| 研究生: |
曾榆鈞 Tseng, Yu-Chunn |
|---|---|
| 論文名稱: |
雙層建築火害結構行為之實例研究 The Case Studies of Fire-Structure Behaviors for Two-Story Buildings |
| 指導教授: |
鍾興陽
Chung, Hsing-Yang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 160 |
| 中文關鍵詞: | 火災 、雙層建築 、起火源 、耐火鋼 、非線性有限元素分析 |
| 外文關鍵詞: | Fire, Two-Story Building, Fire Origin, Fire-Resistant Steel, Non-linear Finite Element Analysis |
| 相關次數: | 點閱:78 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究之目的在應用火災模擬軟體FDS以及有限元素分析軟體ABAQUS來研究火災時雙層鋼構建築之結構行為,並比較不同的起火源和使用耐火鋼或普通鋼對雙層鋼構建築所造成的影響。所有的鋼構建築案例皆使用輕質混凝土樓版,而梁柱系統則依分析案例之不同而使用耐火鋼SN490C-FR或普通鋼SN490B。本研究首先進行單跨雙層建築之火災模擬,並取得結構體表面的溫度歷時來進行建築結構的熱傳分析,再將熱傳分析結果導入進行順序耦合分析,得到火災時單跨雙層建築的結構行為,之後,再使用相同的分析方法,來模擬雙跨雙層建築在火災時的的結構行為。數值模擬結果顯示:由於所模擬建築案例的居室尺寸不大且火災延燒迅速,起火源的影響只在火災延燒階段,在一定時間以後,其對鋼構建築的結構行為影響不大;耐火鋼由於在高溫下能保持較高之強度與彈性模數,因此採用耐火鋼的建築其樓版的垂直向變形在火災時較小,但其梁軸力以及梁軸向變形均較普通鋼梁為大。火害中,雙跨建築樓版的垂直向變形較單跨建築為小,而雙跨建築的內梁容易累積熱能,故溫度較高,其梁軸力與軸向變形較外梁為高。
The purpose of this study is to investigate the fire-structure behaviors of two-story steel buildings using the fire simulation software FDS and the finite-element analysis software ABAQUS. The influences of different fire origins and using fire-resistant steel or normal steel in the two-story buildings were compared. In this study, all the steel building cases utilized light-weight concrete floors, but the beam and column system utilized normal steel SN490B or fire-resistant steel SN490C-FR depending on the different analysis cases. First, fire in the one-bay-two-story building case was simulated to obtain the surface temperature history of the building structure, which was substituted into the heat transfer analysis as the input. The output of this heat transfer analysis was then employed to perform sequentially coupled thermal-stress analysis and the structural behavior of the one-bay-two-story building case in fire was obtained. Using the same analysis procedure, the fire-structure behavior of the two-bay-two-story building case was obtained as well. The numerical simulation results show that, due to small room size and quick fire spread, fire origin only had influence at the fire-spreading phase and did not have much influence on the structural behaviors after a certain time. Fire-resistant steel could have higher strength and elastic modulus in high temperatures, so, in fire, the vertical deformations of floors in the building case using fire-resistant steel were smaller. However, the axial forces and axial deformations of fire-resistant steel beams were larger than those of normal steel beams. The vertical deformations of the two-bay building case were smaller than those of the one-bay building case. The axial forces and axial deformations of interior beams were larger than those of exterior beams due to more accumulated heat in the interior beams.
ABAQUS HTML Documentation, “User's Manual,” Dassault Systèmes Simulia Corp., Providence, RI, USA.
ACI Committee 318, Building Code Requirements for Structural Concrete and Commentary (ACI 318M-02), American Concrete Institute, Detroit, Michigan, 2002.
Buchanan, A.H., Structural Design for Fire Safety, John Wiley & Sons, Chichester, 2001.
Duthinh, D., McGrattan, K. and Khaskia, A. “Recent Advances in Fire-Structure Analysis,” Fire Safety Journal, Vol.43, Issue 2, pp.161-167, 2008.
Eurocode 1, “Basis of Design and Actions on Structures-Part1.2:General Action-Actions on Structures Exposed to Fire,” (ENV1991-1-2), 1995.
Eurocode 3, “Design of Steel Structures-Part1.2:General Rules-Structural Fire Design,” (ENV1993-1-2), 1995.
Eurocode 4, “Design of Composite Steel and Concrete Structures-Part1-2:General Rules-Structural Fire Design,” (EN1994-1-2), 2005.
Feasey, R. and Buchanan, A.H. “Post-Flashover Fires for Structural Design,” Fire Safety Journal, Vol. 37, Issue 1, pp.83–105,2002.
Federal Emergency Management Agency, “World Trade Center Building Performance Study:Data Collection, Preliminary Observations, and Recommendations,” FEMA 403, May 2002.
Forney, G.P., “User’s Guide for Smokeview Version 5- A Tool for Visualizing Fire Dynamics Simulation Data,” NIST, 2008.
Gillie, M., “The Behaviour of Steel-Framed Composite Structures in Fire Conditions,” PhD thesis, University of Edinburgh, 2000.
Gardner ,L. and Ng, K.T. “Temperature Development in Structural Stainless Steel Sections Exposed to Fire.” Fire Safety Journal, Vol.41, pp.185-203, 2006.
ISO 834-1, “Fire-Resistance Tests- Elements of Building Construction”, 1999.
Iu, C.K., Chan, S.L. and Zha, X. X. “Nonlinear pre-fire and post-fire analysis of steel frames,” Engineering Structures, Vol. 27, Issue 11, pp. 1689-1702, 2005.
Jowsey, A., Torero, J.L. and Usmani, A., “Modelling of Structures in Fire:an Example of the Boundary Condition,” Proceedings of The International Technical Congress on Computational Simulation Fire Models in Engineering and Research, Santander (Spain), pp. 297-313, 2004.
Liu, T.C.H., Fahad M.K., and Davies, J.M. “Experimental Investigation of Behaviour of Axially Restrained Steel Beam in Fire,” Journal of Contructional Steel Research, Vol.58, Issue 9, pp.1211-1230, 2002.
Luecke, W.E., McCowan, C.N. and Banovic, S.W., “Mechanical Propeties of Structural Steels,” Federal Building and Fire Safety Investigation of the World Trade Center Disaster, National institute of Standards and Technology, 2005.
McGrattan, K.B., Baum, H.R. and Rehm, R.G., “Large Eddy Simulations of Smoke Movement,” Fire Safety Journal, Vol.30, Issue 2 ,
pp. 161-178,1998.
McGrattan, K.B., Klein, B., Hostikka, S. and Floyd, J.E., “Fire Dynamics Simulator (Version 5) User’s Guide,” NIST, 2008.
Walton,W.D. and Thomas, P.H., “Estimating Temperatures in Compartment Fires,” Chapter 3-6.SFPE Handbook of Fire Protection Engineering. Society of Fire Protection Engineers, USA,1995.
Wang ,Z., Jia, F., Galea, E.R., Patel ,M.K. and Ewer, J., “Simulating One of the CIB W14 Round Robin Test Cases Using the SMARTFIRE Fire Field Model, ” Fire Safety Journal, Vol.36, Issue 7 , pp. 661–667, 2001.
Wickstrom, U., Duthinh, D., McGrattan, K., “Adiabatic Surface Temperature for Calculating Heat Transfer to Fire Exposed Structures,” Interflam 2007, London, England, September 3-5, pp.943, 2007.
Wickstrom, U., “Adiabatic Surface Temperature and the Plate Thermometer for Calculating Heat Transfer and Controlling Fire Resistance Furnaces,” Fire Safety Science, Proceedings of the Ninth International Symposium, pp 1227-1238, 2009.
Yin, Y.Z. and Wang, Y.C., “A Numerical Study of Large Deflection Behavior of Restrained Steel Beams at Elevated Temperatures,” Journal of Constructional Steel Research, Vol. 60, Issue 7, pp. 1029-1047, 2004.
Yin, Y.Z. and Wang, Y.C., “Analysis of Catenary Action in Steel Beams Using a Simplified Hand Calculation Method, Part 1:Theory and Validation for Uniform Temperature Distribution,” Journal of Constructional Steel Research, Vol. 61, Issue 2, pp. 183-211, 2005.
中國國家標準CNS總號12514,「建築物構造部分耐火試驗法」,經濟部中央標準局,台灣,2002。
李鎮宏、蔡銘儒,「鋼結構梁柱組合火害行為數值分析與驗證研究」,內政部建築研究所自行研究成果報告,2008。
何明錦、陳生金,「鋼結構梁柱接頭高溫載重行為研究」,內政部建築研究所研究報告,2007。
林子賓,「高溫下螺拴孔承壓能力之研究」,碩士論文,國立成功大學土木工程研究所,台南, 2006。
林振吉,「H型梁-箱型柱彎矩接頭之火害行為研究」,碩士論文,國立成功大學土木工程研究所,台南, 2008。
林誠興,「建築物火災行為與結構安全之性能模擬分析」,行政院國家科學委員會專題研究計畫成果報告,2006。
林誠興、王士承,「數值模擬技術應用於建築物火災情境重現之探討」,工業安全科技,pp46-53,2007。
「建築物構造防火性能驗證技術手冊」,內政部建築研究所,2009。
莊有清,「鋼材在高溫環境下之行為探討」,碩士論文,國立成功大學土木工程研究所,台南,2004。
張宏宇,「鋼結構梁柱接頭火害實驗之溫度分布研究」,碩士論文,國立成功大學土木工程研究所,台南,2009。
黃雄義,「FDS預測ISO9705房間試驗火場情境之可行性研究」,碩士論文,國立高雄第一科技大學環境與安全衛生工程所,2005。
陳明宗,「複合式老舊住宅火災模擬分析以高雄縣民宅火災為例」,碩士論文,元智大學機械工程學系,2008。
陳均杰,「衛爾康火災熱流場場模式模擬」,碩士論文,元智大學機械工程學系,2008。
陳建源,「火災電腦程式之一些應用」,碩士論文,元智大學機械工程研究所,1998。
陳柏均,「利用耐火鋼增進鋼構建築耐火能力之實例研究」,碩士論文,國立成功大學土木工程研究所,2011。
陳諺輝,「螺拴孔於高溫下承壓行為之量測與數值模擬」,碩士論文,國立成功大學土木工程研究所,2006。
愛發股份有限公司編著,「ABAQUS實務入門引導」,全國科技圖書股份有限公司印行,臺北,2005年5月初版。
蔡宗奮,「單層多跨建築之火災與結構行為之數值模擬」,碩士論文,國立成功大學土木工程研究所,2010。
蕭博勳,「鋼結構抗彎梁柱接頭在高溫環境下之行為研究」,碩士論文,國立成功大學土木工程研究所,台南,2007。