| 研究生: |
李馨綸 Li, Hsin-Lun |
|---|---|
| 論文名稱: |
自由曲面的空氣微粒去除潛力研究-以中庭空間為例 Exploring the Potential of Free-Form Surfaces for Air Particulate Removal - A Case Study of Atrium Space |
| 指導教授: |
鄭泰昇
Jeng, Tay-Sheng 蔡耀賢 Tsay, Yaw-Shyan |
| 共同指導教授: |
黃蔚欣
Huang, Wei-Xin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
規劃與設計學院 - 建築學系 Department of Architecture |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 110 |
| 中文關鍵詞: | 自由曲面 、空氣微粒 、計算流體力學 、物理淨化 |
| 外文關鍵詞: | Freeform Surface, Particulate Matter, CFD, Physical Purification |
| 相關次數: | 點閱:167 下載:18 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
懸浮微粒污染已成為各國環境健康的重大問題,建築作為人的棲身之所,起到保護與安身的作用。顆粒物是環境中較難控制的因數,其運動軌跡與氣流息息相關,卻存在些許差異。建築對顆粒物的抑制能力直接相關於顆粒物對人體的危害程度,而現有通過將空間封閉來阻擋顆粒物進入建築的設計手法,卻恰恰違反了建築採光與通風的設計模式。
本研究以半戶外中庭為設計實作對象,提出針對懸浮微粒的中庭頂棚設計策略,將曲面對氣流在速度與方向上的引導為研究目標,試圖藉由曲面達到物理分離的結果,再搭配適當的開口設計,尋找建築介面被動式減少顆粒物的設計方法。而曲面型態的設計根據,首先為使含有交通污染源的氣流與人的使用空間分離,其次則運用曲面改變風道的截面積,使風速下降並沉澱顆粒物,達到被動式的物理減緩。研究前期需分析曲面設計的合理性;研究過程以流體力學模擬選擇最佳的設計方案並歸整出設計方法;研究後期探討曲面建造的困難點與適用性。中庭增設的曲面頂棚如何針對顆粒物生成最佳的設計方案成為此研究的核心目標。
本文提出的以曲面作為物理分離顆粒物的手法,其實際應用的可能性很大程度上取決於便捷和形態適應性強的自由曲面建造方法。然而,常見的曲面建造工藝都很昂貴且很耗時。因此,本研究引進編織結構作為曲面建造的設計手法。編織結構是一個創新的自由曲面建造系統,能因應變化的曲面設計條件,生成與之形態一致編織式空間網殼,具備結構輕質、建造便捷、節能環保等優勢,也是本研究設計發想的核心技術,以及後期成果展現的重要方法。如此,從設計、模擬、分析到建造等一系列技術方法,形成本研究完整的空氣微粒去除解決方案。
Air particulate pollution has become a major issue for environmental health in various countries. As a shelter for people, a building plays the role of protection and security. The inhibition ability of the building to the particles is directly related to the harm degree of the particles to human body. However, the design method of preventing particles from entering the building violates the basic mode of building lighting and ventilation. This study looks for the regularity of airflow in speed and direction guided by curved surfaces and try to achieve the result of physical separation. Then, an appropriate opening design is used to analyze the design method for slowing the entry of particles into the space.
This study takes the building atrium as the design object and proposes a design strategy for the atrium ceiling in response to the air pollution problem. The purpose is to separate the air flow which containing the source of traffic pollution from the human use space. And use the curved surface to change the cross-sectional area of the wind tunnel. When the wind speed drops, there is an opportunity to precipitate particles and achieve passive physical slowdown effect. So, the core goal of this study is to generate the best atrium curved ceiling design for particulate matter.
Using the curved surface as a physical separation method can make the building a good combination of spatial form and function, but curved surface construction has always been a more difficult construction issue. Therefore, this study introduces the weaving structure as a design method for curved surface construction. Weaving structure is a new freeform construction system. It can respond to various surface design conditions and propose systematic optimization meshes, mechanical simulation and structural generation. It has the advantages of light weight structure, convenient construction, energy saving and environmental protection.
[1] 李煜, 朱文一. 城市易致病空間理論: 中國建築工業出版社
[2] 蘇慧貞, 鄭泰昇, 國立成功大學智慧大學城計畫, 內政部永續智慧社區創新實證示範計畫執行成果, 2017
[3] 華志揚, 中庭及附近區域污染物擴散及遷徙規律的研究, 西安建築科技大學, 2016
[4] 懸浮微粒-維琪百科- https://reurl.cc/ex363K
[5] Pope, CA. et al. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. JAMA. 2002 Mar 6;287(9):1132-41.
[6] Zhu, C. China tackles the health effects of air pollution. Lancet 382.9909 Dec 2013
[7] Bloomberg.com: News Pollution Particles Lead to Higher Heart Attack Risk- https://www.bloomberg.com/asia
[8] 世界衛生組織《關於懸浮微粒、臭氧、二氧化氮和二氧化硫的空氣品質準則》
[9] Standards - Air Quality - Environment - European Commission
[10] Zhou, Z., Y. Liu, J. Yuan, et al. Indoor PM2.5 concentrations in residential buildings during a severely polluted winter A case study in Tianjin, China. Renewable and Sustainable Energy Reviews 64 (2016)372–381
[11] Vincent, J., O. Bogatyreva, N. Bogatyrev, et al. Biomimetics: its practice and theory, J R Soc Interface, 3 (9) (2006), pp. 471-482, 10.1098/rsif.2006.0127
[12] Pawlyn, M., Biomimicry in architecture, RIBA Publishing, London (2011)
[13] Ürge-Vorsatz, D., L.F. Cabeza, S. Serrano, et al., Heating and cooling energy trends and drivers in buildings, Renewable and Sustainable Energy Reviews, 41, January 2015, Pages 85-98
[14] Aelenei, D., L. Aelenei, and C.P. Vieira, Adaptive Façade: Concept, Applications, Research Questions, Volume 91, June 2016, Pages 269-275, 10.1016/j.egypro.2016.06.218
[15] 吳承霖, 黃蔚欣, 編織結構自由曲面空間網殼設計與建造, 清華大學, 北京, 2019
[16] Huang, W. et al. "Digital Design and Construction of a Weaving Structure." The 8th International Conference on Fibre-Reinforced Polymer (FRP) Composites in Civil Engineering (CICE 2016), Hong Kong. 2016.
[17] Huang, W., C. Wu, and J. Huang, "A Weaving Structure for Design & Construction of Organic Geometry." Proceedings of IASS Annual Symposia. Vol. 2017. No. 7. International Association for Shell and Spatial Structures (IASS), 2017.
[18] 吳冠毅, 徐衛國, 基於懸鏈結構的編織構築研究, 清華大學, 北京, 2019.6
[19] 劉斌, Fluent 19.0流體模擬從入門到精通, 北京:清華大學出版社, 2019
[20] Shen, X., Z. Yao, H. Huo, et al. PM2.5 emissions from light-duty gasoline vehicles in Beijing, China. Sci Total Environ 2014;487:521–7.
[21] Zhang, X., Y. Wang, T. Niu, et al. Atmospheric aerosol compositions in China: spatial/temporal variability, chemical signature, regional haze distribution and comparisons with global aerosols. Atmos Chem Phys 2012;12:779–99.
[22] Zheng, G.J., F.K. Duan, H. Su, et al. Exploring the severe winter haze in Beijing: the impact of synoptic weather, regional transport and Indoor PM2.5 and its chemical composition during a heavy haze–fog episode at Jinan, China heterogeneous reactions. Atmos Chem Phys 2015;15:2969–83.
[23] Yue, W., A.Schneider, M. Stölzel, et al. Ambient source-specific particles are associated with prolonged repolarization and increased levels of inflammation in male coronary artery disease patients. Mutat Res 2007;621:50–60.
[24] Anderson, H.R., G. Favarato, R.W. Atkinson, et al. Long-term exposure to air pollution and the incidence of asthma: meta-analysis of cohort studies. Air Quality, Atmosphere & Health volume 6, pages47–56(2013).
[25] Genc, S., Z. Zadeoglulari, S.H. Fuss, et al. The Adverse Effects of Air Pollution on the Nervous System. Journal of Toxicology, 2012, Article ID 782462.
[26] Cachon, B.F., S. Firmin, A. Verdin, et al. Proinflammatory effects and oxidative stress within human bronchial epithelial cells exposed to atmospheric particulate matter (PM2.5 and PM>2.5) collected from Cotonou, Benin. Environmental Pollution, Volume 185, 2014, Pages 340-351.
[27] Wang, G., R. Jiang, Z. Zhao, et al. Effects of ozone and fine particulate matter (PM2.5) on rat system inflammation and cardiac function. Toxicol Lett 2013;217:23–33.
[28] Zhao, P., X. Zhang, X. Xu, et al. Long-term visibility trends and characteristics in the region of Beijing, Tianjin, and Hebei, China. Atmos Res 2011;101(3):7118.
[29] Maghami, M., H. Hizam, C. Gomes, et al. Evaluation of the 2013 Southeast Asian Haze on Solar Generation Performance. PloS One 2015;10(8):e0135118.
[30] Hassanvand, M.S., K. Naddafi, S. Faridi, et al. Indoor/outdoor relationships of PM10, PM2.5, and PM1 mass concentrations and their water–soluble ions in a retirement home and a school dormitory. Atmos Environ2014;82:375–82.
[31] Liu, R., Y. Jiang, Q. Li, et al. Assessing exposure to secondhand smoke in restaurants and bars 2 years after the smoking regulations in Beijing, China. Indoor Air2014;24(4):339–49.
[32] Oh, H.J., I.S. Nam, H, Yun, et al. Characterization of indoor air quality and efficiency of air purifier in childcare centers, Korea. Build Environ 2014;82:203–14.
[33] Popesc, L., K. Limam, Particle penetration research through buildings’ cracks. HVAC Res 2012;18:312–22.
[34] Chithra, V.S., Nagendra SMS. Characterizing and predicting coarse and fine particulates in classrooms located close to an urban roadway. J Air Waste Manag Assoc 2014;64:945–56.
[35] Massey, D., A. Kulshrestha, J. Masih, et al. Seasonal trends of PM10, PM5.0, PM2.5 & PM1.0 in indoor and outdoor environments of residential homes located in North-Central India. Build Environ 2012;47:223–31.
[36] Goyal, R., M. Khare. Indoor air quality modeling for PM10, PM2.5, and PM1.0 in naturally ventilated classrooms of an urban Indian school building. Environ Monit Assess 2011;176(1–4):501–16.
[37] Yu, C.K.H., M. Li, V. Chan, et al. Influence of mechanical ventilation system on indoor carbon dioxide and particulate matter concentration. Build Environ 2014;76:73–80.
[38] Park, J.S., N.Y. Jee, J.W. Jeong, Effects of types of ventilation system on indoor particle concentrations in residential buildings. Indoor Air 2014;24(6):629–38.
[39] 智慧綠建築資訊網-建築能源模擬解析用TMY3標準氣象年簡介- https://reurl.cc/NjAAM6
[40] 常清,楊複沫,李興華,北京冬季霧霾天氣下顆粒物及其化學組分的粒徑分佈特徵研究[J].環境科學學報,35(2):363-370
[41] Yang, Z., W. Huang, T. Cai, et al. Concentrations and chemical compositions of fine particles (PM2.5) during haze and non-haze days in Beijing, Atmospheric Research 174–175 (2016) 62–69
[42] Wang, Y., G. Zhuang, A. Tang, et al. The ion chemistry and the source of PM2.5 aerosol in Beijing, Atmospheric Environment, Volume 39, Issue 21, July 2005, Pages 3771-3784
[43] Arimoto, R., R.A. Duce, D.L. Savoie, et al. Relationships among aerosol constituents from Asia and the North Pacific during PEM-West a Journal of Geophysical Research Atmospheres, Volume 101, Issue D1, 1996, Pages 2011-2023
[44] Liu, Z., B. Hu, D. Ji, et al. Diurnal and seasonal variation of the PM2.5 apparent particle density in Beijing, China, Atmospheric Environment 120 (2015) 328e338
[45] 通風換氣評估工具-台南市環境保護局 室內空氣品質資訊網- https://reurl.cc/0oKl0l