| 研究生: |
王冠智 Wang, Kuan-chi |
|---|---|
| 論文名稱: |
降低軸向柱塞泵流量脈動與噪音分析 Flow fluctuation and noise reduction analysis of an axial piston pump |
| 指導教授: |
李輝煌
Lee, Huei-Huang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 86 |
| 中文關鍵詞: | 軸向柱塞泵 、配流盤設計 、流量脈動 、壓力脈動 |
| 外文關鍵詞: | axial piston pump, value plate, flow fluctuation, pressure fluctuation |
| 相關次數: | 點閱:68 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在各種液壓泵中,軸向柱塞泵 (Axial Piston Pump)由於容積效率高、功率密度大、使用壽命長等獨特優點得到廣泛應用。在提升軸向柱塞泵性能同時,如何有效降低柱塞泵噪音成為重要研究課題。
本研究針對高效能軸向柱塞泵進行模擬分析,先對原始模型進行初步的模擬,透過文獻來驗證柱塞泵的初步流場模擬結果為正確的,再透過文獻搜索與資料瀏覽進行初步的幫浦設計,目的在降低其出口流量脈動、壓力脈動,進一步降低噪音值。
軸向柱塞泵包含一個關鍵零組件-配流盤 (Valve Plate),它的結構形式、尺寸、材料及加工精度合理與否,將直接影響柱塞泵的容積效率及泵內液壓油流動特性。由於柱塞泵運作過程中產生的壓力衝擊 (Pressure Impact)與流量脈動 (Flow Fluctuation) 是導致液壓系統噪音的主要原因之一,而流量脈動為與壓力脈動率為本研究的主軸,並以流量脈動率 (Flow Fluctuation Rate)及壓力脈動率 (Pressure Fluctuation Rate)作為指標,理想情況下,流量脈動率及壓力脈動率表現越低,對軸向柱塞泵的效益越佳,所以在柱塞泵結構中,本研究會利用緩衝槽 (Buffer Grooves)與其所配合之預壓室 (Pre-compression Reservoir)設計進行分析,藉由分析結果可得知,配流盤結構改變後,柱塞泵出口流動脈動與壓力脈動明顯改善許多,並將其設計做參數優化,期望計算後的流量脈動率與壓力脈動更能有效降低,使得柱塞泵穩定輸出液壓油。為模擬軸向柱塞泵的循環動態流場性質,本研究利用商業計算流體力學軟體Fluent,與噪音分析軟體Virtual.lab來進行分析,從分析結果可以得知改善出口的流量脈動與壓力脈動,可以有效的降低因為流場不穩定所產生的噪音值。
This study consists of simulated high efficient axial piston pump operations. First of all, simulated the original pump. Secondly, search the literatures to design the original pump to reduce flow fluctuation rate, pressure fluctuation rate and acoustic power.
Valve plate was a key component of axial piston pump. Its structure, material and precision which are either reasonable or not will affect the reliability, volume efficiency and work life directly. The pressure impact and flow fluctuation were the main sources of noise in hydraulic system during the piston pump operating. This research focuses on the flow fluctuation rate and pressure fluctuation rate of the axial piston pump. It was found that the proper design of the valve plate in an axial piston pump will dramatically lower the flow fluctuation rate and pressure fluctuation rate in the pump especially with regard to designs involving buffer grooves and a pre-compression reservoir. Optimizing the design parameters is intended to determine the best performance indices. As to the simulation results, the design of the valve plate in this research significantly improved the flow fluctuation rate and pressure fluctuation rate. In this research, Fluent CFD software was used to understand the flow characteristics of the piston pump’s outlet
參考文獻
[1] 謝曉星,計算流體力學及熱傳學,高立圖書有限公司,1993。
[2] 劉履新、歐奉初,液壓學,大揚出版社,1995。
[3] 周溫成、曾賢壎,氣液壓學,高立圖書有限公司,1997。
[4] 賴耿陽,機械振動學概論,復漢出版社,2000。
[5] 邱勤山、胡世平、姜太倫、楊建裕,流體機械,高立圖書有限公司,2006。
[6] 徐業良,機械設計,滄海書局,2007。
[7] 李紀衡,降低軸向柱塞泵流量脈動之配流盤設計與分析,國立成功大學機械工程學系碩士論文,台南,台灣,2015。
[8] 王健宇,軸向柱塞泵流量脈動優化設計,國立成功大學機械工程學系碩士論文,台南,台灣,2014。
[9] 呂淮熏、黃勝銘,氣液壓學,高立圖書有限公司,1998年。
[10] 市川常雄著,賴耿陽譯,實用油壓技術機器篇,復漢出版社,1977年。
[11] 佐藤俊雄著,楊德輝譯,油壓迴路設計與對策,全華科技圖書股份有限公司,1986年。
[12] Herbert E. Merritt, “Hydraulic Control System,” John Wiley and Sons, Inc., 1967.
[13] Kojima, E., H. Iwata, N. Hyodo, S. Matsushima and K. Watanabe, “Model Analysis of Structural Vibration of the Oil-Hydraulic Pump,” JOURNAL-JAPAN HYDRAULICS AND PNEUMATICS SOCIETY, Vol. 27, pp. 315-327, 1996.
[14] Wiklund, P. E., “Suction Dynamics of Axial Piston Pumps”, Ph.D. Thesis, 2000.
[15] Noah D. Manring, “The Discharge Flow Ripple of an Axial-Piston Swash-Plate Type Hydrostatic Pump,” Journal of Dynamic Systems, Measurement, and Control of ASME, Vol. 122, pp. 263-268, 2000.
[16] Noah D. Manring, “Valve Plate Design for an Axial Piston Pump Operating at Low Displacement,” Journal of Mechanical Design of ASME, Vol. 125, pp. 200-207, 2003.
[17] Peter Achten, et al, “Design and Testing of an Axial Piston Pump Based on the Floating Cup Principle,” The Eighth Scandinavian International Conference on Fluid Power, SICFP'03, May 7-9, 2003.
[18] Langthjem, M.A., “A numerical study of flow-induced noise in a two-dimensional centrifugal pump. Part I. Hydrodynamics,” ELSEVIER, Journal of Fluids and Structures, Vol. 19, pp. 349–368, 2004.
[19] Langthjem, M.A., “A numerical study of flow-induced noise in a two-dimensional centrifugal pump. Part II. Hydrodynamics,” ELSEVIER, Journal of Fluids and Structures, Vol. 19, pp. 369–386, 2004.
[20] Ding, W. S. and H. Y. Wu, “Modeling and Simulation on Light Axial Piston Pump,” In Applied Mechanics and Materials,” Trans Tech Publications, Vol. 34, pp. 1859-1864, 2010.
[21] Jiang Zhai and Hua Zhou, “Model and Simulation on Flow and Pressure Characteristics of Axial Piston Pump for Seawater Desalination,” AMM, Vol. 157-158, pp. 1549-1552, 2012.
[22] M. Pelosi and M. Ivantysynova, “Heat Transfer and Thermal Elastic Deformation Analysis on the Piston/Cylinder Interface of Axial Piston Machines,” ASME, Vol. 134, pp. 1-15, 2012.
[23] Ming Hao and Xiaoye Qi, “Modeling Analysis and Simulation of Hydraulic Axial Piston Pump,” Advanced Materials Research, Vol 430, pp. 1532-1535, 2012.
[24] Shi Jian, Lin Xin, “Dynamic Pressure Gradient Model of Axial Piston Pump and Parameters Optimization,” Mathematical Problems in Engineering, 2014.
[25] Helgestad, B. O. and K. Foster, “Pressure Transients in an Axial Piston Hydraulic Pump," Proceedings of the Institution of Mechanical Engineers, Vol. 188, pp. 189-198, 1974.
[26] Darling J., “Piston-cylinder dynamics in oil hydraulic axial piston pumps,” Doctoral Thesis, University of Bath, 1985.
[27] K. A. Edge and J Darling, “Cylinder Pressure Transients in Oil Hydraulic Pumps with Sliding Plate Valves,” Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, Vol 200, pp. 45-54, 1986.
[28] D. J. Korteweg, “On the Velocity of Waterhammer Wave in an Elastic Pipes (in German),” Annalen der Physik und Chemie, New Series, Vol. 5.12, pp. 525-542, 1878.
[29] Halliwell, A. R. “Velocity of Waterhammer Wave in an Elastic pipe,” ASCE Journal of the Hydraulics Division, Vol. 89, pp. 1-21,1963.
[30] Wylie, E. B. and V. L. Streeter, “Fluid Transients,” New York, McGraw-Hill, 1978.
[31] H. Lamb, “On the Velocity of Sound in a Tube, as Affected by the Elasticity of the Walls,” Memories of the Manchester Literary and Philosophical Society, Manchester, Vol. 42, pp. 1-16, 1898.
[32] Fegeant, O., “Structural mobilities for the edge-excited, semi-infinite cylindrical shell using a perturbation method,” Journal of sound and vibration, Vol 248.3, pp. 499-519, 2001.
[33] Gardonio, P. N., S. Ferguson and F. J. Fahy, “A modal expansion analysis of noise transmission through circular cylindrical shell structures with blocking masses,” Journal of Sound and Vibration, Vol. 244, pp. 259-297, 2001.
[34] N. Qi and B. M. Gibbs, “Circulation pumps as structure-borne sound sources emission to semi-infinite pipe systems,” Journal of Sound and Vibration, Vol. 264, pp. 157-176, 2003.
[35] ANSYS, ANSYS FLUENT User's Guide, ANSYS, Inc., 2011。
[36] 油聖液壓科技有限公司,http://www.yeoshe.com.tw/cht/
[37] Material Database, http://www.pragtic.com/vmat.php
校內:2021-08-23公開