簡易檢索 / 詳目顯示

研究生: 胡家綾
Hu, Chia-Ling
論文名稱: 錯誤放大與低頻化對老年人連續視覺動作追蹤任務的效應
The effects of augmented and low-frequency errors on continuous visuomotor tracking for older adults
指導教授: 黃英修
Hwang, Ing-Shiou
學位類別: 碩士
Master
系所名稱: 醫學院 - 物理治療學系
Department of Physical Therapy
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 43
中文關鍵詞: 老化力量變異視覺回饋肌電圖動作錯誤
外文關鍵詞: aging, force fluctuations, visual feedback, EMG, motor error
相關次數: 點閱:90下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 研究目的:從過去的研究發現當受試者執行連續視覺動作任務時,特別是對於年輕人,給予錯誤量放大的視覺回饋可以使任務表現變好。然而,對於老年人來說,錯誤量放大的回饋帶來更多的訊息,可能會對他們退化的視覺動作系統造成超載,尤其是對老人偵測和快速處理錯誤是很大的挑戰。本研究想探討是否當老年人執行連續力量追蹤任務時,錯誤放大與低頻錯誤對於任務表現的影響。
    研究方法:本研究共收取16位年長的健康受試者(平均年齡65.0 ± 3.2歲,7位男性,9位女性),此任務需要他們用食指向外側壓完成20%最大自主收縮強度的靜態等長收縮,所有受試者都會完成四種由不同視覺引導的力量追蹤任務,分別為真實全域回饋(RF-FS)、真實低頻回饋(RF-LF)、錯誤放大(EA-FS)、錯誤放大的低頻回饋(EA-LF)。EA-FS和EA-LF分別會在低於0.4赫茲的低頻執行錯誤乘以兩倍的執行錯誤,RF-LF則會顯示沒有放大且僅提供低於0.4赫茲低頻執行錯誤,RF-FS則提供真實執行錯誤大小的視覺回饋。比較不同視覺回饋造成力量變異(force fluctuations)的均方根(root mean square,RMS) 、平均頻率(mean frequency, MF) 、樣本熵(sample entropy, SampEn)、和自由度(spectral degree of freedom, DOF)的差異。除此之外,背側第一骨間肌內的肌肉間相關性會用小偵測範圍的五針表面肌電圖收取資料,經全波整流後分析肌肉內的共調頻譜(intramuscular coherence)。實驗使用兩因子重複測量變異數分析檢測錯誤頻域(低頻和全頻的比較)和錯誤放大(錯誤放大和真實回饋的比較)對於力量變異和肌電圖的特徵差異。
    研究結果:力量變異的結構受到回饋錯誤放大與錯誤頻域的影響。力量變異的均方根受到錯誤頻域而非錯誤放大的影響;兩種低頻錯誤回饋(RF-LF和EA-LF) 相對於全域回饋(RF-FS和EA-FS)有較大力量變異的均方根值。力量變異的平均頻率受到錯誤放大而非錯誤頻域的影響;力量變異的平均頻率在錯誤放大情形(EA-FS和EA-LF)較RF-FS和RF-LF出現較高的平均頻率。力量變異的樣本熵同時受到錯誤放大與錯誤頻域的影響;錯誤放大情形(EA-FS和EA-LF)樣本熵大於RF-FS和RF-LF的樣本熵。低頻錯誤回饋(RF-LF和EA-LF)的樣本熵大於全域錯誤回饋(RF-FS和EA-FS)的樣本熵。不論是錯誤頻域或錯誤放大在自由度方面都沒有造成顯著差異。相較於全域錯誤回饋,低頻錯誤回饋(RF-LF和EA-LF)在0-3赫茲有較高的肌內共調頻譜(intramuscular coherence)尖峰值。
    結論:錯誤放大的視覺反饋並未如預期地改善老年人的力量穩定性。不論是否將錯誤放大,提供低頻執行錯誤的視覺回饋反而破壞年長者在連續視覺活動力量的穩定,可能涉及0-3Hz低頻肌肉振盪控制的調控增強有關。

    Objectives: Error amplification (EA) feedback has been previously shown to improve quality of continuous visuomotor tasks, particularly for young adults. However, EA feedback enlarges error information that may overload visuomotor system of the elderly, who suffer from age-related decline in capacity of detection and processing of fast execution errors. This study examined whether older adults could benefit from visual feedback with amplification of low-frequency errors and/or preclusion of fast execution errors during a continuous force-tracking task.
    Methods: Sixteen healthy older adults (age = 65.0 ± 3.2 years, 7 males, 9 females) completed static isometric force at 20% of maximal voluntary contraction through index abduction under four various visual guidance, including real feedback of full spectrum (RF-FS), low-frequency feedback without amplification (RF-LF), error amplification of full spectrum (EA-FS), and low-frequency feedback with amplification (EA-LF). EA-FS and EA-LF multiplied twice of full-spectrum execution errors and low-frequency execution errors under 0.4 Hz, respectively. RF-LF provided low-frequency execution errors under 0.4 Hz without error amplification. RF-FS was a control visual feedback of true error size with full spectrum. Root mean square (RMS), mean frequency (MF), sample entropy (SampEn), and spectral degree of freedom (DOF) of force fluctuations were featured. In addition, intramuscular coherence of the first dorsal interosseous muscle was characterized with a special 5-pin surface electromyography following rectification. Two-way repeated measured ANOVA was used to examine the effects of error spectrum (low-frequency vs. full spectrum) and error amplification (EA vs. RF) on variables of force fluctuations and EMG.
    Results: Force fluctuation structures were selectively altered with error amplification and spectrum of motor errors. RMS of force fluctuations was tuned to main effect of error spectrum rather than error amplification. Visual feedback of low-frequency error (both RF-LF and EA-LF) led to larger than their counterparts (RF-FS and EA-FS). MF was a function of error amplification rather than error spectrum with larger MF of force fluctuations for EA-FS and EA-LF than that of the RF-FS and RF-LF. SampEn of force fluctuations was also subject to joint effects of error spectrum and error amplification. EA-FS and EA-LF had larger value than RF-FS and RF-LF did. However, RF-LF and EA-LF exhibited smaller than RF-FS and EA-FS did. DOF was not significantly different in error spectrum and error amplification. Low-frequency error feedback associated with larger EMG-EMG coherence peak at 0-3 Hz, whereas RF-FS and EA-FS led to lower coherence peak at 0-3 Hz.
    Conclusion: Contrary to expectations, visual feedback with EA did not effectively improve force steadiness of the elderly. In addition, low-frequency error feedback with or without error amplification always undermined the force steadiness in the older group, pertaining to enhancement of low-frequency muscle oscillatory control at 0-3 Hz.

    Abstract...........Ⅰ 摘要............Ⅳ 致謝............Ⅵ Contents............VII List of Figures...........Ⅸ Chapter 1. Introduction.........1 1.1 Decline in visuomotor task performance of older adults......1 1.2 Visual error amplification and potential impacts on older adults....2 1.3 Response slowing in the elderly.......3 1.4 Rationales, purpose and hypotheses......4 Chapter 2. Methods..........6 2.1 Subjects...........6 2.2 Procedures and Experimental setup.......6 2.3 Data analysis...........9 2.4 Statistical analysis..........11 Chapter 3. Results..........13 3.1 Force fluctuation characteristics........13 3.2 EMG features..........14 Chapter 4. Discussion..........15 4.1 Visual feedback of EA impacts on the elderly......15 4.2 Spectral contents of execution errors in visual feedback for older adults..17 4.3 Limitations...........21 Chapter 5. Conclusion.........22 Reference...........23 Figure 1. The participant and experimental setup for physiological measures during force-tracking under various visual guidance........34 Figure 2. The flowchart of experimental procedure........35 Figure 3. The target trajectory displayed on the computer screen....36 Figure 4. Manipulation of visualized execution errors for force-tracking in this experiment. (VF, visualized force; VE: visualized error; RF, real force; RE: real error; T: target signal; RF-FS, real feedback of full spectrum; RF-LF, low-frequency feedback without amplification; EA-FS, error amplification of full spectrum; EA-LF, low-frequency feedback with amplification)........37 Figure 5. Means and standard errors of root mean square (RMS) of force fluctuations for force-tracking during real feedback of full spectrum (RF-FS), low-frequency feedback without amplification (RF-LF), error amplification of full spectrum (EA-FS), and low-frequency feedback with amplification (EA-LF) ***: LF>FS, p<0.001; **: p<0.01; *: p<0.05............38 Figure 6. Means and standard errors of sample entropy (SampEn) of force fluctuations for force-tracking during real feedback of full spectrum (RF-FS), low-frequency feedback without amplification (RF-LF), error amplification of full spectrum (EA-FS), and low-frequency feedback with amplification (EA-LF)**: FS>LF, p=.005; +: EA>RF, p=.013............39 Figure 7. Means and standard errors of mean frequency of force fluctuations for force-tracking during real feedback of full spectrum (RF-FS), low-frequency feedback without amplification (RF-LF), error amplification of full spectrum (EA-FS), and low-frequency feedback with amplification (EA-LF) ++: EA>RF, p=.003....40 Figure 8. Means and standard errors of degree of freedom (DOF) of force fluctuations for force-tracking during real feedback of full spectrum (RF-FS), low-frequency feedback without amplification (RF-LF), error amplification of full spectrum (EA-FS), and low-frequency feedback with amplification (EA-LF)......41 Figure 9. Representative power spectra of force fluctuations from a typical subject..42 Figure 10. (a). Representative EMG-EMG coherence spectra from a typical subject. (b). Means and standard errors of low-frequency of EMG-EMG coherence peak under 4 Hz for force-tracking during real feedback of full spectrum (RF-FS), low-frequency feedback without amplification (RF-LF), error amplification of full spectrum (EA-FS), and low-frequency feedback with amplification (EA-LF) ***: LF>FS, p=.000; +: EA>RF, p=.037........43

    Abdollahi, F., Case Lazarro, E. D., Listenberger, M., Kenyon, R. V., Kovic, M., Bogey, R. A., et al. (2014). Error augmentation enhancing arm recovery in individuals with chronic stroke: a randomized crossover design. Neurorehabilitation and neural repair, 28(2), 120-128.
    Barber, L. A., Barrett, R. S., Gillett, J. G., Cresswell, A. G., & Lichtwark, G. A. (2013). Neuromechanical properties of the triceps surae in young and older adults. Experimental gerontology, 48(11), 1147-1155.
    Baweja, H. S., Kwon, M., Onushko, T., Wright, D. L., Corcos, D. M., & Christou, E. A. (2015). Processing of visual information compromises the ability of older adults to control novel fine motor tasks. Experimental brain research, 233(12), 3475-3488.
    Bouchard, A. E., Corriveau, H., & Milot, M.-H. (2015). Comparison of haptic guidance and error amplification robotic trainings for the learning of a timing-based motor task by healthy seniors. Frontiers in systems neuroscience, 9, 52.
    Calhoun, V. D., Pekar, J. J., McGinty, V. B., Adali, T., Watson, T. D., & Pearlson, G. D. (2002). Different activation dynamics in multiple neural systems during simulated driving. Hum Brain Mapp, 16(3), 158-167.
    Castronovo, A. M., Mrachacz-Kersting, N., Stevenson, A. J. T., Holobar, A., Enoka, R. M., & Farina, D. (2018). Decrease in force steadiness with aging is associated with increased power of the common but not independent input to motor neurons. Journal of neurophysiology, 120(4), 1616-1624.
    Cerella, J. (1994). Generalized slowing in Brinley plots. Journal of Gerontology, 49(2), P65-P71.
    Chen, Y.-C., Lin, L. L., Lin, Y.-T., Hu, C.-L., & Hwang, I.-S. (2017b). Variations in static force control and motor unit behavior with error amplification feedback in the elderly. Frontiers in human neuroscience, 11, 538.
    Chen, Y.-C., Lin, Y.-T., Chang, G.-C., & Hwang, I.-S. (2017a). Paradigm shifts in voluntary force control and motor unit behaviors with the manipulated size of visual error perception. Frontiers in Physiology, 8, 140.
    Chen, Y.-C., Lin, Y.-T., Chang, G.-C., & Hwang, S. (2017). Perceptual influences of error size on voluntary force control during a compound sinusoidal force task. Human movement science, 56, 46-53.
    Cressman, E. K., Salomonczyk, D., & Henriques, D. Y. (2010). Visuomotor adaptation and proprioceptive recalibration in older adults. Experimental brain research, 205(4), 533-544.
    Dideriksen, J. L., Negro, F., Falla, D., Kristensen, S. R., Mrachacz-Kersting, N., & Farina, D. (2018). Coherence of the surface EMG and common synaptic input to motor neurons. Frontiers in human neuroscience, 12.
    Easterbrook, J. A. (1959). The effect of emotion on cue utilization and the organization of behavior. Psychological review, 66(3), 183.
    Farina, D., Negro, F., & Jiang, N. (2013). Identification of common synaptic inputs to motor neurons from the rectified electromyogram. The Journal of physiology, 591(10), 2403-2418.
    Farina, D., Negro, F., Muceli, S., & Enoka, R. M. (2016). Principles of motor unit physiology evolve with advances in technology. Physiology, 31(2), 83-94.
    Franklin, S., Wolpert, D. M., & Franklin, D. W. (2012). Visuomotor feedback gains upregulate during the learning of novel dynamics. Journal of neurophysiology, 108(2), 467-478.
    Fuglevand, A. J., Winter, D. A., Patla, A. E., & Stashuk, D. (1992). Detection of motor unit action potentials with surface electrodes: influence of electrode size and spacing. Biological cybernetics, 67(2), 143-153.
    Fujiyama, H., Hinder, M. R., Schmidt, M. W., Tandonnet, C., Garry, M. I., & Summers, J. J. (2012). Age-related differences in corticomotor excitability and inhibitory processes during a visuomotor RT task. Journal of cognitive neuroscience, 24(5), 1253-1263.
    Gera, G., Freitas, S., Latash, M., Monahan, K., Schöner, G., & Scholz, J. (2010). Motor abundance contributes to resolving multiple kinematic task constraints. Motor Control, 14(1), 83.
    Hasher, L., & Zacks, R. T. (1988). Working memory, comprehension, and aging: A review and a new view Psychology of learning and motivation (Vol. 22, pp. 193-225): Elsevier.
    Huang, C.-Y., Su, J.-H., & Hwang, S. (2014). Rate control and quality assurance during rhythmic force tracking. Behavioural brain research, 259, 186-195.
    Hunter, S. K., Pereira, H. M., & Keenan, K. G. (2016). The aging neuromuscular system and motor performance. Journal of applied physiology, 121(4), 982-995.
    Hwang, S., Hu, C.-L., Yang, Z.-R., Lin, Y.-T., & Chen, Y.-C. (2019). Improving Precision Force Control With Low-Frequency Error Amplification Feedback: Behavioral and Neurophysiological Mechanisms. Frontiers in physiology, 10.
    Hwang, S., Huang, C.-T., Yang, J.-F., & Guo, M.-C. (2013). Characterization of information-based learning benefits with submovement dynamics and muscular rhythmicity. PloS one, 8(12), e82920.
    Hwang, S., Lin, Y.-T., Huang, W.-M., Yang, Z.-R., Hu, C.-L., & Chen, Y.-C. (2017). Alterations in neural control of constant isometric contraction with the size of error feedback. PloS one, 12(1), e0170824.
    Israely, S., & Carmeli, E. (2016). Error augmentation as a possible technique for improving upper extremity motor performance after a stroke–a systematic review. Topics in stroke rehabilitation, 23(2), 116-125.
    James, L. E., & Kooy, T. M. (2011). Aging and the detection of visual errors in scenes. J Aging Res, 2011, 984694.
    Kennedy, D. M., & Christou, E. A. (2011). Greater amount of visual information exacerbates force control in older adults during constant isometric contractions. Experimental brain research, 213(4), 351.
    Kolev, V., Falkenstein, M., & Yordanova, J. (2006). Motor-response generation as a source of aging-related behavioural slowing in choice-reaction tasks. Neurobiology of Aging, 27(11), 1719-1730.
    Kwon, M., & Christou, E. A. (2018). Visual information processing in older adults: reaction time and motor unit pool modulation. Journal of neurophysiology, 120(5), 2630-2639.
    Liu, G., Chen, D. D., Qin, C., Chan, J. S., Peng, K., & Yan, J. H. (2014). Visuomotor control in continuous response time tasks across different age groups. Perceptual and motor skills, 119(1), 169-182.
    Lodha, N., Moon, H., Kim, C., Onushko, T., & Christou, E. A. (2016). Motor output variability impairs driving ability in older adults. Journals of Gerontology Series A: Biomedical Sciences and Medical Sciences, 71(12), 1676-1681.
    Mani, D., Feeney, D. F., & Enoka, R. M. (2019). The modulation of force steadiness by electrical nerve stimulation applied to the wrist extensors differs for young and older adults. European journal of applied physiology, 119(1), 301-310.
    Miall, R., Weir, D., & Stein, J. (1985). Visuomotor tracking with delayed visual feedback. Neuroscience, 16(3), 511-520.
    Miall, R., Weir, D., & Stein, J. (1986). Manual tracking of visual targets by trained monkeys. Behavioural brain research, 20(2), 185-201.
    Miall, R. C., Weir, D. J., & Stein, J. F. (1993). Intermittency in human manual tracking tasks. Journal of motor behavior, 25(1), 53-63.
    Milanese, C., Cavedon, V., Corte, S., & Agostini, T. (2017). The effects of two different correction strategies on the snatch technique in weightlifting. Journal of sports sciences, 35(5), 476-483.
    Milanese, C., Corte, S., Salvetti, L., Cavedon, V., & Agostini, T. (2016). Correction of a technical error in the golf swing: Error amplification versus direct instruction. Journal of motor behavior, 48(4), 365-376.
    Morrison, A., McGrath, D., & Wallace, E. (2016). Motor abundance and control structure in the golf swing. Human movement science, 46, 129-147.
    Neely, K. A., Samimy, S., Blouch, S. L., Wang, P., Chennavasin, A., Diaz, M. T., et al. (2017). Memory-guided force control in healthy younger and older adults. Experimental brain research, 235(8), 2473-2482.
    Negro, F., Keenan, K., & Farina, D. (2015). Power spectrum of the rectified EMG: when and why is rectification beneficial for identifying neural connectivity? Journal of neural engineering, 12(3), 036008.
    Ofori, E., Samson, J. M., & Sosnoff, J. J. (2010). Age-related differences in force variability and visual display. Experimental Brain Research, 203(2), 299-306.
    Ogawa, K., & Imamizu, H. (2013). Human sensorimotor cortex represents conflicting visuomotor mappings. Journal of Neuroscience, 33(15), 6412-6422.
    Pasalar, S., Roitman, A., & Ebner, T. (2005). Effects of speeds and force fields on submovements during circular manual tracking in humans. Experimental Brain Research, 163(2), 214-225.
    Patton, J. L., & Mussa-Ivaldi, F. A. (2004). Robot-assisted adaptive training: custom force fields for teaching movement patterns. IEEE Transactions on Biomedical Engineering, 51(4), 636-646.
    Pethick, J., Winter, S. L., & Burnley, M. (2015). Fatigue reduces the complexity of knee extensor torque fluctuations during maximal and submaximal intermittent isometric contractions in man. The Journal of physiology, 593(8), 2085-2096.
    Pew, R. W. (1974). Human perceptual-motor performance.
    Prakash, R. S., Erickson, K. I., Colcombe, S. J., Kim, J. S., Voss, M. W., & Kramer, A. F. (2009). Age-related differences in the involvement of the prefrontal cortex in attentional control. Brain and cognition, 71(3), 328-335.
    Rey-Robert, B., Temprado, J.-J., & Berton, E. (2011). Aging and changes in complexity in the neurobehavioral system. Medicina, 47(1), 1-10.
    Schulte, T., Müller-Oehring, E. M., Chanraud, S., Rosenbloom, M. J., Pfefferbaum, A., & Sullivan, E. V. (2011). Age-related reorganization of functional networks for successful conflict resolution: a combined functional and structural MRI study. Neurobiology of aging, 32(11), 2075-2090.
    Seidler, R., Noll, D., & Thiers, G. (2004). Feedforward and feedback processes in motor control. Neuroimage, 22(4), 1775-1783.
    Seidler, R. D., Bernard, J. A., Burutolu, T. B., Fling, B. W., Gordon, M. T., Gwin, J. T., et al. (2010). Motor control and aging: links to age-related brain structural, functional, and biochemical effects. Neuroscience & Biobehavioral Reviews, 34(5), 721-733.
    Senefeld, J., Yoon, T., & Hunter, S. K. (2017). Age differences in dynamic fatigability and variability of arm and leg muscles: Associations with physical function. Experimental gerontology, 87, 74-83.
    Simon, A., & Bock, O. (2017). The role of cognition for different stages of visuomotor adaptation in younger and older adults. Human movement science, 52, 215-222.
    Slifkin, A. B., Vaillancourt, D. E., & Newell, K. M. (2000). Intermittency in the control of continuous force production. Journal of Neurophysiology, 84(4), 1708-1718.
    Sosnoff, J. J., & Newell, K. M. (2005). Intermittent visual information and the multiple time scales of visual motor control of continuous isometric force production. Perception & psychophysics, 67(2), 335-344.
    Sosnoff, J. J., & Newell, K. M. (2006). Are age-related increases in force variability due to decrements in strength? Experimental Brain Research, 174(1), 86.
    Temprado, J.-J., Vieluf, S., & Sleimen-Malkoun, R. (2017). Age-related changes in force control under different task contexts. Experimental brain research, 235(1), 231-246.
    Tracy, B. L., Dinenno, D. V., Jorgensen, B., & Welsh, S. J. (2007). Aging, visuomotor correction, and force fluctuations in large muscles. Medicine and science in sports and exercise, 39(3), 469-479.
    Tracy, B. L., Hitchcock, L. N., Welsh, S. J., Paxton, R. J., & Feldman-Kothe, C. E. (2015). Visuomotor correction is a robust contributor to force variability during index finger abduction by older adults. Frontiers in aging neuroscience, 7, 229.
    Tracy, B. L., Maluf, K. S., Stephenson, J. L., Hunter, S. K., & Enoka, R. M. (2005). Variability of motor unit discharge and force fluctuations across a range of muscle forces in older adults. Muscle & Nerve: Official Journal of the American Association of Electrodiagnostic Medicine, 32(4), 533-540.
    Vaillancourt, D. E., Larsson, L., & Newell, K. M. (2002). Time-dependent structure in the discharge rate of human motor units. Clinical neurophysiology, 113(8), 1325-1338.
    Vaillancourt, D. E., & Newell, K. M. (2003). Aging and the time and frequency structure of force output variability. Journal of applied physiology, 94(3), 903-912.
    Vaillancourt, D. E., Slifkin, A. B., & Newell, K. M. (2002). Inter-digit individuation and force variability in the precision grip of young, elderly, and Parkinson's disease participants. Motor Control, 6(2), 113-128.
    Van der Lubbe, R. H., & Verleger, R. (2002). Aging and the Simon task. Psychophysiology, 39(1), 100-110.
    Vieluf, S., Temprado, J.-J., Berton, E., Jirsa, V. K., & Sleimen-Malkoun, R. (2015). Effects of task and age on the magnitude and structure of force fluctuations: insights into underlying neuro-behavioral processes. BMC neuroscience, 16(1), 12.
    Welsh, T. N., Higgins, L., & Elliott, D. (2007). Are there age-related differences in learning to optimize speed, accuracy, and energy expenditure? Human Movement Science, 26(6), 892-912.
    Yordanova, J., Kolev, V., Hohnsbein, J., & Falkenstein, M. (2004). Sensorimotor slowing with ageing is mediated by a functional dysregulation of motor‐generation processes: evidence from high‐resolution event‐related potentials. Brain, 127(2), 351-362.

    下載圖示 校內:2024-08-21公開
    校外:2024-08-21公開
    QR CODE