
    [48] K.J. Matthes, E. Richter, Schweistechnik. Schweisen von metallischen
    Konstruktionswerkstoffen, Carl Hanser Verlag, Munchen, 2008.
    [49] M. Schwander and K. Partes, A review of diamond synthesis by CVD process, Diamond and Related Materials, 20, pp. 1287-1301, 2011.
    [50]M.A. Cappelli, in Handbook of Industrial Diamond, p. 865-886
    [51] Vandenbulcke, L., Gries, T., De Persis, S., Met, C., Aubry, O., & Delfau, J. L. (2. Molecular beam mass spectrometry and modelling of CH4–CO2 plasmas in relation with polycrystalline and nanocrystalline diamond deposition.Diamond and Related Materials, 19(7), 1103-1116, 2010.
    [52] Spear, Karl E., and John P. Dismukes, Synthetic diamond: emerging CVD science and technology, Vol25, John Wiley & Sons, 1994.
    [53] Piazza, F., and G. Morell, Synthesis of diamond at sub 300 C substrate temperature, Diamond and Related Materials, 16(11) , 1950-1957, 2007.
    [54] Potocky, S., Kromka, A., Potmesil, J., Remes, Z., Polackova, Z., & Vanecek, M., Growth of nanocrystalline diamond films deposited by microwave plasma CVD system at low substrate temperatures, physica status solidi (a), 203(12), 3011-3015, 2006.
    [55] CCauley, Thomas G., Dieter M. Gruen, and Alan R. Krauss, Temperature dependence of the growth rate for nanocrystalline diamond films deposited from an Ar/CH4 microwave plasma. Applied physics letters, 73(12), 1646-1648, 1998.
    [56] Matsumoto, S., Sato, Y., Tsutsumi, M., & Setaka, N., Growth of diamond particles from methane-hydrogen gas, Journal of Materials Science, 17(11), 3106-3112, 1982.
    [57] Gracio, J. J., Q. H. Fan, and J. C. Madaleno.J. J. Graci., Diamond growth by chemical vapor deposition, J. Phys. D: Appl. Phys., 43(374017), 2010.
    [58] K.E. Spear, Chemical Vapor Deposition of Diamond and Ceramic Coatings, Materials Science Forum, 154, 1994.
    [59] Dennig, P. A., Shiomi, H., Stevenson, D. A., & Johnson, N. M, Influence of Substrate Treatments on Diamond Thin-Film Nucleation, Thin Solid Films, 212, pp.63-67, 1992.
    [60] Elliott, M. A., May, P. W., Petherbridge, J., Leeds, S. M., Ashfold, M. N. R., & Wang, W. N., Optical emission spectroscopic studies of microwave enhanced diamond CVD using CH4/CO2 plasmas, Diamond and Related Materials, 9, pp.311–316, 2000.
    [61] S. Michaelson and A. Hoffman, Hydrogen in nano-diamond films, Diamond and Related Materials, 14, pp.470-475, 2005.
    [62] D. M. Gruen, Nanocrystalline diamond films, Annual Review of Materials Science, 29, pp.211-259, 1999.
    [63] X. Li, J. Perkins, R. Collazo, R.J. Nemanich and Z. Sitar, Investigation of the effect of the total pressure and methane concentration of the growth rate and quality of diamond thin films grown by MPCVD, Diamond and Related Materials, vol. 15, pp. 1784-1788, 2006.
    [64] Stiegler, J., Lang, T., Nyga, M., Von Kaenel, Y., & Blank, E., Low temperature limits of diamond films growth by microwave plasma-assisted CVD, Diamond and Related Materials, 5, pp. 226-230, 1996.
    [65] Elliott, M. A., May, P. W., Petherbridge, J., Leeds, S. M., Ashfold, M. N. R., & Wang, W. N., Optical emission spectroscopic studies of microwave enhanced diamond CVD using CH4/CO2 plasma, Diamond and Related Materials, 9, pp. 331-316, 2000.
    [66] Foord, J. S., Lau, C. H., Hiramatsu, M., Jackman, R. B., Nebel, C. E., & Bergonzo, P., Influence of the environment on the surface conductivity of chemical vapor deposition diamond, Diamond and related materials, 11(3), 856-860, 2002.
    [67] Landstrass, M.I. and K.V. Ravi, Resistivity of chemical vapor deposited diamond films, Applied Physics Letters, 55(10), p. 975-977, 1989.
    [68] Landstrass, M.I. and K.V. Ravi, Hydrogen passivation of electrically active defects in diamond, Applied Physics Letters, 55(14), p. 1391-1393, 1989.
    [69] Hayashi, K., Yamanaka, S., Okushi, H., & Kajimura, K., Study of the effect of hydrogen on transport properties in chemical vapor deposited diamond films by Hall measurements, Applied Physics Letters, 68(3),p. 376-378, 1996.
    [70] Nebel, C. E., Sauerer, C., Ertl, F., Stutzmann, M., Graeff, C. F. O., Bergonzo, P., ... & Jackman, R., Hydrogen-induced transport properties of holes in diamond surface layers, Applied physics letters, 79(27), 4541-4543.2001.
    [71] Kasap, S.O. and P. Capper, Springer handbook of electronic and photonic materials. Springer: New York, p. 551-557, 2006.
    [72] Noda, H., A. Hokazono, and H. Kawarada, Device modeling of high performance diamond MESFETs using p-type surface semiconductive layers, Diamond and Related Materials, 6(5-7): p. 865-868, 1997.
    [73] Tsugawa, K., Noda, H., Hokazono, A., Kitatani, K., Morita, K., & Kawarada, H., Application and device modeling of diamond FET using surface semiconductive layers, Electronics and Communications in Japan (Part II: Electronics), 81(7), 19-27,1998.
    [74] Denisenko, A., Aleksov, A., Pribil, A., Gluche, P., Ebert, W., & Kohn, E., Hypothesis on the conductivity mechanism in hydrogen terminated diamond films, Diamond and Related Materials, 9(3), 1138-1142,2000.
    [75] R.G Parr and W. Yang, Density-Functional Theory of Atoms and Molecules, Oxford University Press, New York, 1989.
    [76] Maier, F., Riedel, M., Mantel, B., Ristein, J., & Ley, L., Origin of surface conductivity in diamond, Physical Review Letters, 85(16): p. 3472-3475, 2000.
    [77] Gi, S., Tashiro, K., Tanaka, S., Fujisawa, T., Kimura, H., Kurosu, T., & Iida, M, Hall Effect Measurements of Surface Conductive Layer on Undoped Diamond Films in NO2 and NH3 Atmospheres, Jpn. J. Appl. Phys., 38: p.3492–3496, 1999.
    [78] Chakrapani, V., Angus, J. C., Anderson, A. B., Wolter, S. D., Stoner, B. R., & Sumanasekera, G. U., Charge transfer equilibria between diamond and an aqueousoxygen electrochemical redox couple. Science, 318(5855), p. 1424-1430, 2007
    [79] G.Wedler, Lehrbuch der Physikalischen Chemie, 3rd Ed, VCH Verlagsgesellschaft, Weinheim, p.297, 1987.
    [80] Foord, J. S., Lau, C. H., Hiramatsu, M., Bennett, A., & Jackman, R. B., Influence of material properties on the performance of diamond photocathodes, Diamond and Related Materials, 11(3-6): p. 437-441, 2002.
    [81] NASA Earth Fact Sheet. (updated 19 April-19-2007) [cited; Available from:
    http://nssdc.gsfc.nasa.gov/planetary/factsheet/earthfact.html
    [82] Mueller, R., A. Denisenko, and E. Kohn, Effect of surface quality on ion sensitivity of H-terminated diamond, Diamond and Related Materials,12(3-7): p. 554-559,2003.
    [83] Foord, J. S., Lau, C. H., Hiramatsu, M., Jackman, R. B., Nebel, C. E., & Bergonzo, P., Influence of the environment on the surface conductivity of chemical vapor deposition diamond, Diamond and related materials, 11(3), 856-860, 2002.
    [84] Müller, R., Denisenko, A., Adamschik, M., & Kohn, E., On the ion-sensitivity of H-terminated surface channel devices on diamond, Diamond and Related Materials. 11(3-6), p. 651-656, 2002.
    [85] P. Strobel, M. Riedel, J. Ristein and L. Ley, Surface Transfer Doping of Diamond,Nature vol. 430, pp. 439-441, July 2004.
    [86] Ley, L., Ristein, J., Meier, F., Riedel, M., & Strobel, P., Surface conductivity of the diamond: A novel transfer doping mechanism, Physica B: Condensed Matter, 376, 262-267, 2006.
    [87] Ristein, J., Maier, F., Riedel, M., Stammer, M., & Ley, L., Diamond surface conductivity experiments and photoelectron spectroscopy, Diamond and related materials, 10.3, 416-422, 2001.
    [88] Su, C., and J-C. Lin., Thermal desorption of hydrogen from the diamond C (100) surface, Surface science, 406.1, 149-166, 1998.
    [89] Cui, J. B., J. Ristein, and L. Ley, Low-threshold electron emission from diamond, Physical Review B, 60.23, 16135, 1999.
    [90] Bergveld, Piet, ISFET, theory and practice. IEEE Sensor Conference, Toronto. Vol. 26, 2003.
    [91] Bergveld, Piet, Thirty years of ISFETOLOGY: What happened in the past 30 years and what may happen in the next 30 years, Sensors and Actuators B: Chemical, 88.1, 1-20, 2003.
    [92] Garrido, J. Biochemical Sensors. Script to the according lecture, Walther Schottky Institute, 2005.
    [93] Rilbe, Harry, pH and buffer theory, Wiley, 1996.
    [94] Zumdahl, S. S. Chemical Principles, 5th edition; Houghton Mifflin Company: Boston, pp. 475-477, 2003.
    [95] Nebel, C. E., Rezek, B., Shin, D., & Watanabe, H.., et al. Surface electronic properties of H‐terminated diamond in contact with adsorbates and electrolytes, physica status solidi (a), 203.13 ,3273-3298, 2006.
    [96] H. Helmholtz, Ueber einige Gesetze der Vertheilung elektrischer Ströme in körperlichen Leitern mit Anwendung auf die thierisch-elektrischen Versuche (in German), Annalen der Physik und Chemie, 165 (6), pp. 211–233,1853.
    [97] Ohshima, Hiroyuki, and Kunio Furusawa, eds. Electrical phenomena at interfaces: fundamentals: measurements, and applications. Vol. 76. CRC Press, 1998.
    [98] Stern, O., Zur theorie der elektrolytischen doppelschicht. Zeitschrift für Elektrochemie und angewandte physikalische Chemie, 30(21‐22), 508-516,1924
    [99] Grahame, D. C., The electrical double layer and the theory of electrocapillarity, Chemical reviews, 41(3), 441-501, 1947.
    [100] Yates, David E., Samuel Levine, and Thomas W. Healy, Site-binding model of the electrical double layer at the oxide/water interface, Journal of the Chemical Society, Faraday Transactions 1, Physical Chemistry in Condensed Phases ,70 , 1807-1818, 1974.
    [101] Fung, Clifford D., Peter W. Cheung, and Wen H. Ko., A generalized theory of an electrolyte-insulator-semiconductor field-effect transistor, Electron Devices, IEEE Transactions on ,33.1 , 8-18,1986.
    [102] Liao, H. K., Chi, L. L., Chou, J. C., Chung, W. Y., Sun, T. P., & Hsiung, S. K., Study on pH pzc and surface potential of tin oxide gate ISFET, Materials chemistry and physics, 59.1, 6-11, 1999.
    [103] Oldham, Keith B., A Gouy–Chapman–Stern model of the double layer at a (metal)/(ionic liquid) interface, Journal of Electroanalytical Chemistry, 613.2 , 131-138, 2008.
    [104] Lu C-C., Controlled Growth of Single-Layer and Double-Layer Graphene Sheets on Patterned Silicon Wafers, National Tsing Hua University(NTHU), 2009.
    [105] Vandevelde T, Wu T-D, Quaeyhaegens C, Vlekken J, D’Olieslaeger M, Stals L. Correlation between the OES plasma composition and the diamond film properties during microwave PA-CVD with nitrogen addition, Thin solid films, 340(1), 159-63 , 1999.
    [106] Czichos, Horst, Tetsuya Saito, and Leslie E. Smith, eds. Springer handbook of materials measurement methods. Springer Science & Business Media, 2007.
    [107] van der PAUYV, L. J., A method of measuring specific resistivity and Hall effect of discs of arbitrary shape, Philips Res. Rep. 13, 1-9, 1958.
    [108] Popovic, Radivoje S. Hall effect devices. CRC Press, 2003.
    [109] Rezek, B., H. Watanabe, and C. E. Nebel., High carrier mobility on hydrogen terminated⟨ 100⟩ diamond surfaces, Applied physics letters, 88.4, 042110, 2006.
    [110] Liskova, J., Babchenko, O., Varga, M., Kromka, A., Hadraba, D., Svindrych, Z., ... & Bacakova, L., Osteogenic cell differentiation on H-terminated and O-terminated nanocrystalline diamond films. International journal of nanomedicine, 10, 869, 2015.
    [111] Yagi, I., Notsu, H., Kondo, T., Tryk, D. A., & Fujishima, A, Electrochemical selectivity for redox systems at oxygen-terminated diamond electrodes. Journal of Electroanalytical Chemistry, 473.1, 173-178, 1999.
    [112] Macpherson, Julie V, A practical guide to using boron doped diamond in electrochemical research, Physical Chemistry Chemical Physics, 17.5, 2935-2949, 2015.
    [113] Cané, C., Götz, A., Merlos, A., Gracia, I., Errachid, A., Losantos, P., & Lora-Tamayo, E., Multilayer ISFET membranes for microsystems applications, Sensors and Actuators B: Chemical 35.1 , 136-140, 1996.
    [114] Abe, Hiroshi, Masayshshi Esashi, and Tadayki Mats, ISFET's using inorganic gate thin films.Electron Devices, IEEE Transactions, 26.12 , 1939-1944, 1979.
    [115] Van der Schoot, B. H., Van Den Vlekkert, H. H., De Rooij, N. F., Van Den Berg, A., & Grisel, A., A flow injection analysis system with glass-bonded ISFETs for the simultaneous detection of calcium and potassium ions and pH, Sensors and Actuators B: Chemical, 4(3-4), 239-241, 1991.
    [116]Zheng-Xiao, Wang, Applications of penicillinase FET in penicillin-fermentation engineering, Sensors and Actuators B: Chemical, 14.1, 568-569, 1993.
    [117] Zhong, Li-chan, and Gao-xiang Li., Biosensor based on ISFET for penicillin determination. Sensors and Actuators B: Chemical, 14.1, 570-571, 1993.
    [118] Song, K. S., Sakai, T., Kanazawa, H., Araki, Y., Umezawa, H., Tachiki, M., & Kawarada, H., Cl− sensitive biosensor used electrolyte-solution-gate diamond FETs, Biosensors and Bioelectronics, 19(2), 137-140, 2003.
    [119] Gi, R. S., Mizumasa, T., Akiba, Y., Hirose, Y., Kurosu, T., & Iida, M., Formation mechanism of p-type surface conductive layer on deposited diamond films. Japanese journal of applied physics, 34(10R), 5550, 1995.
    [120] M. A. Prelas, G. Popovici, and L. K. Bigelow, Handbook of Industrial Diamonds and Diamond Films: Marcel Dekker Inc, 1998.
    [121] J. Robertson, Mechanism of bias-enhanced nucleation and heteroepitaxy of diamond on Si, Diamond and Related Materials, vol. 4, pp. 549-552, 1995.
    [122] O. Shenderova, S. Hens, and G. McGuire, Seeding slurries based on detonation nanodiamond in DMSO, Diamond and Related Materials, vol. 19, pp. 260-267, 2010.
    [123] D. Pradhan, L.-J. Chen, Y.-C. Lee, C.-Y. Lee, N.-H. Tai, and I. N. Lin, Effect of titanium metal in the prenucleation of ultrananocrystalline diamond film growth at low substrate temperature, Diamond and Related Materials, vol. 15, pp. 1779-1783, 2006.
    [124] Y. Tang, Y. S. Li, C. Zhang, L. Zhang, L. Yang, Q. Yang, and A. Hirose, Study of nanocrystalline diamond synthesis in MPCVD by bias enhanced nucleation and growth, Diamond and Related Materials, vol. 25, pp. 87-91, 2012.
    [125] D. D. and S. R. N., A review of nucleation, growth and low temperature synthesis of diamond thin films, International Materials Reviews, vol. 52, pp. 29-64, 2007.

    下載圖示 校內:2020-12-31公開
    校外:2021-12-31公開
    QR CODE