| 研究生: |
尤智遠 Yu, Chi-Yuan |
|---|---|
| 論文名稱: |
γ型史特靈引擎-移動再生器孔洞參數分析 A CFD study on the effects of displacer hole parameters on a low-temperature-differential γ-type Stirling engine |
| 指導教授: |
陳文立
Chen, Wen-Lih |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 69 |
| 中文關鍵詞: | γ型史特靈引擎 、移動再生器 、CFD模擬 |
| 外文關鍵詞: | Gamma type Stirling Engine, Displacer, CFD |
| 相關次數: | 點閱:79 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用CFD模擬一台單缸γ型史特靈引擎之內部流場,針對內部之重要部件移動再生器之孔洞”面積比”與”孔洞數”進行參數分析,首先,對於面積比之案例有0.11、0.14、0.17、0.20、0.23進行參數分析,而對於面積比越大,其輸出功會有越來越小之趨勢,因為隨著孔洞的變大,移動再生器所引起的噴流速度越慢,引擎熱傳能力會越來越差,對於移動再生器而言,溫差有越小的趨勢,因為下孔洞之速度不夠,導致被加熱之工作氣體進入移動再生器內為及時被送至冷端冷卻,因此停留至移動再生器內,促使上下孔洞之溫差變小的問題。
其次,對於孔洞數參數分析,期三個案例都為面積比0.14,而孔洞數分別為75、105、140,隨著孔洞數增加,其輸出功會越來越小,原因為移動再生器之上下孔洞存在之溫差對於移動再生器熱儲有巨大的關係,熱儲溫度僅達380.67K(105)和383.32K(140),然而,105速度會低是因為流場紊流動能較高,因此吸熱能力較好,有64.25W,促使整體引擎有較大的最大溫差22K。
最後,利用熱效率與再生效率探討其與輸出功較有關係,結果顯示在引擎吸熱能力方面於輸入熱越小,會有越好的熱效率存在,這也代表儘管熱傳能力下降,但是引擎於輸出功方面還是能維持在一定的水準。對於趨勢方面,引擎之再生效率之趨勢與輸出功之趨勢更為接近,因此,移動再生器製造溫差能力影響較大。
在整體表現上,”面積比0.14、孔洞數75”之引擎之熱效率和再生效率,都可以在所有案例中屬於中前段水準,這表示其移動再生器所製造之噴流對於此空間是有最佳的適性。
This study employs Computational Fluid Dynamics (CFD) to simulate the internal flow field of a single-cylinder γ-type Stirling engine. The research focuses on parameter analysis of the internal displacer component with regards to the "hole area ratio" and "number of holes." Firstly, for the case of the hole area ratio, parameter analysis is conducted for ratios of 0.11, 0.14, 0.17, 0.20, and 0.23. As the hole area ratio increases, the indecated work shows a decreasing trend. This is because larger holes result in slower jet velocities caused by the displacer, leading to a decrease in the engine's heat transfer capability. For the displacer, there is a decreasing trend in temperature difference since the velocity through the holes is insufficient, causing the heated working gas to remain inside the displacer instead of being promptly sent to the cold end for cooling, thus reducing the temperature difference between the upper and lower holes.
Secondly, for the parameter analysis of the number of holes, three cases are considered, all with a hole area ratio of 0.14, and the number of holes being 75, 105, and 140. As the number of holes increases, the indecated work decreases. This is because the temperature difference between the upper and lower holes of the displacer has a significant impact on its heat storage capacity. The heat storage temperatures reach only 380.67K (105) and 383.32K (140). However, the lower velocity of 105 is due to higher turbulent kinetic energy in the flow field, resulting in better heat absorption capacity, yielding 64.25W and leading to a larger overall maximum temperature difference of 22K in the engine.
Finally, the study explores the relationship between thermal efficiency and regenerative efficiency and their connection to indecated work. The results indicate that as the input heat decreases, the thermal efficiency improves, suggesting that despite the decrease in heat transfer capability, the engine can still maintain a certain level of indecated work. In terms of trends, the regenerative efficiency trend is closer to the indecated work trend, indicating that the displacer’s ability to create temperature differences has a more significant impact.
In overall performance, the engine with a "area ratio of 0.14 and 75 holes" exhibits thermal efficiency and regenerative efficiency in the mid to upper range among all cases, indicating that the jet flow generated by this configuration is best suited for this space.
[1] U. R. Singh and A. Kumar, "Review on solar Stirling engine: Development and performance," Thermal Science and Engineering Progress, vol. 8, pp. 244-256, 2018, doi: 10.1016/j.tsep.2018.08.016.
[2] R. Strzalka, D. Schneider, and U. Eicker, "Current status of bioenergy technologies in Germany," Renewable and Sustainable Energy Reviews, vol. 72, pp. 801-820, 2017, doi: 10.1016/j.rser.2017.01.091.
[3] A.J.Organ., The air engine: Stirling cycle power for a sustainable future. 2007.
[4] K. O’Rielly and J. Jeswiet, "Strategies to Improve Industrial Energy Efficiency," Procedia CIRP, vol. 15, pp. 325-330, 2014, doi: 10.1016/j.procir.2014.06.074.
[5] A. Abuelyamen and R. Ben-Mansour, "Energy efficiency comparison of Stirling engine types (α, β, and γ) using detailed CFD modeling," International Journal of Thermal Sciences, vol. 132, pp. 411-423, 2018.
[6] A. J. Organ., "The regenerator and the Stirling engine.," 1997.
[7] W.-L. Chen, C.-K. Chen, M.-J. Fang, and Y.-C. Yang, "A numerical study on applying slot-grooved displacer cylinder to a γ-type medium-temperature-differential stirling engine," Energy, vol. 144, pp. 679-693, 2018, doi: 10.1016/j.energy.2017.12.010.
[8] W.-L. Chen, "A study on the effects of geometric parameters in a low-temperature-differential γ-type Stirling engine using CFD," International Journal of Heat and Mass Transfer, vol. 107, pp. 1002-1013, 2017.
[9] H. D. Huang and W. L. Chen, "Development of a compact simple unpressurized Watt‐level low‐temperature‐differential Stirling engine," International Journal of Energy Research, vol. 44, no. 14, pp. 12029-12044, 2020.
[10] G. Xiao, C. Chen, B. Shi, K. Cen, and M. Ni, "Experimental study on heat transfer of oscillating flow of a tubular Stirling engine heater," International Journal of Heat and Mass Transfer, vol. 71, pp. 1-7, 2014, doi: 10.1016/j.ijheatmasstransfer.2013.12.010.
[11] Y. X. S. Spring, and B. Weigand. , "An experimental and numerical study of heat transfer from arrays of impinging jets with surface ribs.," Heat Transfer. , p. 134(8). 2012.
[12] T.C. Cheng, P. H. C., T.F. Lin * "Visualization of mixed convective vortex rolls in animpinging jet flow of air through a cylindrical chamber.", 2002
[13] K. Jambunathan, E. Lai, M. Moss, and B. Button, "A review of heat transfer data for single circular jet impingement," International journal of heat and fluid flow, vol. 13, no. 2, pp. 106-115, 1992.
[14] N. Zuckerman and N. Lior, "Jet Impingement Heat Transfer: Physics, Correlations, and Numerical Modeling," (Advances in Heat Transfer, 2006, pp. 565-631.
[15] Carcasci.C, "An experimental investigation on air impinging jetsusing visualisation methods ",1999
[16] L. F. Geers, M. J. Tummers, and K. Hanjalić, "Experimental investigation of impinging jet arrays," Experiments in fluids, vol. 36, pp. 946-958, 2004.
[17] R. J. GOLDSTEIN, A. I. BEHBAHANI* and K. KIEGER HEPPELMANN, "Streamwise distribution of the recovery factorand the local heat transfer coefficient to an impinging circular air jet ",Vol. 29, No. 8. pp. 1227-123,1986
[18] 蘇柏豪, "應用田口法於 γ 型史特靈引擎之設計參數優化研究," 2022.
[19] M. d. A. Al-Nimr and W. A. Al-Ammari, "A novel hybrid and interactive solar system consists of Stirling engine ̸vacuum evaporator ̸thermoelectric cooler for electricity generation and water distillation," Renewable Energy, vol. 153, pp. 1053-1066, 2020, doi: 10.1016/j.renene.2020.02.072.
[20] K. Laazaar and N. Boutammachte, "Development of a new technique of waste heat recovery in cement plants based on Stirling engine technology," Applied Thermal Engineering, vol. 210, 2022, doi: 10.1016/j.applthermaleng.2022.118316.
[21] E. Cardozo, C. Erlich, A. Malmquist, and L. Alejo, "Integration of a wood pellet burner and a Stirling engine to produce residential heat and power," Applied Thermal Engineering, vol. 73, no. 1, pp. 671-680, 2014, doi: 10.1016/j.applthermaleng.2014.08.024.
[22] P. Puech and V. Tishkova, "Thermodynamic analysis of a Stirling engine including regenerator dead volume," Renewable Energy, vol. 36, no. 2, pp. 872-878, 2011, doi: 10.1016/j.renene.2010.07.013.
[23] W.-L. Chen, Y.-C. Yang, and J. L. Salazar, "A CFD parametric study on the performance of a low-temperature-differential γ -type Stirling engine," Energy Conversion and Management, vol. 106, pp. 635-643, 2015, doi: 10.1016/j.enconman.2015.10.007.