簡易檢索 / 詳目顯示

研究生: 莊明岳
Chuang, Ming-Yueh
論文名稱: 側向橋接氧化鋅奈米結構成長機制及其光電子元件應用之研究
Research on Growth Mechanism of Laterally Bridged ZnO Nanostructure and their Optoelectronic Applications
指導教授: 蘇炎坤
Su, Yan-Kuin
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2014
畢業學年度: 103
語文別: 英文
論文頁數: 146
中文關鍵詞: 氧化鋅奈米柱側向橋接記憶體光檢測器
外文關鍵詞: ZnO, nanorod, laterally bridged, memory, photodetector
相關次數: 點閱:100下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在此篇論文中,主要藉由水熱法在金中間層成長之側向橋接氧化鋅奈米柱,並分別應用於電阻式記憶體以及紫外光感測器。因此,論文主要分為兩部分,第一部分為側向橋接氧化鋅奈米柱電阻式記憶體之研究;另一部分為側向橋接氧化鋅奈米柱紫外光感測器之研究。
    在本文一開始,藉由水熱法所成長之反方向橋接側向氧化鋅奈米柱,研製出新穎記憶體元件。利用簡單的曝光顯影定義出電極,透過此方式不需要聚焦離子束微影技術,並具有更低的成本、較簡單的製程和較高的穩定性。首次研製出了在室溫下可觀察到的負微分電阻現象,並可觀察到轉換和雙穩態單極性電阻轉換特性。此記憶體元件具有穩定且可重複讀寫的特性,並且在高阻態時具有極低之電流值(約為10^−13 A),和極高的開關電流比為1.56 × 10^6。此外,其負微分電阻的電流峰谷比大於1.76 × 10^2。此元件的負微分電阻和電阻轉換特性可能與對向橋接氧化鋅奈米柱之間的晶界缺陷有關。以結構的觀點來切入觀察,在單晶奈米柱與單晶奈米柱橋接介面處可以發現被孤立的多晶晶界,而其電阻轉換特性將首次被探討。截至目前為止,仍未有文獻詳細探討側向橋接氧化鋅奈米柱元件之記憶體的電阻轉換特性。在此研究成果中發現,側向橋接氧化鋅奈米柱元件具有十分之潛力應用於下一代電阻記憶體和奈米電子元件。
    論文的第二部分,我們藉由無晶種、密度控制和加壓成長的方式製備出側向橋接氧化鋅奈米柱,並應用於金屬-半導體-金屬光感測器的研製。此部分分為三個段落。(1) 側向橋接氧化鋅奈米柱應用於金屬-半導體-金屬光感測器:近似單晶結構的氧化鋅奈米柱可成功生長在指叉狀金電極上。施加1 V偏壓,其暗電流為5.00 × 10^−5 A、並其光響應度為1.93 × 10^5 A/W。此外,此光感測器具有高內部的光導增益值為6.28 × 10^5。在低頻雜訊的分析下,此光感測器的等效雜訊功率估計為1.86 × 10^−13 W,檢測度1.12 × 10^12 cm•Hz^0.5W^−1。造成此種結果的原因可能為內部增益機制和高密度橋接氧化鋅奈米柱。此法提供了一個簡單且無須晶種層的方式,製備出高性能之光感測器。(2) 藉由預退火製程,可控制垂直與側向氧化鋅奈米柱之密度,並有系統的透過原子力顯微鏡和掃描式電子顯微鏡進行相關成果之研究。預退火製程的導入對於控制垂直/側向氧化鋅奈米柱的密度和表面型態有直接的影響。近似於單晶結構的氧化鋅奈米柱可直接由金電極側壁成長出來。透過預退火製程,可有效將暗電流可從4.99 × 10^−4降低至7.28 × 10^−7 A(施加1 V偏壓)。高側向密度氧化鋅奈米柱光感測器具有7.01 × 10^3 A/W的光響應度,且紫外光/可見光抑制比為281.21。此外,此光感測器具有高內部增益約為10^4–10^5。在低頻雜訊的分析下,在0、10、和20分鐘預退火後之光感測器的等效雜訊功率,估計為3.58 × 10^−13、 6.78 × 10^−13、和 4.86 × 10^−13 W,對應檢測度為1.85 × 10^12, 1.17 × 10^12, and 1.99 × 10^12 cm•Hz^0.5W^−1。(3) 利用加壓和無晶種之水熱法成長方式製備側向橋接氧化鋅奈米柱於金電極上,並應用於金屬-半導體-金屬光感測器之製備。水熱成長壓力對於表面型態和氧化鋅奈米柱的晶體品質的影響可藉由原子力顯微鏡和光致發光光譜進行有系統的研究。飽和成長壓力對於控制氧化鋅奈米柱的密度和表面型態有直接的影響。透過提高穩態成長壓力所製作出之元件,在施加0.2V時,暗電流可從5.06 × 10^−6降低至5.39 × 10^−8 A。並具有1.25 × 10^4 A/W的光響應度和紫外光/可見光抑制比為1113.92。此外,此光感測器亦具有高內部增益約為10^4–10^5。

    In this dissertation, the laterally bridged ZnO nanorods were grown onto the Au intermediate layer by hydrothermal growth method and applied to the resistive random access memory and ultraviolet photodetector applications, respectively. Hence, the dissertation is divided into two parts, one is the investigation of laterally bridged ZnO nanorods-based resistive random access memory, and the other is that of laterally bridged ZnO nanorods-based ultraviolet photodetectors.
    In the beginning of this dissertation, a novel memory device based on laterally bridged ZnO nanorods in opposite direction was fabricated by hydrothermal growth method and characterized. The electrodes were defined by a simple photolithography method. This method has lower cost, simpler process, and higher reliability than the traditional focused ion beam lithography method. For the first time, the negative differential resistance and bistable unipolar resistive switching behavior in the current–voltage curve was observed at room temperature. The memory device is stable and rewritable; it has an ultra-low current level of about 10^−13 A in the high resistance state; and it is nonvolatile with an on–off current ratio of up to 1.56 × 10^6. Moreover, its peak-to-valley current ratio of negative differential resistance behavior is greater than 1.76 × 10^2. The negative differential resistance and resistive switching behavior of this device may be related to the boundaries between the opposite bridged ZnO nanorods. Specifically, the resistive switching behavior found in ZnO nanorod devices with a remarkable isolated boundary at the nanorod/nanorod interface was discussed for the first time. The memory mechanism of laterally bridged ZnO nanorod-based devices has not been discussed in the literature yet. In this work, results show that laterally bridged ZnO nanorod-based devices may have next-generation resistive memories and nano-electronic applications.
    In the second part of this dissertation, we developed a seedless, density-controlled, and pressurized growth method for laterally bridged ZnO nanorods from Au electrode for use in metal–semiconductor–metal photodetector fabrication. This part divided into three sections. (1) The laterally bridged ZnO microrods grown from Au electrode applied to metal–semiconductor–metal photodetector was fabricated. Interlaced ZnO microrods with approximate single-crystalline structure can be grown from Au electrode fingers. The dark-current was 5.00 × 10^−5 A with an applied voltage of 1 V. Highly dense lateral ZnO micro-rod-based photodetectors produce remarkable responsivity of 1.93 × 10^5 A/W. Moreover, an extremely high internal photoconductive gain of 6.28 × 10^5 exists in the fabricated photodetectors. For a given bandwidth of 10 kHz and 1 V applied bias, the noise equivalent power of photodetectors were estimated to be 1.86 × 10^−13 W, and correspond to normalized detectivity of 1.12 × 10^12 cm•Hz^0.5W^−1. This result may be attributed to internal photoconductive gain mechanism and high-density bridged ZnO microrods. Our approach provides a simple and seed-layer-free method to fabricate high-performance ultraviolet photodetectors. (2) The effect of pre-annealing process on suppressing vertical ZnO nanorods is systematically investigated by atomic force microscopy and scanning electron microscopy. The pre-annealing process is demonstrated to have direct influence on controlling vertical/lateral ZnO nanorod density and morphology. Interlaced and density-controlled ZnO nanorods with approximate single-crystalline structure can be directly grown from the side wall of pre-annealed Au electrode fingers without seed-layer. Through pre-annealing process, dark-current can be decreased from 4.99 × 10^−4 to 7.28 × 10^−7 A with an applied voltage of 1 V. Highly dense lateral ZnO nanorod-based photodetectors produce remarkable responsivity of 7.01 × 10^3 A/W and UV/visible rejection ratio of 281.21. Moreover, a high internal photoconductive gain (10^4–10^5) exists in the fabricated photodetectors. For a given bandwidth of 10 k Hz and 1 V applied bias, the noise equivalent power of photodetectors with 0, 10, and 20 min pre-annealing periods are estimated to be 3.58 × 10^−13, 6.78 × 10^−13, and 4.86 × 10^−13 W, and correspond to normalized detectivity of 1.85 × 10^12, 1.17 × 10^12, and 1.99 × 10^12 cm•Hz^0.5W^−1, respectively. This result may be attributed to internal photoconductive gain mechanism and high-density bridged ZnO nanorods. Our approach provides a simple and controllable method to fabricate high-performance ultraviolet photodetectors. (3) This study develops a pressurized and seedless growth method for laterally bridged ZnO nanorods from Au electrode for use in metal–semiconductor–metal photodetector fabrication. The effect of hydrothermal growth pressure on the morphology and crystal quality of ZnO nanorods is systematically investigated by scanning electron microscopy and photoluminescence spectroscopy, respectively. The saturated growth pressure is demonstrated to have direct influence on controlling ZnO nanorod density and morphology. Interlaced and density-controlled ZnO nanorods with approximate single-crystalline structure can be directly grown from the Au electrode fingers without seed-layer. Through increasing the steady-state growth pressure, the dark-current can be decreased from 5.06 × 10^−6 to 5.39 × 10^−8 A with an applied voltage of 0.2 V. Highly dense lateral ZnO nanorod-based photodetectors produce remarkable responsivity of 1.25 × 10^4 A/W and UV/visible rejection ratio of 1113.92. Moreover, a high internal photoconductive gain (10^4–10^5) exists in the fabricated photodetectors. This result may be attributed to internal photoconductive gain mechanism and high-density bridged ZnO nanorods. Our approach provides a simple and controllable method to fabricate high-performance ultraviolet photodetectors.

    Abstract (in Chinese) I Abstract (in English) III Acknowledgement VII Contents VIII Table Captions XIII Figure Captions XV CHAPTER 1. Introduction 1.1 Background and Basic Properties of ZnO 1 1.1.1 Overview 1 1.1.2 ZnO Crystal Structure 2 1.1.3 Electrical Properties of ZnO 3 1.1.4 Optical Properties of ZnO 4 1.2 The Growth Method and Mechanism of ZnO Nanostructure 4 1.2.1 Vapor Phase Transport Methods 5 1.2.2 Hydrothermal Growth Methods 6 1.3 The Issues of Vertical and Lateral ZnO Nanorod-Based Devices 8 1.4 Lateral ZnO Nanostructures for Electronic and Photonic Applications 10 1.4.1 Resistive Random-Access Memory 10 1.4.1.1 The Basic of Resistive Random-Access Memory 10 1.4.1.2 ZnO NR-based Resistive Random-Access Memory 11 1.4.2 Photodetector 11 1.4.2.1 Theory of Photo-detectors 11 1.4.2.2 ZnO NR-based MSM photodetector 12 1.5 Motivations and Dissertation Organization 13 References 16 CHAPTER 2. Experimental Section 2.1 Synthesis of ZnO Nanorods by Hydrothermal Growth Method 36 2.2 Fabrication of Laterally Bridged ZnO Nanorod-Based Resistive Random-Access Memory 36 2.3 Fabrication of Laterally Bridged ZnO Nanorod-Based Photodetector 38 2.4 Analysis Instruments 39 CHAPTER 3. Negative Differential Resistance Behavior and Memory Effect in Laterally Bridged ZnO Nanorods Grown by Hydrothermal Method 3.1 Introduction 42 3.2 Device Structure and Fabrication 45 3.2.1 Growth of Laterally Bridged ZnO Nanorods and Memory Cell Fabrication 45 3.2.2 Material Analysis and Memory Property Analysis 45 3.3 Experimental Results and Discussion 46 3.3.1 Material and Structure Analyses 46 3.3.2 Observation of Resistive Switching Behavior after Unusual-Forming Process 46 3.3.3 The Unique Memory Mechanisms and Modeling 47 3.3.4 The Stability of Fabricated Memory Cells 51 3.4 Summary 51 References 52 CHAPTER 4. Low-Frequency Noise Spectra of Laterally Bridged ZnO Microrod-Based Photodetectors 4.1 Introduction 68 4.2 Device Structure and Fabrication 70 4.2.1 Growth of Lateral ZnO Microrods from Au electrode Fingers and Photodetector Fabrication 70 4.2.2 Material Analysis and Photo-Electric Measurement 71 4.3 Experimental Results and Discussion 71 4.3.1 Material and Structure Analyses 71 4.3.2 The Performance of Fabricated Photodetectors 73 4.3.3 The Low-Frequency Noise Spectra of Fabricated Photodetectors 75 4.4 Summary 77 References 78 CHAPTER 5. Density-Controlled and Seedless Growth of Laterally Bridged ZnO Nanorod for UV Photodetector Applications 5.1 Introduction 92 5.2 Device Structure and Fabrication 95 5.2.1 Density-Controlled Growth of Lateral ZnO Nanorods from Au electrode Fingers and Photodetector Fabrication 95 5.2.2 Material Analysis and Photo-Electric Measurement 96 5.3 Experimental Results and Discussion 96 5.3.1 Material and Structure Analyses 96 5.3.2 The influence on the ZnO Nanorod Growth of Pre-Annealing Process 97 5.3.3 The Mechanism of ZnO Nanorods Grown from the Side-Wall and Top-Surface 98 5.3.4 The Performance of Fabricated Photodetectors 99 5.3.5 The Low-Frequency Noise Spectra of Fabricated Photodetectors 101 5.4 Summary 103 References 105 CHAPTER 6. Pressurized and Seedless Growth of Lateral ZnO Nanorods for UV Photodetector Applications 6.1 Introduction 124 6.2 Device Structure and Fabrication 126 6.2.1 Pressurized Growth of Lateral ZnO Nanorods from Au electrode Fingers and Photodetector Fabrication 126 6.2.2 Material Analysis and Photo-Electric Measurement 127 6.3 Experimental Results and Discussion 127 6.3.1 Material and Structure Analyses 127 6.3.2 The Influence on the ZnO Nanorod of Various Pressure Condition 128 6.3.3 The Performance of Fabricated Photodetectors 129 6.4 Summary 130 References 131 CHAPTER 7. Conclusions and Prospects 7.1 Conclusions 141 7.2 Future prospects 142 Publication List of Ming-Yueh Chuang 144

    References of Chapter 1
    [1] X. Wang, X. Wang, J. Zhou, J. Song, J. Liu, N. Xu, Z. L. Wang, “Piezoelectric field effect transistor and nanoforce sensor based on a single ZnO nanowire,” Nano lett., vol. 6, pp. 2768−2772, 2006.
    [2] C. H. Lin, B. S. Chiou, C. H. Chang, J. D. Lin, “Preparation and cathodoluminescence of ZnO phosphor,” Mater. Chem. Phys., vol. 77, pp. 647−654, 2003.
    [3] W. Y. Chang, Y. C. Lai, T. B. Wu, S. F. Wang, F. Chen, M. J. Tsai, “Unipolar resistive switching characteristics of ZnO thin films for nonvolatile memory applications,” Appl. Phys. Lett., vol. 92, pp. 022110−022110, 2008.
    [4] S. Kim, H. Moon, D. Gupta, S. Yoo, Y. K. Choi, “Resistive switching characteristics of sol–gel zinc oxide films for flexible memory applications,” IEEE Trans. Electr. Dev., vol. 56, pp. 696−699, 2009.
    [5] C. Chen, F. Pan, Z. S. Wang, J. Yang, F. Zeng, “Bipolar resistive switching with self-rectifying effects in Al/ZnO/Si structure,” J. Appl. Phys., vol. 111, p. 013702, 2012.
    [6] J. Xu, Q. Pan, Y. A. Shun, Z. Tian, “Grain size control and gas sensing properties of ZnO gas sensor,” Sens. Actuators B Chem., vol. 66, pp. 277−279, 2000.
    [7] J. X. Wang, X. W. Sun, Y. Yang, H. Huang, Y. C. Lee, O. K. Tan, L. Vayssieres, “Hydrothermally grown oriented ZnO nanorod arrays for gas sensing applications,” Nanotechnology, vol. 17, p. 4995, 2006.
    [8] Q. Wan, Q. H. Li, Y. J. Chen, T. H. Wang, X. L. He, J. P. Li, C. L. Lin, “Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors,” Appl. Phys. Lett., vol. 84, pp. 3654−3656, 2004.
    [9] S. Liang, H. Sheng, Y. Liu, Z. Huo, Y. Lu, H. Shen, “ZnO Schottky ultraviolet photodetectors,” J. Cryst. Growth, vol. 225, pp. 110−113, 2001.
    [10] C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, D. Wang, “ZnO nanowire UV photodetectors with high internal gain,” Nano lett., vol. 7, pp. 1003−1009, 2007.
    [11] Y. Liu, C. R. Gorla, S. Liang, N. Emanetoglu, Y. Lu, H. Shen, M. Wraback, “Ultraviolet detectors based on epitaxial ZnO films grown by MOCVD,” J. Electronic Mater., vol. 29, pp. 69−74, 2000.
    [12] P. F. Carcia, R. S. McLean, M. H. Reilly, G. Nunes Jr, “Transparent ZnO thin-film transistor fabricated by rf magnetron sputtering,” Appl. Phys. Lett., vol. 82, pp. 1117−1119, 2003.
    [13] J. H. Lee, K. H. Ko, B. O. Park, “Electrical and optical properties of ZnO transparent conducting films by the sol–gel method,” J. Cryst. Growth, vol. 247, pp. 119−125, 2003.
    [14] D. C. Look, B. Claflin, Y. I. Alivov, S. J. Park, “The future of ZnO light emitters,” Phys. Status. Solidi. A, vol. 201, pp. 2203−2212, 2004.
    [15] D. C. Look, “Recent advances in ZnO materials and devices,” Mater. Sci. Eng. B, vol. 80, pp. 383−387, 2001.
    [16] P. Capper, S. Kasap, A. Willoughby, “Zinc oxide materials for electronic and optoelectronic device applications,” C. W. Litton, T. C. Collins, & D. C. Reynolds (Eds.). John Wiley & Sons (2011).
    [17] Z. L. Wang, “Zinc oxide nanostructures: growth, properties and applications,” J. Phys. Condens. Matter., vol. 16, p. R829, 2004.
    [18] G. C. Yi, C. Wang, W. I. Park, “ZnO nanorods: synthesis, characterization and applications,” Semicond. Sci. Technol., vol. 20, p. S22, 2005.
    [19] O. Dulub, L. A.Boatner, U. Diebold, “STM study of the geometric and electronic structure of ZnO (0001)-Zn,(0001)-O,(1010), and (1120) surfaces,” Surf. Sci., vol. 519, pp. 201−217, 2002.
    [20] B. Meyer, D. Marx, “Density-functional study of the structure and stability of ZnO surfaces,” Phys. Rev. B, vol. 67, p. 035403, 2003.
    [21] Z. L. Wang, “Nanostructures of zinc oxide,” Mater. Today, vol. 7, pp. 26−33, 2004.
    [22] T. Minami, H. Sato, H. Nanto, S. Takata, “Group III impurity doped zinc oxide thin films prepared by RF magnetron sputtering,” Jpn. J. Appl. Phys., vol. 24, p. L781, 1985.
    [23] D. C. Look, D. C.Reynolds, C. W. Litton, R. L. Jones, D. B. Eason, G. Cantwell, “Characterization of homoepitaxial p-type ZnO grown by molecular beam epitaxy,” Appl. Phys. Lett., vol. 81, pp. 1830−1832, 2002.
    [24] K. K. Kim, H. S. Kim, D. K. Hwang, J. H. Lim, S. J. Park, “Realization of p-type ZnO thin films via phosphorus doping and thermal activation of the dopant,” Appl. Phys. Lett., vol. 83, pp. 63−65, 2003.
    [25] Y. R. Ryu, S. Zhu, D. C. Look, J. M. Wrobel, H. M. Jeong, H. W. White, “Synthesis of p-type ZnO films,” J. Cryst. Growth, vol. 216, pp. 330−334, 2000.
    [26] L. J. Brillson, Y. Lu, “ZnO Schottky barriers and Ohmic contacts,” J. Appl. Phys., vol. 109, p. 121301, 2011.
    [27] Z. K. Tang, M. Kawasaki, A. Ohtomo, H. Koinuma, Y. Segawa, “Self-assembled ZnO nano-crystals and exciton lasing at room temperature,” J. Cryst. Growth, vol. 287, pp. 169−179, 2006.
    [28] D. C. Reynolds, D. C. Look, B. Jogai, J. E. Hoelscher, R. E. Sherriff, M. T. Harris, M. J. Callahan, “Time-resolved photoluminescence lifetime measurements of the Γ5 and Γ6 free excitons in ZnO,” J. Appl. Phys., vol. 88, pp. 2152−2153, 2000.
    [29] A. Ohtomo, M. Kawasaki, I. Ohkubo, H. Koinuma, T. Yasuda, Y. Segawa, “Structure and optical properties of ZnO/Mg0.2Zn0.8O superlattices,” Appl. Phys. Lett., vol. 75, pp. 980−982, 1999.
    [30] J. Gutowski, N. Presser, I. Broser, “Acceptor-exciton complexes in ZnO: A comprehensive analysis of their electronic states by high-resolution magnetooptics and excitation spectroscopy,” Phys. Rev. B, vol. 38, p. 9746, 1988.
    [31] S. Bethke, H. Pan, B. W. Wessels, “Luminescence of heteroepitaxial zinc oxide,” Appl. Phys. Lett., vol. 52, pp. 138−140, 1988.
    [32] B. J. Jin, S. Im, S. Y. Lee, “Violet and UV luminescence emitted from ZnO thin films grown on sapphire by pulsed laser deposition,” Thin Solid Films, vol. 366, pp. 107−110, 2000.
    [33] R. S. Wagner, W. C. Ellis, “Vapor-liquid-solid mechanism of single crystal growth,” Appl. Phys. Lett., vol. 4, pp. 89−90, 1964.
    [34] G. Zhang, K. Tateno, H. Gotoh, T. Sogawa, “Towards new low-dimensional semiconductor nanostructures and new possibilities,” NTT Tech. Rev., vol .8, pp. 1−8, 2010.
    [35] M. H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, P. Yang, “Catalytic growth of zinc oxide nanowires by vapor transport,” Adv. Mater., vol. 13, pp. 113−116, 2001.
    [36] E. I. Givargizov, “Ultrasharp tips for field emission applications prepared by the vapor–liquid–solid growth technique,” J. Vac. Sci. Technol. B, vol. 11, pp. 449−453, 1993. J VAC SCI TECHNOL B
    [37] S. Y. Li, C. Y. Lee, T. Y. Tseng, “Copper-catalyzed ZnO nanowires on silicon (100) grown by vapor–liquid–solid process,” J. Cryst. Growth, vol. 247, pp. 7−362, 2003.
    [38] C. C. Chen, C. C. Yeh, “Large-scale catalytic synthesis of crystalline gallium nitride nanowires,” Adv. Mater., vol. 12, pp. 738−741, 2000.
    [39] X. Jiang, Y. Xie, J. Lu, L. Zhu, W. He, Y. Qian, “Simultaneous in situ formation of ZnS nanowires in a liquid crystal template by γ-irradiation,” Chem. Mater., vol. 13, pp. 1213−1218, 2001.
    [40] J. A. Schwarz, C. Contescu, A. Contescu, “Methods for preparation of catalytic materials,” Chem. Rev., vol. 95, pp. 477−510, 1995.
    [41] E. Hosono, S. Fujihara, K. Kakiuchi, H. Imai, “Growth of submicrometer-scale rectangular parallelepiped rutile TiO2 films in aqueous TiCl3 solutions under hydrothermal conditions,” J. Am. Chem. Soc., vol. 126, pp. 7790−7791, 2004.
    [42] C. Pithan, D. Hennings, R. Waser, “Progress in the synthesis of nanocrystalline BaTiO3 powders for MLCC,” Int. J. Appl. Ceram. Technol., vol. 2, pp. 1−14, 2005.
    [43] K. S. Shankar, A. K. Raychaudhuri, “Fabrication of nanowires of multicomponent oxides: Review of recent advances,” Mater. Sci. Eng. C, vol. 25, pp. 738−751, 2005.
    [44] L. Vayssieres, K. Keis, S. E. Lindquist, A. Hagfeldt, “Purpose-built anisotropic metal oxide material: 3D highly oriented microrod array of ZnO,” J. Phys. Chem. B, vol. 105, pp. 3350−3352, 2001.
    [45] L. Schmidt-Mende, J. L. M. Driscoll, “ZnO–nanostructures, defects, and devices,” Mater. Today, vol. 10, pp. 40−48, 2007.
    [46] M. N. Ashfold, R. P. Doherty, N. G. N. Angwafor, D. J. Riley, Y. Sun, “The kinetics of the hydrothermal growth of ZnO nanostructures,” Thin Solid Films, vol. 515, pp. 8679-8683, 2007.
    [47] S. Baruah, J. Dutta, ‘Hydrothermal growth of ZnO nanostructures,” Sci. Technol. Adv. Mat., vol. 10, p. 013001, 2009.
    [48] I. C. Yao, D. Y. Lee, T. Y. Tseng, P. Lin, “Fabrication and resistive switching characteristics of high compact Ga-doped ZnO nanorod thin film devices,” Nanotechnology, vol. 23, p. 145201, 2012.
    [49] Z. L. Tseng, P. C. Kao, M. F. Shih, H. H. Huang, J. Y. Wang, S. Y. Chu, “Electrical bistability in hybrid ZnO nanorod/polymethylmethacrylate heterostructures,” Appl. Phys. Lett., vol. 97, p. 212103, 2010.
    [50] Z. Fan, D. Wang, P. C. Chang, W. Y. Tseng, J. G. Lu, “ZnO nanowire field-effect transistor and oxygen sensing property,” Appl. Phys. Lett., vol. 85, p. 5923, 2004.
    [51] Y. K. Park, H. S. Choi, J. H. Kim, J. H. Kim, Y. B. Hahn, “High performance field-effect transistors fabricated with laterally grown ZnO nanorods in solution,” Nanotechnology, vol. 22, p. 185310, 2011.
    [52] S. M. Peng, Y. K. Su, L. W. Ji, S. J. Young, C. N. Tsai, W. C. Chao, Z. S. Chen, C. Z. Wu, “Semitransparent Field-Effect Transistors Based on ZnO Nanowire Networks,” IEEE Electr. Dev. Lett., vol. 32, pp. 533−535, 2011.
    [53] N. Liu, G. Fang, W. Zen, H. Long, X. Fan, L. Yuan, X. Zou, Y. Liu, X. Zhao, “Strong effect of interelectrode distance on the performance of a novel ZnO nanorod lateral field emission device fabricated by a single-step hydrothermal approach,” J. Phys. Chem. C, vol. 114, pp. 8575−8580, 2010.
    [54] C. Y. Kuo, R. M. Ko, Y. C. Tu, Y. R. Lin, T. H. Lin, S. Wang, “Tip shaping for ZnO nanorods via hydrothermal growth of ZnO nanostructures in a stirred aqueous solution,” Cryst. Growth Des., vol. 12, pp. 3849−3855, 2012.
    [55] T. J. Hsueh, C. L. Hsu, S. J. Chang, I. C. Chen, “Laterally grown ZnO nanowire ethanol gas sensors,” Sens. Actuators B Chem., vol. 126, pp. 473−477, 2007.
    [56] S. N. Das, J. P. Kar, J. H. Choi, T. I. Lee, K. J. Moon, J. M. Myoung, “Fabrication and characterization of ZnO single nanowire-based hydrogen sensor,” J. Phys. Chem. C, vol. 114, pp. 1689−1693, 2010.
    [57] Y. D. Chiang, W. Y. Chang, C. Y. Ho, C. Y. Chen, C. H. Ho, S. J. Lin, T. B. Wu, J. H. He, “Single-ZnO-nanowire memory,” IEEE Trans. Electr. Dev., vol. 58, pp. 1735−1740, 2011.
    [58] C. Y. Lu, S. P. Chang, S. J. Chang, T. J. Hsueh, C. L. Hsu, Y. Z. Chiou, I. C. Chen, “A lateral ZnO nanowire UV photodetector prepared on a ZnO:Ga/glass template,” Semicond. Sci. Technol., vol. 24, p. 075005, 2009.
    [59] S. M. Peng, Y. K. Su, L. W. Ji, C. Z. Wu, W. B. Cheng, W. C. Chao, “ZnO nanobridge array UV photodetectors,” J. Phys. Chem. C, vol. 114, pp. 3204−3208, 2010.
    [60] H. Kind, H. Yan, B. Messer, M. Law, P. Yang, “Nanowire ultraviolet photodetectors and optical switches,” Adv. Mater., vol. 14, pp. 158−160, 2002.
    [61] J. Suehiro, N. Nakagawa, S. Hidaka, M. Ueda, K. Imasaka, M. Higashihata, T. Okada, M. Hara, “Dielectrophoretic fabrication and characterization of a ZnO nanowire-based UV photosensor,” Nanotechnology, vol. 17, pp. 2567−2573, 2006.
    [62] Y. W. Heo, B. S. Kang, L. C. Tien, D. P. Norton, F. Ren, J. R. La Roche, S. J. Pearton, “UV photoresponse of single ZnO nanowires,” Appl. Phys. A, vol. 80, pp.497−499, 2004.
    [63] H. F. Francisco, A. Tarancon, O. Casals, J. Rodriguez, R. R. Albert, J. R. Morante, S. Barth, S. Mathur, T. Y. Choi, D. Poulikakos, V. Callegari, P. M. Nellen, “Fabrication and electrical characterization of circuits based on individual tin oxide nanowires,” Nanotechnology, vol. 17, pp. 5577−5583, 2006.
    [64] J. B. K. Law, J. T. L. Thong, “Simple fabrication of a ZnO nanowire photodetector with a fast photoresponse time,” Appl. Phys. Lett., vol. 88, p. 133114, 2006.
    [65] J. B. K. Law, J. T. L. Thong, “Lateral ZnO nanowire growth on a planar substrate using a growth barrier,” Nanotechnology, vol. 18, p. 055601, 2007.
    [66] U. Russo, D. Ielmini, C. Cagli, A. L. Lacaita, “Filament conduction and reset mechanism in NiO-based resistive-switching memory (RRAM) devices,” IEEE Trans. Electr. Dev., vol. 56, pp. 186−192, 2009.
    [67] S. Lee, H. Kim, D. J. Yun, S. W. Rhee, K. Yong, “Resistive switching characteristics of ZnO thin film grown on stainless steel for flexible nonvolatile memory devices,” Appl. Phys. Lett., vol. 95, p. 262113, 2009.
    [68] H. Shima, F. Takano, Y. Tamai, H. Akinaga, I. H. Inoue, “Synthesis and characterization of Pt/Co–O/Pt trilayer exhibiting large reproducible resistance switching,” Jpn. J. Appl. Phys., vol. 46, p. L57, 2007.
    [69] W. Banerjee, S. Z. Rahaman, A. Prakash, S. Maikap, “High-Al2O3/WOx bilayer dielectrics for low-power resistive switching memory applications,” Jpn. J. Appl. Phys., vol. 50, p. 10PH01, 2011.
    [70] Y. Sakotsubo, M. Terai, S. Kotsuji, T. Sakamoto, M. Hada, “Physical model for reset state of Ta2O5/TiO2-stacked resistance random access memory,” Jpn. J. Appl. Phys., vol. 49, p. 04DD19, 2010.
    [71] S. Y. Wang, D. Y. Lee, T. Y. Huang, J. W. Wu, T. Y. Tseng, “Controllable oxygen vacancies to enhance resistive switching performance in a ZrO2-based RRAM with embedded Mo layer,” Nanotechnology, vol. 21, p. 495201, 2010.
    [72] M. Fujimoto, H. Koyama, M. Konagai, Y. Hosoi, K. Ishihara, S. Ohnishi, N. Awaya, “TiO2 anatase nanolayer on TiN thin film exhibiting high-speed bipolar resistive switching,” Appl. Phys. Lett., vol. 89, p. 223509, 2006.
    [73] R. Waser, M. Aono, “Nanoionics-based resistive switching memories,” Nat. Mater., vol. 6, pp. 833−840, 2007.
    [74] W. Y. Chang, Y. C. Lai, T. B. Wu, S. F. Wang, F. Chen, M. J. Tsai, “Unipolar resistive switching characteristics of ZnO thin films for nonvolatile memory applications,” Appl. Phys. Lett., vol. 92, p. 022110, 2008.
    [75] N. Xu, L. Liu, X. Sun, X. Liu, D. Han, Y. Wang, R. Han, J. Kang, B. Yu, “Characteristics and mechanism of conduction/set process in TiN/ZnO/Pt resistance switching random-access memories,” Appl. Phys. Lett., vol. 92, pp. 232112– 3, 2008.
    [76] W. Y. Chang, C. A. Lin, J. H. He, T. B. Wu, “Resistive switching behaviors of ZnO nanorod layers,” Appl. Phys. Lett., vol. 96, pp. 242109– 3, 2010.
    [77] Y. D. Chiang, W. Y. Chang, C. Y. Ho, C. Y. Chen, C. H. Ho, S. J. Lin, T. B. Wu, J. H. He, “Single-ZnO-nanowire memory,” IEEE Trans. Electr. Dev., vol. 58, pp. 1735– 1740, 2011.
    [78] I. C. Yao, D. Y. Lee, T. Y. Tseng, P. Lin, “Fabrication and resistive switching characteristics of high compact Ga-doped ZnO nanorod thin film devices,” Nanotechnology, vol. 23, pp. 145201– 8, 2012.
    [79] Y. Yang, X. Zhang, M. Gao, F. Zeng, W. Zhou,; S. Xie, F. Pan, “Nonvolatile resistive switching in single crystalline ZnO nanowires,” Nanoscale, vol. 3, pp. 1917– 1921, 2011.
    [80] R. K. Willardson, E. R. Weber, T. D. Moustakas, J. I. Pankove, (1998). Gallium-Nitride (GaN) II (Vol. 57). Academic Press.
    [81] J. B. Law, J. T. Thong, “Simple fabrication of a ZnO nanowire photodetector with a fast photoresponse time,” Appl. Phys. Lett., vol. 88, p. 133114-3, 2006.
    [82] C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, D. Wang, “ZnO nanowire UV photodetectors with high internal gain,” Nano Lett., vol. 7, p. 1003-1009, 2007.
    [83] S. J. Young, L. W. Ji, T.H. Fang, S. J. Chang, Y. K. Su, X. L. Du, “ZnO ultraviolet photodiodes with Pd contact electrodes,” Acta Mater., vol. 55, p. 329-333, 2007.
    [84] C. Y. Lu, S. P. Chang, S. J. Chang, T. J. Hsueh, C. L. Hsu, Y. Z. Chiou, I. C. Chen, “A lateral ZnO nanowire UV photodetector prepared on a ZnO:Ga/glass template,” Semicond. Sci. Technol., vol. 24, pp. 075005-4, 2009.
    [85] W. Y. Weng, S. J. Chang, C. L. Hsu, T. J. Hsueh, S. P. Chang, “A lateral ZnO nanowire photodetector prepared on glass substrate,” J. Electrochem. Soc., vol. 157, pp. K30-K33, 2010.
    [86] S. P. Chang, C. Y. Lu, S. J. Chang, Y. Z. Chiou, T. J. Hsueh, C. L. Hsu, “Electrical and optical characteristics of UV photodetector with interlaced ZnO nanowires,” IEEE J. Sel. Top. Quant. Electron, vol. 17, p. 990-995, 2011.
    [87] S. M. Peng, Y. K. Su, L. W. Ji, “Characterization of self-assembled ordered ZnO nanowire networks applied to photodetection,” Microelectron. Eng., vol. 100, p. 16−19, 2012.

    References of Chapter 3
    [1] A. Asamitsu, Y. Tomioka, H. Kuwahara, Y. Tokura, “Current switching of resistive states in magnetoresistive manganites,” Nature, vol. 388, pp. 50– 52, 1997.
    [2] R. Waser, M. Aono, “Nanoionics-based resistive switching memories” Nat. Mater., vol. 6, pp. 833– 840, 2007.
    [3] C. Moreno, C. Munuera, S. Valencia, F. Kronast, X. Obradors, C. Ocal, “Reversible resistive switching and multilevel recording in La0.7Sr0.3MnO3 thin films for low cost nonvolatile memories,” Nano Lett., vol. 10, pp. 3828– 3835, 2010.
    [4] S. E. Ahn, M. J. Lee, Y. Park, B. S. Kang, C. B. Lee,; K. H. Kim, S. Seo, D. S. Suh, D. C. Kim, J. Hur, W. Xianyu, G. Stefanovich, H. Yin,; I. K. Yoo, J. H. Lee, J. B. Park, I. G. Baek, B. H. Park, “Write current reduction in transition metal oxide based resistance-change memory,” Adv. Mater., vol. 20, pp. 924– 928, 2008.
    [5] C. Rohde, B. J. Choi, D. S. Jeong, S. Choi, J. S. Zhao, C. S. Hwang, “Identification of a determining parameter for resistive switching of TiO2 thin films,” Appl. Phys. Lett., vol. 86, pp. 262907– 3, 2005.
    [6] J. J. Yang, M. D. Pickett, D. A. A. Ohlberg, D. R. Stewart, R. S. Williams, “Memristive switching mechanism for metal/oxide/metal,” Nanodevices Nat. Nanotechnol., vol. 3, pp. 429– 433, 2008.
    [7] K. Fujiwara, T. Nemoto, M. J. Rozenberg, Y. Nakamura, H. Takagi, “Resistance switching and formation of a conductive bridge in metal/binary oxide/metal structure for memory devices,” Jpn. J. Appl. Phys., vol. 47, pp. 6266– 6271, 2008.
    [8] K. Jung, H. Seo, Y. Kim, H. Im, J. Hong, J. W. Park, J. K. Lee, “Temperature dependence of high- and low-resistance bistable states in polycrystalline NiO films,” Appl. Phys. Lett., pp. 052104– 3, 2007.
    [9] K. Szot, W. Speier, R. Carius, U. Zastrow, W. Beyer, “Localized metallic conductivity and self-healing during thermal reduction of SrTiO3,” Phys. Rev. Lett., vol. 88, pp. 075508– 4, 2002.
    [10] J. C. Scott, L. D. Bozano, “Nonvolatile memory elements based on organic materials,” Adv. Mater., vol. 19, pp. 1452– 1463, 2007.
    [11] Y. C. Chen, Y. K. Su, H. C. Yu, C. Y. Huang, T. S. Huang, “Nonvolatile memory characteristics of organic thin film transistors using poly(2-hydroxyethyl methacrylate)-based polymer multilayer dielectric,” Appl. Phys. Lett., vol. 99, pp. 143308– 3, 2011.
    [12] H. C. Yu, Y. C. Chen, C. Y. Huang, Y. K. Su, “Investigation of nonvolatile memory effect of organic thin-film transistors with triple dielectric layers,” Appl. Phys. Expr., vol. 5, pp. 034101– 3, 2012.
    [13] G. Khurana, P. Misra, R. S. Katiyar, “Forming free resistive switching in graphene oxide thin film for thermally stable nonvolatile memory applications,” J. Appl. Phys., vol. 114, pp. 124508– 6, 2013.
    [14] A. Odagawa, T. Kanno, H. Adachi, “Transient response during resistance switching in Ag/Pr0.7Ca0.3MnO3/Pt thin films,” J. Appl. Phys., vol. 99, pp. 016101– 3, 2006.
    [15] S. H. Jeon, B. H. Park, J. Lee, B. Lee, S. Han, “First-principles modeling of resistance switching in perovskite oxide material,” Appl. Phys. Lett., vol. 89, pp. 042904– 3, 2006.
    [16] M. J. Rozenberg, I. H. Inoue, M. Sa´nchez, “Nonvolatile memory with multilevel switching: a basic model,” J. Phys. Rev. Lett., vol. 92, pp. 178302– 4, 2004.
    [17] L. W. Ji, S. M. Peng, Y. K. Su, S. J. Young, C. Z. Wu, W. B. Cheng, “Ultraviolet photodetectors based on selectively grown ZnO nanorod arrays,” Appl. Phys. Lett., vol. 94, pp. 203106– 3, 2009.
    [18] R. S. Wagner, W. C. Ellis, “Vapor-liquid-solid mechanism of single crystal growth,” Appl. Phys. Lett., vol. 4, pp. 89– 90, 1964.
    [19] Z. Zhu, T. L. Chen, Y. Gu, J. Warren, R. Ma, J. Osgood, “Zinc oxide nanowires grown by vapor-phase transport using selected metal catalysts: a comparative study,” Chem. Mater., vol. 17, pp. 4227– 4234, 2005.
    [20] W. Lee, M. C. Jeong, J. M. Myoung, “Catalyst-free growth of ZnO nanowires by metal-organic chemical vapour deposition (MOCVD) and thermal evaporation,” Acta Mater., vol. 52, pp. 3949– 3957, 2004.
    [21] B. Liu, H. C. Zeng, “Hydrothermal synthesis of ZnO nanorods in the diameter regime of 50 nm,” J. Am. Chem. Soc., vol. 125, pp. 4430– 4431, 2003.
    [22] E. Ohshima, H. Ogino, I. Niikura, K. Maeda, M. Sato, M. Ito, T. Fukuda, “Growth of the 2-In-size bulk ZnO single Crystals by the hydrothermal method,” J. Cryst. Growth, vol. 260, pp. 166– 170, 2004.
    [23] K. Govender, D. S. Boyle, P. B. Kenway, P. O’Brien, “Understanding the factors that govern the deposition and morphology of thin films of ZnO from aqueous solution,” J. Mater. Chem., vol. 14, pp. 2575– 2591, 2004.
    [24] I. C. Yao, D. Y. Lee, T. Y. Tseng, P. Lin, “Fabrication and resistive switching characteristics of high compact Ga-doped ZnO nanorod thin film devices,” Nanotechnology, vol. 23, pp. 145201– 8, 2012.
    [25] H. Kind, H. Yan, B. Messer, M. Law, P. Yang, “Nanowire ultraviolet photodetectors and optical switches,” Adv. Mater., vol.14, pp. 158– 160, 2002.
    [26] J. Suehiro, N. Nakagawa, S. Hidaka, M. Ueda, K. Imasaka, M. Higashihata, T. Okada, M. Hara, “Dielectrophoretic fabrication and characterization of a ZnO nanowire-based UV photosensor,” Nanotechnology, vol. 17, pp. 2567– 2573, 2006.
    [27] Y. W. Heo, B. S. Kang, L. C. Tien, D. P. Norton, F. Ren, J. R. La Roche, S. J. Pearton, “UV photoresponse of single ZnO nanowires,” Appl. Phys. A, vol. 80, pp. 497– 499, 2004.
    [28] H. R. Francisco, A. Tarancon, O. Casals, J. Rodriguez, R. R. Albert, J. R. Morante, S. Barth, S. Mathur, T. Y. Choi, D. Poulikakos, V. Callegari, P. M. Nellen, “Fabrication and electrical characterization of circuits cased on individual tin oxide nanowires,” Nanotechnology, vol. 17, pp. 5577– 5583, 2006.
    [29] W. Y. Chang, Y. C. Lai, T. B. Wu, S. F. Wang, F. Chen, M. J. Tsai, “Unipolar resistive switching characteristics of ZnO thin films for nonvolatile memory applications,” Appl. Phys. Lett., vol. 92, pp. 022110– 3, 2008.
    [30] N. Xu, L. Liu, X. Sun, X. Liu, D. Han, Y. Wang, R. Han, J. Kang, B. Yu, “Characteristics and mechanism of conduction/set process in TiN/ZnO/Pt resistance switching random-access memories,” Appl. Phys. Lett., vol. 92, pp. 232112– 3, 2008.
    [31] W. Y. Chang, C. A. Lin, J. H. He, T. B. Wu, “Resistive switching behaviors of ZnO nanorod layers,” Appl. Phys. Lett., vol.96, pp. 242109– 3, 2010.
    [32] Y. D. Chiang, W. Y. Chang, C. Y. Ho, C. Y. Chen, C. H. Ho, S. J. Lin, T. B. Wu, J. H. He, “Single-ZnO-nanowire memory,” IEEE Trans. Electr. Dev., vol.58, pp. 1735– 1740, 2011.
    [33] Y. Yang, X. Zhang, M. Gao, F. Zeng, W. Zhou, S. Xie, F. Pan, “Nonvolatile resistive switching in single crystalline ZnO nanowires,” Nanoscale, vol. 3, pp. 1917– 1921, 2011.
    [34] K. Ipa, G. T. Thalera, H. Yanga, S. Y. Hana, Y. Lia, D. P. Nortona, S. J. Peartona, S. Jangb, F. Ren, “Contacts to ZnO,” J. Cryst. Growth, vol. 287, pp. 149– 156, 2006.
    [35] C. X. Xu, X. W. Sun, X. H. Z hang, L. Ke, S. J. Chua, “Photoluminescent properties of copper-doped zinc oxide nanowires,” Nanotechnology, vol. 15, pp. 856– 861, 2004.
    [36] B. Lin, Z. Fu, Y. Jia, “Green luminescent center in undoped zinc oxide films deposited on silicon substrates,” Appl. Phys. Lett., vol. 79, pp. 943– 945, 2001.
    [37] Y. Yan, L. S. Tao, D. Can, C. P. Fei, “Electronic relaxation of deep bulk trap and interface state in ZnO ceramics,” Chin. Phys. B, vol. 20, pp. 025201– 8, 2011.
    [38] P. R. Bueno, J. A. V arela, E. Longo, “SnO2, ZnO and related polycrystalline compound semiconductors: An overview and review on the voltage-dependent resistance (non-ohmic) feature,” J. Eur. Ceram. Soc., vol. 28, pp. 505– 529, 2008.
    [39] J. M. Yuk, K. Kim, Z. Lee, M. Watanabe, A. Zettl, T. W. Kim, Y. S. No, W. K. Choi, J. Y. Lee, “Direct fabrication of zero- and one-dimensional metal nanocrystals by thermally assisted electromigration,” ACS Nano., vol. 4, pp. 2999– 3004, 2010.
    [40] J. Zhang, H. Y ang, Q. l. Zhang, S. Dong, J. K. Luo, “Bipolar resistive switching characteristics of low temperature grown ZnO thin films by plasma-enhanced atomic layer deposition,” Appl. Phys. Lett., vol. 102, pp. 012113– 4, 2013.
    [41] W. Guan, M. Liu, S. Long, Q. Liu, W. Wang, “On the resistive switching mechanisms of Cu/ZrO2 : Cu/Pt,” Appl. Phys. Lett., vol. 93, pp. 223506– 3, 2008.
    [42] G. S. Park, X. S. Li, D. C. Kim, R. J. Jung, M. J. Lee, S. Seo, “Observation of electric-field induced Ni filament channels in polycrystalline NiOx film,” Appl. Phys. Lett., vol. 91, pp. 222103– 3, 2007.
    [43] W. Shi, Q. Tai, X. H. Xia, M. D. Yi, L. H. Xie, Q. L. Fan, L. H. Wang, A. Wei, W. Huang, “Unipolar resistive switching effects based on Al/ZnO/P++-Si diodes for nonvolatile memory applications,” Chin. Phys. Lett., vol. 29, pp. 087201– 4, 2012.
    [44] H. S. P. Wong, H. Y. Lee, S. Yu, Y. S. Chen, Y. Wu, P. S. Chen, B. Lee, F. T. Chen, M. Tsai, “Metal–oxide RRAM,” Proc. IEEE., vol. 100, pp. 1951– 1970, 2012.
    [45] D. H. Kwon, K. M. Kim, J. H. Jang, J. M. Jeon, M. H. Lee, G. H. Kim, X. S. Li, G. S. Park, B. Lee, S. Han, M. Kim, C. S. Hwang, “Atomic structure of conducting nanofilaments in TiO2 resistive switching memory,” Nat. Nanotech., vol. 5, pp. 148– 153, 2010.
    [46] D. I. Son, T. W. Kim, J. H. Shim, J. H. Jung, D. U. Lee, J. M. Lee, W. I. Park, W. K. Choi, “Flexible organic bistable devices based on graphene embedded in an insulating poly(methyl methacrylate) polymer layer,” Nano. Lett., vol. 10, pp. 2441– 2447, 2010.
    [47] H. Pagina, N. Sotnik, “Bistable switching in electroformed metal-insulator-metal devices,” Phys. Stat. Sol. A., vol. 108, pp. 11– 65, 1988.

    References of Chapter 4
    [1] A. Janotti, and C. G. V. Walle., “Fundamentals of zinc oxide as a semiconductor,” Rep. Prog. Phys., vol. 72, no. 12, pp. 126501-29, 2009.
    [2] D. C. Look, “Recent advances in ZnO materials and devices,” Mater. Sci. Eng. B, vol. 80, no.1-3, pp. 383−387, 2001.
    [3] C. Klingshirn, “ZnO: material, physics and applications,” Chem. Phys. Chem., vol. 8, no. 6, pp. 782−803, 2007.
    [4] E. Fortunato, P. Barquinha, A. Pimentel, A. Goncalves, A. Marques, L. Pereira, and R. Martins, “Recent advances in ZnO transparent thin film transistors,” Thin Solid Films, vol. 487, no. 1-2, pp. 205−211, 2005.
    [5] A.Yamada, B. Sang, and M. Konagai, “Atomic layer deposition of ZnO transparent conducting oxides,” Appl. Surf. Sci., vol. 112, pp. 216−222, 1997.
    [6] M. Suchea, S. Christoulakis, K. Moschovis, N. Katsarakis, and G. Kiriakidis, “ZnO transparent thin films for gas sensor applications,” Thin Solid Films, vol. 515, no. 2, pp. 551−554, 2006.
    [7] L. W. Ji, S. M. Peng, Y. K. Su, S. J. Young, C. Z. Wu, and W. B. Cheng, “Ultraviolet photodetectors based on selectively grown ZnO microrod arrays,” Appl. Phys. Lett., vol. 94, no. 20, pp. 203106-1−203106-3, 2009.
    [8] C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, “ZnO Nanowire UV Photodetectors with High Internal Gain,” Nano Lett., vol. 7, no. 4, pp.1003−1009, 2007.
    [9] S. M. Peng, Y. K. Su, and L. W. Ji, “Characterization of self-assembled ordered ZnO nanowire networks applied to photodetection,” Microelectron. Eng., vol. 100, pp. 16−19, 2012.
    [10] W. Y. Weng, T. J. Hsueh, S. J. Chang, S. P. Chang, and C. L. Hsu, “Laterally-grown ZnO-nanowire photodetectors on glass substrate,” Superlattices Microstruct., vol. 46, no. 5, pp. 797−802, 2009.
    [11] R. S. Wagner, and W. C. Ellis, “Vapor-liquid-solid mechanism of single crystal growth,” Appl. Phys. Lett., vol. 4, pp. 89, 1964.
    [12] Z. Zhu, T. L. Chen, Y. Gu, J. Warren, and R. M. Osgood, “Zinc oxide nanowires grown by vapor-phase transport using selected metal catalysts: A comparative study,” Chem. Mater., vol. 17, no. 16, pp.4227−4234, 2005.
    [13] W. Lee, M. C. Jeong, and J. M. Myoung, “Catalyst-free growth of ZnO nanowires by metal-organic chemical vapour deposition (MOCVD) and thermal evaporation,” Acta Mater., vol. 52, no. 13, pp. 3949−3957, 2004.
    [14] B. Liu, H. C. Zeng, and “Hydrothermal synthesis of ZnO microrods in the diameter regime of 50 nm,” J. Am. Chem. Soc., vol. 125, no. 15, pp. 4430−4431, 2003.
    [15] E. Ohshima, H. Ogino, I. Niikura, K. Maeda, M. Sato, M. Ito, and T. Fukuda, “Growth of the 2-in-size bulk ZnO single crystals by the hydrothermal method,” J. Cryst. Growth, vol. 260, no. 1-2, pp. 66−170, 2004.
    [16] K. Govender, D. S. Boyle, P. B. Kenway, and P. O’Brien, “Understanding the factors that govern the deposition and morphology of thin films of ZnO from aqueous solution,” J. Mater. Chem., 2004, vol. 14, no. 16, pp. 2575−2591, 2004.
    [17] I. C. Yao, D. Y. Lee, T. Y. Tseng, and P. Lin, “Fabrication and resistive switching characteristics of high compact Ga-doped ZnO microrod thin film devices,” Nanotechnology, vol. 23, no. 14, pp. 145201-1−145201-8, 2012.
    [18] H. Kind, H. Yan, B. Messer, M. Law, and P. Yang, “Nanowire ultraviolet photodetectors and optical switches,” Adv. Mater., vol. 14, no. 2, pp. 158−160, 2002.
    [19] J. Suehiro, N. Nakagawa, S. Hidaka, M. Ueda, , K. Imasaka, M. Higashihata, T. Okada, and M. Hara, “Dielectrophoretic fabrication and characterization of a ZnO nanowire-based UV photosensor,” Nanotechnology, vol. 17, no. 10, pp. 2567−73, 2006.
    [20] Y. W. Heo, B. S. Kang, L. C. Tien, D. P. Norton, F. Ren, J. R. La Roche, S. J. Pearton, “UV photoresponse of single ZnO nanowires,” Appl. Phys. A, vol. 80, no. 3, pp. 497−499, 2004.
    [21] H. F. Francisco, A. Tarancon, O. Casals, J. Rodriguez, R. R. Albert, J. R. Morante, S. Barth, S. Mathur, T. Y. Choi, D. Poulikakos, V. Callegari, and P. M. Nellen, “Fabrication and electrical characterization of circuits based on individual tin oxide nanowires,” Nanotechnology, vol. 17, no. 22, pp. 5577−5583, 2006.
    [22] J. B. K. Law, and J. T. L. Thong, “Simple fabrication of a ZnO nanowire photodetector with a fast photoresponse time,” Appl. Phys. Lett., vol. 88, no. 13, pp.133114-1−133114-3, 2006.
    [23] J. B. K. Law, and J. T. L. Thong, “Lateral ZnO nanowire growth on a planar substrate using a growth barrier,” Nanotechnology, vol. 18, no. 5, pp. 055601-1−055601-6, 2007.
    [24] M. Y. Cho, M. S. Kim, H. Y. Choi, K. G. Yim, and J. Y. Leem, “Post-annealing effects on properties of ZnO microrods grown on Au seed layers,” Bull. Korean Chem. Soc., vol. 32, no. 3, pp. 880−884, 2011.
    [25] X. Xu, M. Wu, M. Asoro, P. J. Ferreira, and D. L. Fan, “One-step hydrothermal synthesis of comb-like ZnO nanostructures,” Cryst. Growth Des., vol. 12, no. 10, pp. 4829−4833, 2012.
    [26] Z. K. Tang, G. K. L. Wong, and P. Yu, “Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films,” Appl. Phys. Lett., vol. 72, no. 25, pp. 3270−3272, 1998.
    [27] J. W. P. Hsu, D. R. Tallant, R. L. Simpson, N. A. Missert, and R. G. Copeland “Luminescent properties of solution-grown ZnO nanorods,” Appl. Phys. Lett., vol 88, no. 25, pp. 252103-1−252103-3, 2006.
    [28] J. Lim, K. Shin, H. W. Kim, and C. Lee, “Photoluminescence studies of ZnO thin films grown by atomic layer epitaxy,” J. Lumin., vol. 109, no.3−4, pp. 181−185, 2004.
    [29] Y. G. Wang, S. P. Lau, H. W. Lee, S. F. Yu, B. K. Tay, X. H. Zhang, and H. H. Hng, “Photoluminescence study of ZnO films prepared by thermal oxidation of Zn metallic films in air,” J. Appl. Phys., vol. 94, no. 1, pp. 354−358, 2003.
    [30] M. Ghosh, and A. K. Raychaudhuri, “Shape transition in ZnO nanostructures and its effect on blue-green photoluminescence,” Nanotechnology, vol. 19, no. 44, pp. 445704, 2008.
    [31] B. Lin, Z. Fu, and Y. Jia, “Green luminescent center in undoped zinc oxide films deposited on silicon substrates,” Appl. Phys. Lett., vol. 79, no. 7, pp. 943−945, 2001.
    [32] S. H. Jeong, B. S. Kim, and B. T. Lee, “Photoluminescence dependence of ZnO films grown on Si(100) by radio-frequency magnetron sputtering on the growth ambient,” Appl. Phys. Lett., vol. 82, no. 16, 2625−2627, 2003.
    [33] W. I. Park, Y. H. Jun, S. W. Jung, and G. C. Yi, “Excitonic emissions observed in ZnO single crystal microrods,” Appl. Phys. Lett., vol. 82, no. 6, 964−966, 2003.
    [34] Y. Chen, D. M. Bagnall, H. J. Koh, K. T. Park, K. Hiraga, Z. Zhu, and T. Yao, “Plasma assisted molecular beam epitaxy of ZnO on c -plane sapphire: Growth and characterization,” J. Appl. Phys., vol. 84 no. 7 pp. 3912−3918, 1998
    [35] X. M. Fan, J. S. Lian, Z. X. Guo, and H. J. Lu, “ZnO thin film formation on Si(1 1 1) by laser ablation of Zn target in oxygen atmosphere,” J. Cryst. Growth, vol. 279, no. 3-4, pp. 447−453, 2005.
    [36] Y. Jin, J. Wang, B. Sun, J. C. Blakesley, and N. C. Greenham, “Solution-Processed Ultraviolet Photodetectors Based on Colloidal ZnO Nanoparticles,” Nano Lett., vol. 8, no. 6, pp. 1649−1653, 2008.
    [37] Q. H. Li, T. Gao, Y. G. Wang and T. H. Wang, “Adsorption and desorption of oxygen probed from ZnO nanowire films by photocurrent measurements” Appl. Phys. Lett., vol. 86, no. 12, pp. 123117-1−123117-3, 2005.
    [38] M. L. Lee1, P. F. Chi, and J. K. Sheu, “Photodetectors formed by an indium tin oxide/zinc oxide/p-type gallium nitride heterojunction with high ultraviolet-to-visible rejection ratio,” Appl. Phys. Lett., vol. 94, no. 1, pp. 013512-1−013512-3, 2009.
    [39] K. W. Liu, J. G. Ma, J. Y. Zhang, Y. M. Lu, D. Y. Jiang, B. H. Li, D. X. Zhao, Z. Z. Zhang, B. Yao, and D. Z. Shen, “Ultraviolet photoconductive detector with high visible rejection and fast photoresponse based on ZnO thin film,” Solid-State Electron., vol. 51, no. 5, pp. 757−761, 2007.
    [40] W. Yang, R. D. Vispute, S. Choopun, R. P. Sharma, T. Venkatesan, and H. Shen, “Ultraviolet photoconductive detector based on epitaxial Mg0.34Zn0.66O thin films,” Appl. Phys. Lett., vol. 78, no. 18, 2787−2789, 2001.
    [41] T. Li, D. J. H. Lambert, A. L. Beck, C. J. Collins, B. Yang, M. M. Wong, U. Chowdhury, R. D. Dupuis, and J. C. Campbell, “Low-noise solar-blind AlxGa1–x N-based metal-semiconductor-metal ultraviolet photodetectors,” J. Electron. Mater., vol. 30, no. 7, pp. 872−877, 2001.
    [42] S. J. Chang, K. H. Lee, P. C. Chang, Y. C. Wang, C. L. Yu, C. H. Kuo, and S. L. Wu, “GaN-based schottky barrier photodetectors with a 12-pair MgxNy-GaN buffer layer,” IEEE J. Quantum Electron., Vol. 44, No.9-10, pp. 916−921, 2008.
    [43] F. Vigué, E. Tournié, and J. P. Faurie, “Evaluation of the potential of ZnSe and Zn(Mg)BeSe compounds for ultraviolet photodetection,” IEEE J. Quantum Electron., vol. 37, no. 9, pp. 1146−1152, 2001.
    [44] S. J. Young, L. W. Ji, S. J. Chang, and Y. K. Su, “ZnO metal–semiconductor–metal ultraviolet sensors with various contact electrodes,” J. Cryst. Growth, vol. 293, no. 1, pp. 43−47, 2006.

    References of Chapter 5
    [1] A. Janotti, C. G. V. Walle, “Fundamentals of zinc oxide as a semiconductor,” Rep. Prog. Phys., vol. 72, pp. 126501−29, 2009.
    [2] D. C. Look, “Recent advances in ZnO materials and devices,” Mater. Sci. Eng. B, vol. 80, pp. 383−387, 2001.
    [3] C. Klingshirn, “ZnO: material, physics and applications,” Chem. Phys. Chem., vol. 8, pp. 782−803, 2007.
    [4] E. Fortunato, P. Barquinha, A. Pimentel, A. Gonçalves, A. Marques, L. Pereira, R. Martins, “Recent advances in ZnO transparent thin film transistors,” Thin Solid Films, vol. 487, pp. 205−211, 2005.
    [5] A. Yamada, B. Sang, M .Konagai, “Atomic layer deposition of ZnO transparent conducting oxides,” Appl. Surf. Sci., vol. 112, pp. 216−222, 1997.
    [6] M. Suchea, S. Christoulakis, K. Moschovis, N. Katsarakis, G. Kiriakidis, “ZnO transparent thin films for gas sensor applications,” Thin Solid Films, vol. 515, pp. 551−554, 2006.
    [7] L. W. Ji, S. M. Peng, Y. K. Su, S. J. Young, C. Z. Wu, W. B. Cheng, “Ultraviolet photodetectors based on selectively grown ZnO nanorod arrays,” Appl. Phys. Lett., vol. 94, pp. 203106−3, 2009.
    [8] C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, D. Wang, “ZnO Nanowire UV Photodetectors with High Internal Gain,” Nano Lett., vol. 7, pp. 1003−1009, 2007.
    [9] S. M. Peng, Y. K. Su, L. W Ji, “Characterization of self-assembled ordered ZnO nanowire networks applied to photodetection,” Microelectron. Eng., vol. 100, pp. 16−19, 2012.
    [10] W. Y. Weng, T. J. Hsueh, S. J. Chang, S. P. Chang, C. L Hsu, “Laterally-grown ZnO-nanowire photodetectors on glass substrate,” Superlattices Microstruct., vol. 46, pp. 797−802, 2009.
    [11] R. S. Wagner, W. C Ellis, “Vapor-liquid-solid mechanism of single crystal growth,” Appl. Phys. Lett., vol. 4, p. 89, 1964.
    [12] Z. Zhu, T. L. Chen, Y. Gu, J. Warren, M. J. R. Osgood, “Zinc oxide nanowires grown by vapor-phase transport using selected metal catalysts_ a comparative study,” Chem. Mater., vol. 17, pp. 4227−4234, 2005.
    [13] W. Lee, M. C. Jeong, J. M. Myoung, “Catalyst-free growth of ZnO nanowires by metal-organic chemical vapour deposition (MOCVD) and thermal evaporation,” Acta Mater., vol. 52, pp. 3949−3957, 2004.
    [14] B. Liu, H. C. Zeng, “Hydrothermal synthesis of ZnO nanorods in the diameter regime of 50 nm,” J. Am. Chem. Soc., vol. 125, pp. 4430−4431, 2003.
    [15] E. Ohshima, H. Ogino, I. Niikura, K. Maeda, M. Sato, M. Ito, T. Fukuda, “Growth of the 2-in-size bulk ZnO single crystals by the hydrothermal method,” J. Cryst. Growth, vol. 260, pp. 166−170, 2004.
    [16] K. Govender, D. S. Boyle, P. B. Kenway, P. O’Brien, “Understanding the factors that govern the deposition and morphology of thin films of ZnO from aqueous solution,” J. Mater. Chem., vol. 14, pp. 2575−2591, 2004.
    [17] I. C. Yao, D. Y. Lee, T. Y. Tseng, P. Lin, “Fabrication and resistive switching characteristics of high compact Ga-doped ZnO nanorod thin film devices,” Nanotechnology, vol. 23, pp. 145201−8, 2012.
    [18] Z. L. Tseng, P. C. Kao, M. F. Shih, H. H. Huang, J. Y. Wang, S. Y. Chu, “Electrical bistability in hybrid ZnO nanorod/polymethylmethacrylate heterostructures,” Appl. Phys. Lett., vol. 97, pp. 212103−3, 2010.
    [19] Z. Fan, D. Wang, P. C. Chang, W. Y. Tseng, J. G. Lu, “ZnO nanowire field-effect transistor and oxygen sensing property,” Appl. Phys. Lett., vol. 85, pp. 5923−3, 2004.
    [20] Y. K. Park, H. S. Choi, J. H. Kim, J. H. Kim, Y. B. Hahn, “High performance field-effect transistors fabricated with laterally grown ZnO nanorods in solution,” Nanotechnology, vol. 22, pp. 185310−7, 2011.
    [21] S. M. Peng, Y. K. Su, L. W. Ji, S. J. Young, C. N. Tsai, W. C. Chao, Z. S. Chen, C. Z. Wu, “Semitransparent field-effect transistors based on ZnO nanowire networks,” IEEE Electron Device Lett., vol. 32, pp. 533−535, 2011.
    [22] N. Liu, G. Fang, W. Zen, H. Long, X. Fan, L. Yuan, X. Zou, Y. Liu, X. Zhao, “Strong effect of interelectrode distance on the performance of a novel ZnO nanorod lateral field emission device fabricated by a single-step hydrothermal approach,” J. Phys. Chem., vol. 114, pp. 8575−8580, 2010.
    [23] C. Y. Kuo, R. M. Ko, Y. C. Tu, Y. R. Lin, T. H. Lin, S. Wang, “Tip shaping for ZnO nanorods via hydrothermal growth of ZnO nanostructures in a stirred aqueous solution,” J. Cryst. Growth Des., vol. 12, pp. 3849−3855, 2012.
    [24] T. J. Hsueh, C. L. Hsu, S. J. Chang, I. C. Chen, “Laterally grown ZnO nanowire ethanol gas sensors,” Sens. Actuators B Chem., vol. 126, pp. 473−477, 2007.
    [25] S. N. Das, J. P. Kar, J. H. Choi, T. I. Lee, K. J. Moon, J. M. Myoung, “Fabrication and characterization of ZnO single nanowire-based hydrogen sensor,” J. Phys. Chem. C, vol. 114, pp. 1689−1693, 2010.
    [26] Y. D. Chiang, W. Y. Chang, C. Y. Ho, C. Y. Chen, C. H. Ho, S. J. Lin, T. B. Wu, J. H. He, “Single-ZnO-nanowire memory,” IEEE Trans. Electr. Dev., vol. 58, pp. 1735−1740, 2011.
    [27] C. Y. Lu, S. P. Chang, S. J. Chang, T. J. Hsueh, C. L. Hsu, Y. Z. Chiou, I. C. Chen, “A lateral ZnO nanowire UV photodetector prepared on a ZnO:Ga/glass template,” Semicond. Sci. Technol., vol. 24, p. 075005, 2009.
    [28] S. M. Peng, Y. K. Su, L. W. Ji, C. Z. Wu, W. B. Cheng, W. C. Chao, “ZnO nanobridge array UV photodetectors,” J. Phys. Chem. C, vol. 114, pp. 3204−3208, 2010.
    [29] H. Kind, H. Yan, B. Messer, M. Law, P. Yang, “Nanowire ultraviolet photodetectors and optical switches,” Adv. Mater., vol. 14, pp. 158−160, 2002.
    [30] J. Suehiro, N. Nakagawa, S. Hidaka, M. Ueda, K. Imasaka, M. Higashihata, T. Okada, M. Hara, “Dielectrophoretic fabrication and characterization of a ZnO nanowire-based UV photosensor,” Nanotechnology, vol. 17, pp. 2567−2573, 2006.
    [31] Y. W. Heo, B. S. Kang, L. C. Tien, D. P. Norton, F. Ren, J. R. La Roche, S. J. Pearton, “UV photoresponse of single ZnO nanowires,” Appl. Phys. A, vol. 80, pp. 497−499, 2004.
    [32] H. F. Francisco, A. Tarancon, O. Casals, J. Rodriguez, R. R. Albert, J. R. Morante, S. Barth, S. Mathur, T. Y. Choi, D. Poulikakos, V. Callegari, P. M. Nellen, “Fabrication and electrical characterization of circuits based on individual tin oxide nanowires,” Nanotechnology, vol. 17, pp. 5577−5583, 2006.
    [33] J. B. K. Law, J. T. L. Thong, “Simple fabrication of a ZnO nanowire photodetector with a fast photoresponse time,” Appl. Phys. Lett., vol. 88, pp. 133114−3, 2006.
    [34] J. B. K. Law, J. T. L. Thong, “Lateral ZnO nanowire growth on a planar substrate using a growth barrier,” Nanotechnology, vol. 18, pp. 055601−6, 2007.
    [35] S. Xu, C. Lao, B. Weintraub, Z. L. Wang, “Density-controlled growth of aligned ZnO nanowire arrays by seedless chemical approach on smooth surfaces,” J. Mater. Res., vol. 23, pp. 2072−2077, 2008.
    [36] M. Y. Cho, M. S. Kim, H. Y. Choi, K. G. Yim, J. Y. Leem, “Post-annealing effects on properties of ZnO nanorods grown on Au seed layers,” Bull. Korean Chem. Soc., vol. 32, pp. 880−884, 2011.
    [37] X. Xu, M. Wu, M. Asoro, P. J. Ferreira, D. L. Fan, “One-step hydrothermal synthesis of comb-like ZnO nanostructures,” Cryst. Growth Des., vol. 12, pp. 4829−4833, 2012.
    [38] L. Guo, Y.L. Ji, and H. Xu, “Regularly shaped, single-crystalline ZnO nanorods with wurtzite structure,” J. Am. Chem. Soc., vol. 124, pp. 14864-14865, 2002.
    [39] U. Hasse, K. Fricke, D. Dias, G. Sievers, H. Wulff, F. Scholz, “Grain boundary corrosion of the surface of annealed thin layers of gold by OH• radicals,” J. Solid State Electrochem., vol. 16, pp. 2383−2389, 2012.
    [40] J. Y. Kim, J. W. Cho, S. H. Kim, “The characteristic of the ZnO nanowire morphology grown by the hydrothermal method on various surface-treated seed layers,” Mater. Lett., vol. 65, pp. 1161−1164, 2011.
    [41] M. Y. Cho, M. S. Kim, H. Y. Choi, K. G. Yim, J. Y. Leem, “Post-annealing effects on properties of ZnO nanorods grown on Au seed layers,” Bull. Korean Chem. Soc., vol. 32, pp. 880−884, 2011.
    [42] T. Uelzen, J. Muller, “Wettability enhancement by rough surfaces generated by thin film technology,” Thin Solid Films, vol. 434, pp. 311–315, 2003.
    [43] J. I. Rosales-Leal, M. A. R. Valverde, G. Mazzaglia, P. J. Ramon-Torregrosa, L. D. Rodriguez, O. G. Martinez, M. V. Capilla, C. Ruiz, M. A. C. Vilchez, Colloid Surf. A-Physicochem. Eng. Asp., vol. 365, pp. 222–229, 2010.
    [44] Z. K. Tang, G. K. L. Wong, P. Yu, “Room-temperature ultraviolet laser emission from self-assembled ZnO micro-crystallite thin films,” Appl. Phys. Lett., vol. 72, pp. 3270−3272, 1998.
    [45] B. Lin, Z. Fu, Y. Jia, “Green luminescent center in undoped zinc oxide films deposited on silicon substrates,” Appl. Phys. Lett., vol. 79, pp. 943−945, 2001.
    [46] S. H. Jeong, B. S. Kim, B. T. Lee, “Photoluminescence dependence of ZnO films grown on Si(100) by radio-frequency magnetron sputtering on the growth ambient,” Appl. Phys. Lett., vol. 82, pp. 2625−2627, 2003.
    [47] W. I. Park, Y. H. Jun, S. W. Jung, G. C. Yi, “Excitonic emissions observed in ZnO single crystal nanorods,” Appl. Phys. Lett., vol. 82, pp. 964−966, 2003.
    [48] P. Yang, H. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R. He, H. J. Choi, “Controlled growth of ZnO nanowires and their optical properties,” Adv. Funct. Mater., vol. 12, pp. 323−331, 2002.
    [49] Z. M. Liao, H. Z Zhang., Y. B. Zhou, J. Xu, J. M. Zhang, D. P. Yu, “Surface effects on photoluminescence of single ZnO nanowires,” Phys. Lett. A, vol. 372, pp. 4505−4509, 2008.
    [50] Q. H. Li, Q. Wan, Y. X. Liang, T. H. Wang, “Electronic transport through individual ZnO nanowires,” Appl. Phys. Lett., vol. 84, pp. 4556−4558, 2004.
    [51] K. W. Liu, J. G. Ma, J. Y. Zhang, Y. M. Lu, D. Y. Jiang, B. H. Li, D. X. Zhao, Z. Z. Zhang, B. Yao, D. Z. Shen, “Ultraviolet photoconductive detector with high visible rejection and fast photoresponse based on ZnO thin film,” Solid State Electron., vol. 51, pp. 757−761, 2007.
    [52] W. Yang, R. D. Vispute, S. Choopun, R. P. Sharma, T. Venkatesan, H. Shen, “Ultraviolet photoconductive detector based on epitaxial Mg0.34Zn0.66O thin films,” Appl. Phys. Lett., vol. 78, pp. 2787−2789, 2001.
    [53] T. Li, D. J. H. Lambert, A. L. Beck, C. J. Collins, B. Yang, M. M. Wong, U. Chowdhury, R. D. Dupuis, J. C. Campbell, “Low-noise solar-blind AlxGa1–x N-based metal-semiconductor-metal ultraviolet photodetectors,” J. Electron. Mater., vol. 30, pp. 872−877, 2001.
    [54] A. Bid, A. Bora, A. K. Raychaudhuri, “1/f noise in nanowires,” Nanotechnology, vol. 17, pp. 152−156, 2006.
    [55] P. Dutta, P. Horn, “Low-frequency fluctuations in solids: 1/f noise,” Rev. Mod. Phys., vol. 53, pp. 497−516, 1981.
    [56] C.Y. Lu, S. P. Chang, S. J. Chang, Y. Z. Chiou, C. F. Kuo, H. M. Chang, C. L. Hsu, I. C. Chen, “Noise characteristics of ZnO-nanowire photo-detectors prepared on ZnO:Ga/glass templates,” IEEE Sens. J., vol. 7, pp. 1020−1024, 2007.
    [57] S. J. Chang, K. H. Lee, P. C. Chang, Y. C. Wang, C. L. Yu, C. H. Kuo, S. L. Wu, “GaN-based schottky barrier photo-detectors with a 12-pair MgxNy-GaN buffer layer,” IEEE J. Quantum Electron., vol. 13, pp. 916−921, 2010.
    [58] F. Vigué, E. Tournié, J. P. Faurie, “Evaluation of the potential of ZnSe and Zn(Mg)BeSe compounds for ultraviolet photodetection,” IEEE J. Quantum Electron., vol. 37, pp. 1146−1152, 2001.
    [59] S. J. Young, L. W. Ji, S. J. Chang, Y. K. Su, “ZnO metal–semiconductor–metal ultraviolet sensors with various contact electrodes,” J. Cryst. Growth, vol. 293, pp. 43−47, 2006.

    References of Chapter 6
    [1] A. Janotti, C. G. Van de Walle, “Fundamentals of zinc oxide as a semiconductor,” Rep. Prog. Phys., vol. 72, pp.126501−29, 2009.
    [2] D. C. Look, “Recent advances in ZnO materials and devices,” Mater. Sci. Eng. B, vol. 80, pp. 383−387, 2001.
    [3] C. Klingshirn, “ZnO: material, physics and applications,” Chem. Phys. Chem., vol. 8, pp. 782−803, 2007.
    [4] X. Y. Kong, Z. L. Wang, “Spontaneous polarization-induced nanohelixes, nanosprings, and nanorings of piezoelectric nanobelts,” Nano Lett., vol. 3, pp. 1625−1631, 2003.
    [5] L. W. Ji, S. M. Peng, Y. K. Su, S. J. Young, C. Z. Wu, W. B. Cheng, “Ultraviolet photodetectors based on selectively grown ZnO nanorod arrays,” Appl. Phys. Lett., vol. 94, pp. 203106−3, 2009.
    [6] C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, D. Wang, “ZnO nanowire UV photodetectors with high internal gain,” Nano Lett., vol. 7, pp. 1003−1009, 2007.
    [7] S. M. Peng, Y. K. Su, L. W Ji, “Characterization of self-assembled ordered ZnO nanowire networks applied to photodetection,” Microelectron. Eng., vol. 100, pp. 16−19, 2012.
    [8] W. Y. Weng, T. J. Hsueh, S. J. Chang, S. P. Chang, C. L Hsu, “Laterally-grown ZnO-nanowire photodetectors on glass substrate,” Superlattices Microstruct., vol. 46, pp. 797−802, 2009.
    [9] R. S. Wagner, W. C Ellis, “Vapor-liquid-dolid mechanism of single crystal growth,” Appl. Phys. Lett., vol. 4, p. 89, 1964.
    [10] Z. Zhu, T. L. Chen, Y. Gu, J. Warren, M. J. Osgood, “Zinc oxide nanowires grown by vapor-phase transport using selected metal catalysts_ A comparative study,” Chem. Mater., vol. 17, pp. 4227−4234, 2005.
    [11] W. Lee, M. C. Jeong, J. M. Myoung, “Catalyst-free growth of ZnO nanowires by metal-organic chemical vapour deposition (MOCVD) and thermal evaporation,” Acta Mater., vol. 52, pp. 3949−3957, 2004.
    [12] B. Liu, H. C. Zeng, “Hydrothermal synthesis of ZnO nanorods in the diameter regime of 50 nm,” J. Am. Chem. Soc., vol. 125, pp. 4430−4431, 2003.
    [13] E. Ohshima, H. Ogino, I. Niikura, K. Maeda, M. Sato, M. Ito, T. Fukuda, “Growth of the 2-in-size bulk ZnO single crystals by the hydrothermal method,” J. Cryst. Growth, vol. 260, pp. 166−170, 2004.
    [14] K. Govender, D. S. Boyle, P. B. Kenway, P. O’Brien, “Understanding the factors that govern the deposition and morphology of thin films of ZnO from aqueous solution,” J. Mater. Chem., vol. 14, pp. 2575−2591, 2004.
    [15] I. C. Yao, D. Y. Lee, T. Y. Tseng, P. Lin, “Fabrication and resistive switching characteristics of high compact Ga-doped ZnO nanorod thin film devices,” Nanotechnology, vol. 23, pp. 145201−8, 2012.
    [16] Z. L. Tseng, P. C. Kao, M. F. Shih, H. H. Huang, J. Y. Wang, S. Y. Chu, “Electrical bistability in hybrid ZnO nanorod/polymethylmethacrylate hetero structures,” Appl. Phys. Lett., vol. 97, pp. 212103−3, 2010.
    [17] C. H. Lu, C. H. Yeh, “Influence of hydrothermal conditions on the morphology and particle size of zinc oxide powder,” Ceram. Int., vol. 26, pp. 351−357, 2000.
    [18] S. Xu, C. Lao, B. Weintraub, Z. L. Wang, “Density-controlled growth of aligned ZnO nanowire arrays by seedless chemical approach on smooth surfaces,” J. Mater. Res., vol. 23, pp. 2072−2077, 2008.
    [19] M. Y. Cho, M. S. Kim, H. Y. Choi, K. G. Yim, J. Y. Leem, “Post-annealing effects on properties of ZnO nanorods grown on Au seed layers,” Bull. Korean Chem. Soc., vol. 32, pp. 880−884, 2011.
    [20] X. Xu, M. Wu, M. Asoro, P. J. Ferreira, D. L. Fan, “One-step hydrothermal synthesis of comb-like ZnO nanostructures,” Cryst. Growth Des., vol. 12, pp. 4829−4833, 2012.
    [21] L. Guo, Y. L. Ji, and H. Xu, “Regularly shaped, single-crystalline ZnO nanorods with wurtzite structure,” J. Am. Chem. Soc., vol. 124, pp. 14864-14865, 2002.
    [22] U. Hasse, K. Fricke, D. Dias, G. Sievers, H. Wulff, F. Scholz, “Grain boundary corrosion of the surface of annealed thin layers of gold by OH• radicals,” J. Solid State Electrochem., vol. 16, pp. 2383−2389, 2012.
    [23] B. Lin, Z. Fu, Y. Jia., “Green luminescent center in undoped zinc oxide films deposited on silicon substrates,” Appl. Phys. Lett., vol. 79, pp. 943−945, 2001.

    下載圖示 校內:2019-12-25公開
    校外:2019-12-25公開
    QR CODE