| 研究生: |
陳佳穗 Chen, Chia-Sui |
|---|---|
| 論文名稱: |
聚麩胺酸鹽微針應用於治療異位性皮膚炎Nc/Nga小鼠皮膚病症 Poly-γ-glutamate Microneedles for Treatment of Atopic Dermatitis-like Skin Lesion in Nc/Nga mice |
| 指導教授: |
陳美瑾
Chen, Mei-Chin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 75 |
| 中文關鍵詞: | 微針 、聚麩胺酸鹽 、異位性皮膚炎 、Nc/Nga小鼠 |
| 外文關鍵詞: | Microneedle, gamma-PGA, Atopic Dermatitis, Nc/Nga mice |
| 相關次數: | 點閱:69 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
異位性皮膚炎(atopic dermatitis)是一種反覆發作的過敏性皮膚疾病,與免疫失調有關,並經常伴隨皮膚乾癢、脫皮、紅腫等症狀。本研究結合聚麩胺酸鹽(poly-γ-glutamate, γ-PGA)微針及聚己內酯(polycaprolactone, PCL)支撐軸陣列,開發兩種分子量(200-400 kDa、1100 kDa)之聚麩胺酸鹽快溶型微針貼片,應用於改善自發性異位性皮膚炎動物模型(Nc/Nga小鼠)之皮膚病症,與評估其免疫調節的潛力。兩款微針皆可於施打於皮膚約兩分鐘內完全溶解,並可快速移除聚己內酯支撐軸貼片,將聚麩胺酸鹽釋放於皮膚約400-500 µm之深度,相當於表皮層與真皮層中,為富含抗原呈現細胞的位置。每片可傳入約750 µg聚麩胺酸鹽;微針施打對皮膚所造成的微傷口,可於3-4小時內完全癒合,可降低感染風險;由活體螢光分佈結果可知,200-400 kDa以及1100 kDa分子量聚麩胺酸鹽於施打後第0天至第1天內,大部分會迅速於皮膚中擴散與被吸收,並可分別存在於皮膚至少2天與6天;將聚麩胺酸鹽微針施打於Nc/Nga小鼠,並檢測體內與過敏反應相關之IgE抗體,發現分子量1100 kDa之聚麩胺酸鹽可有效抑制IgE濃度的上升,且兩種分子量之聚麩胺酸鹽微針均能有效地抑制代表體液型免疫反應(Th2)與細胞型免疫反應(Th1)之抗體:IgG1及IgG2a,亦均能改善皮膚炎病症,包含皮膚角化過度、棘狀層肥厚、組織腫脹以及肥大細胞浸潤之情形。以上結果證實,本研究所開發之聚麩胺酸鹽微針,可快速且穩定地經皮釋放,並調節免疫反應,改善皮膚炎之病症,有潛力應用於異位性皮膚炎患者之治療,提升病人的生活品質。
Atopic dermatitis (AD) is a complex inflammatory skin disease that is closely related to dysregulation of the immune system and with the characteristic of itch and eczema. This study presents a dissolving microneedle system, which comprises poly-γ-glutamate (γ-PGA) microneedles (MNs) with a polycaprolactone supporting array, for investigating the effect of γ-PGA MNs and their molecular weights (MW) including low MW (200-400 kDa) and high MW (1100 kDa), on spontaneous AD-like skin disease in Nc/Nga mice. After applying MNs for two minutes, MNs can be quickly dissolved within the mouse skin with the amounts of 750 µg γ-PGA per patch. A histological examination shows that MNs are strong enough to pierce into mouse skin at a depth of approximately 400-500 µm, where corresponds to insertion through the epidermis and into the dermis, which is rich in the antigen-presenting cells. The microchannels created by the MN insertion can completely heal within 3-4 h, thus reducing the risk of infection. After insertion, we found that a notable decrease in the fluorescent signals of both MWs of MNs on Day 1, and their signals of low and high MW γ-PGA could be detectable up to 2 and 6 days, respectively. After applying the MNs to the Nc/Nga mice, the serum levels of IgE, IgG1, and IgG2a were negatively regulated, indicating that γ-PGA MNs suppress not only the Th2-type (IgG1 and IgE) but also the Th1-driven antibodies (IgG2a). Moreover, the AD symptoms, such as hyperkeratosis, acanthosis, tissue swelling and massive infiltrations of mast cells into the skin lesions, of the MN-treated group was also alleviated compared to the non-treated group. This study demonstrates that the developed γ-PGA MNs have potential to serve as a new therapeutic tool for AD treatment.
[1] H. C. Williams, "Atopic dermatitis," New England Journal of Medicine, vol. 352, pp. 2314-2324, 2005.
[2] M. Miraglia del Giudice, F. Decimo, S. Leonardi, N. Maioello, R. Amelio, A. Capasso, et al., "Immune dysregulation in atopic dermatitis," Allergy and asthma proceedings, vol. 27, pp. 451-455, 2006.
[3] P. Y. Ong and D. M. Leung, "Immune dysregulation in atopic dermatitis," Current allergy and asthma reports, vol. 6, pp. 384-389, 2006.
[4] T.-Y. Lee, D.-J. Kim, J.-N. Won, I.-H. Lee, M.-H. Sung, and H. Poo, "Oral administration of poly-γ-glutamate ameliorates atopic dermatitis in Nc/Nga mice by suppressing Th2-biased immune response and production of IL-17A," Journal of Investigative Dermatology, vol. 134, pp. 704-711, 2014.
[5] D. Y. M. Leung and N. A. Soter, "Cellular and immunologic mechanisms in atopic dermatitis," Journal of the American Academy of Dermatology, vol. 44, pp. S1-S12, 2001.
[6] M. D. Inman, "Airway hyperresponsiveness," CHEST Journal, vol. 123, pp. 411S-416S, 2003.
[7] S. Yoshihara, Y. Yamada, T. Abe, A. Lindén, and O. Arisaka, "Association of epithelial damage and signs of neutrophil mobilization in the airways during acute exacerbations of paediatric asthma," Clinical & Experimental Immunology, vol. 144, pp. 212-216, 2006.
[8] D. Thaçi and R. Salgo, "Malignancy concerns of topical calcineurin inhibitors for atopic dermatitis: facts and controversies," Clinics in dermatology, vol. 28, pp. 52-56, 2010.
[9] S. Schneeweiss, M. Doherty, S. Zhu, D. Funch, R. G. Schlienger, C. Fernandez-Vidaurre, et al., "Topical treatments with pimecrolimus, tacrolimus and medium-to high-potency corticosteroids, and risk of lymphoma," Dermatology, vol. 219, pp. 7-21, 2009.
[10] F. M. Arellano, C. E. Wentworth, A. Arana, C. Fernández, and C. F. Paul, "Risk of lymphoma following exposure to calcineurin inhibitors and topical steroids in patients with atopic dermatitis," Journal of Investigative Dermatology, vol. 127, pp. 808-816, 2007.
[11] 呂玟蒨, "聚麩胺酸鈉鹽製造微膠囊技術之研發與包覆納豆激酶功效之評估," 中興大學食品暨應用生物科技學系所學位論文, 2006.
[12] Available: http://www.vedan.com.tw/customer_1_5.aspx
[13] O. Chunhachart, T. Hanayama, M. Hidesaki, H. Tanimoto, and Y. Tahara, "Structure of the hydrolyzed product (F-2) released from γ-polyglutamic acid by γ-glutamyl hydrolase YwtD of Bacillus subtilis," Bioscience, biotechnology, and biochemistry, vol. 70, pp. 2289-2291, 2006.
[14] T.-Y. Lee, Y.-H. Kim, S.-W. Yoon, J.-C. Choi, J.-M. Yang, C.-J. Kim, et al., "Oral administration of poly-gamma-glutamate induces TLR4-and dendritic cell-dependent antitumor effect," Cancer immunology, immunotherapy, vol. 58, p. 1781, 2009.
[15] T. W. Kim, T. Y. Lee, H. C. Bae, J. H. Hahm, Y. H. Kim, C. Park, et al., "Oral administration of high molecular mass poly-γ-glutamate induces NK cell-mediated antitumor immunity," The Journal of Immunology, vol. 179, pp. 775-780, 2007.
[16] J. W. Lee, J.-H. Park, and M. R. Prausnitz, "Dissolving microneedles for transdermal drug delivery," Biomaterials, vol. 29, pp. 2113-2124, 2008.
[17] C. S. Kolli and A. K. Banga, "Characterization of solid maltose microneedles and their use for transdermal delivery," Pharmaceutical research, vol. 25, pp. 104-113, 2008.
[18] K. Matsuo, Y. Yokota, Y. Zhai, Y.-S. Quan, F. Kamiyama, Y. Mukai, et al., "A low-invasive and effective transcutaneous immunization system using a novel dissolving microneedle array for soluble and particulate antigens," Journal of controlled release, vol. 161, pp. 10-17, 2012.
[19] H. J. Gardeniers, R. Luttge, E. J. Berenschot, M. J. De Boer, S. Y. Yeshurun, M. Hefetz, et al., "Silicon micromachined hollow microneedles for transdermal liquid transport," Journal of Microelectromechanical systems, vol. 12, pp. 855-862, 2003.
[20] C. Pegoraro, S. MacNeil, and G. Battaglia, "Transdermal drug delivery: from micro to nano," Nanoscale, vol. 4, pp. 1881-1894, 2012.
[21] G. Cevc and U. Vierl, "Spatial distribution of cutaneous microvasculature and local drug clearance after drug application on the skin," Journal of controlled release, vol. 118, pp. 18-26, 2007.
[22] R. R. Warner, K. J. Stone, and Y. L. Boissy, "Hydration disrupts human stratum corneum ultrastructure," Journal of investigative dermatology, vol. 120, pp. 275-284, 2003.
[23] P. Loan Honeywell-Nguyen, H. Wouter Groenink, and J. A. Bouwstra, "Elastic vesicles as a tool for dermal and transdermal delivery," Journal of liposome research, vol. 16, pp. 273-280, 2006.
[24] S. MacNeil, "Biomaterials for tissue engineering of skin," Materials today, vol. 11, pp. 26-35, 2008.
[25] A. Arora, M. R. Prausnitz, and S. Mitragotri, "Micro-scale devices for transdermal drug delivery," International journal of pharmaceutics, vol. 364, pp. 227-236, 2008.
[26] F. O. Nestle, P. Di Meglio, J.-Z. Qin, and B. J. Nickoloff, "Skin immune sentinels in health and disease," Nature Reviews Immunology, vol. 9, pp. 679-691, 2009.
[27] S. M. Bal, Z. Ding, E. van Riet, W. Jiskoot, and J. A. Bouwstra, "Advances in transcutaneous vaccine delivery: do all ways lead to Rome?," Journal of controlled release, vol. 148, pp. 266-282, 2010.
[28] E. R. Balmayor, H. S. Azevedo, and R. L. Reis, "Controlled delivery systems: from pharmaceuticals to cells and genes," Pharmaceutical research, vol. 28, pp. 1241-1258, 2011.
[29] Y.-C. Kim, J.-H. Park, and M. R. Prausnitz, "Microneedles for drug and vaccine delivery," Advanced drug delivery reviews, vol. 64, pp. 1547-1568, 2012.
[30] Y. Hiraishi, T. Nakagawa, Y.-S. Quan, F. Kamiyama, S. Hirobe, N. Okada, et al., "Performance and characteristics evaluation of a sodium hyaluronate-based microneedle patch for a transcutaneous drug delivery system," International journal of pharmaceutics, vol. 441, pp. 570-579, 2013.
[31] J.-H. Park, M. G. Allen, and M. R. Prausnitz, "Polymer microneedles for controlled-release drug delivery," Pharmaceutical research, vol. 23, pp. 1008-1019, 2006.
[32] M. Kim, B. Jung, and J.-H. Park, "Hydrogel swelling as a trigger to release biodegradable polymer microneedles in skin," Biomaterials, vol. 33, pp. 668-678, 2012.
[33] S. P. Sullivan, D. G. Koutsonanos, M. del Pilar Martin, J. W. Lee, V. Zarnitsyn, S.-O. Choi, et al., "Dissolving polymer microneedle patches for influenza vaccination," Nature medicine, vol. 16, pp. 915-920, 2010.
[34] 王莉芳, "運用蛋白質貼膚模型和嚴重免疫不全小鼠-人類皮膚模型來研究異位性皮膚炎的致病機轉 Using protein-patch and Scid-hu Skin models to investigate pathogenesis of atopic dermatitis," 2008.
[35] J. Jiang, T. Yamaguchi, N. Funakushi, T. Kuhara, P.-s. Fan, R. Ueki, et al., "Oral administration of Yokukansan inhibits the development of atopic dermatitis-like lesions in isolated NC/Nga mice," Journal of dermatological science, vol. 56, pp. 37-42, 2009.
[36] A. Matsuoka, T. Kato, Y. Soma, H. Takahama, M. Nakamura, H. Matsuoka, et al., "Analysis of T cell receptor (TCR) BV-gene clonotypes in NC/Nga mice developing dermatitis resembling human atopic dermatitis," Journal of dermatological science, vol. 38, pp. 17-24, 2005.
[37] 尤立平 and 刘永生, "特应性皮炎动物模型 NC/Nga 鼠的发现与研究进展," 国外医学: 皮肤性病学分册, vol. 29, pp. 22-24, 2003.
[38] 童敏, 梁云生, and 张桂英, "特应性皮炎模型小鼠的生长繁殖及血液生理生化指标," 中国组织工程研究, vol. 17, pp. 7284-7289, 2013.
[39] J. F. Nascimento, W. M. Pachekoski, and J. A. M. Agnelli, "Environmentally degradable polymeric blend and process for obtaining an environmentally degradable polymeric blend," ed: Google Patents, 2007.
[40] 李祯珍, 窦红静, and 孙康, "基于多糖的环境敏感性纳米凝胶的制备及性能研究," 2013 年全国高分子学术论文报告会论文摘要集——主题 G: 光电功能高分子, 2013.
[41] J. P. López-Alonso, F. Diez-García, J. Font, M. Ribó, M. Vilanova, J. M. Scholtz, et al., "Carbodiimide EDC induces cross-links that stabilize RNase A C-dimer against dissociation: EDC adducts can affect protein net charge, conformation, and activity," Bioconjugate chemistry, vol. 20, pp. 1459-1473, 2009.
[42] J. M. HanifIn, "Diagnostic features of atopic dermatitis," Acta derm venereol (Stockh), vol. 92, pp. 44-47, 1980.
[43] H.-J. Lee, N. R. Lee, M. Jung, D. H. Kim, and E. H. Choi, "Atopic march from atopic dermatitis to asthma-like lesions in NC/Nga mice is accelerated or aggravated by neutralization of stratum corneum but partially inhibited by acidification," Journal of Investigative Dermatology, vol. 135, pp. 3025-3033, 2015.
[44] J. Stalder and A. Taieb, "Severity scoring of atopic dermatitis: the SCORAD index," Dermatology, vol. 186, pp. 23-31, 1993.
[45] J. Stalder, A. Taieb, D. Atherton, P. Bieber, E. Bonifazi, A. Broberg, et al., "Severity scoring of atopic dermatitis: the SCORAD index: consensus report of the european task force on atopic dermatitis," Dermatology, vol. 186, pp. 23-31, 1993.
[46] M. Terada, H. Tsutsui, Y. Imai, K. Yasuda, H. Mizutani, K. Yamanishi, et al., "Contribution of IL-18 to atopic-dermatitis-like skin inflammation induced by Staphylococcus aureus product in mice," Proceedings of the National Academy of Sciences, vol. 103, pp. 8816-8821, 2006.
[47] C. Vestergaard, H. Yoneyama, M. Murai, K. Nakamura, K. Tamaki, Y. Terashima, et al., "Overproduction of Th2-specific chemokines in NC/Nga mice exhibiting atopic dermatitis–like lesions," Journal of Clinical Investigation, vol. 104, p. 1097, 1999.
[48] H. Suto, H. Matsuda, K. Mitsuishi, K. Hira, T. Uchida, T. Unno, et al., "NC/Nga mice: a mouse model for atopic dermatitis," International archives of allergy and immunology, vol. 120, pp. 70-75, 1999.
[49] J. Kim, I. seok Lee, S. Park, and R. Choue, "Effects of Scutellariae radix and Aloe vera gel extracts on immunoglobulin E and cytokine levels in atopic dermatitis NC/Nga mice," Journal of ethnopharmacology, vol. 132, pp. 529-532, 2010.
[50] D. Y. Leung, M. Boguniewicz, M. D. Howell, I. Nomura, and Q. A. Hamid, "New insights into atopic dermatitis," Journal of clinical investigation, vol. 113, p. 651, 2004.
[51] M. Kotani, M. Matsumoto, A. Fujita, S. Higa, W. Wang, M. Suemura, et al., "Persimmon leaf extract and astragalin inhibit development of dermatitis and IgE elevation in NC/Nga mice," Journal of Allergy and Clinical Immunology, vol. 106, pp. 159-166, 2000.
[52] H. Matsuda, N. Watanabe, G. P. Geba, J. Sperl, M. Tsudzuki, J. Hiroi, et al., "Development of atopic dermatitis-like skin lesion with IgE hyperproduction in NC/Nga mice," International immunology, vol. 9, pp. 461-466, 1997.
[53] H. Yonekawa, T. Takada, H. Shitara, C. Taya, Y. Matsushima, K. Matsuoka, et al., "Mouse Models for Atopic Dermatitis Developed in Japan," in Atopic Dermatitis-Disease Etiology and Clinical Management, ed: InTech, 2012.
[54] P. L. Nadworny, J. Wang, E. E. Tredget, and R. E. Burrell, "Anti-inflammatory activity of nanocrystalline silver in a porcine contact dermatitis model," Nanomedicine: Nanotechnology, Biology and Medicine, vol. 4, pp. 241-251, 2008.
[55] Á. Bánvölgyi, L. Pálinkás, T. Berki, N. Clark, A. D. Grant, Z. Helyes, et al., "Evidence for a novel protective role of the vanilloid TRPV1 receptor in a cutaneous contact allergic dermatitis model," Journal of neuroimmunology, vol. 169, pp. 86-96, 2005.
[56] S. J. Galli and M. Tsai, "Mast cells: versatile regulators of inflammation, tissue remodeling, host defense and homeostasis," Journal of dermatological science, vol. 49, pp. 7-19, 2008.
[57] M. A. Grimbaldeston, S. Nakae, J. Kalesnikoff, M. Tsai, and S. J. Galli, "Mast cell–derived interleukin 10 limits skin pathology in contact dermatitis and chronic irradiation with ultraviolet B," Nature immunology, vol. 8, pp. 1095-1104, 2007.
校內:2022-08-01公開