簡易檢索 / 詳目顯示

研究生: 陳正威
Chen, Zheng-Wei
論文名稱: 鍺酸鑭基磷灰石離子導體之晶體結構與電性
Crystal Structure and Electrical Properties of La/Ge Based Apatite Ionic Conductors
指導教授: 黃啟原
Huang, Chi-Yuen
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 82
中文關鍵詞: 鍺酸鑭固態氧化物燃料電池離子導體磷灰石
外文關鍵詞: lanthanum germanate, SOFC, apatite structure, ionic conductors
相關次數: 點閱:137下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用固態反應法製備計量比不同之鍺酸鑭 (La10-xGe6O27-1.5x,x = 0、0.25、0.5、0.75、1),探討晶體結構與電性之間的關聯,並模擬間隙氧在結構中的移動路徑。
    實驗結果顯示 1200°C/3 h 的煅燒條件下,所有成分點皆可合成單一相的鍺酸鑭,透過 PDF卡號比對,LGO9、LGO9.25、LGO9.5 為六方晶系 (P63/m),而 LGO9.75、LGO10 繞射峰數目變多,經比對後屬於三斜晶系的繞射峰,透過晶格常數精算,三軸長度 (a、b、c) 與夾角 (α、β、γ) 皆不相等,結構為三斜晶系 (Pī)。透過高溫 XRD 分析,六方晶系成分點在 500°C -800°C 繞射峰無明顯變化,而三斜晶系成分點繞射峰數目有變少的趨勢,其中 LGO9.75 在 600°C - 700°C 已由三斜晶系轉為六方晶系;而 LGO10 並未發生相轉換,結構仍維持三斜晶系。本研究模擬出 5 條間隙氧移動路徑,其中 1 條繞著鍺氧四面體在結構中穿梭;另外 4 條則是繞著通道氧移動,但所有間隙氧移動路徑皆沿 c 軸以類正弦模式傳遞。六方晶系成分點之導電率、間隙氧移動空間皆大於三斜晶系成分點,且導電率與間隙氧移動空間呈正相關,代表間隙氧移動空間越大,導電率越高。

    Apatite structures have the highest conductivity of all solid oxide fuel cell (SOFC) electrolytes because of their conduction mechanism. Among all apatite-type electrolytes, lanthanum germanates possess the highest conductivity. To observe the relationship between composition, crystal structure, and ionic conductivity, lanthanum germanates (La10-xGe6O27-1.5x, x = 0, 0.25, 0.5, 0.75, 1) were synthesized using the solid-state method. The XRD pattern showed that a single phase could be obtained for all compositions calcined at 1200°C/3 h. Crystal structure analysis using the Rietveld refinement approach indicated that x = 0.5, 0.75, 1 has a hexagonal structure (P63/m, #176) and x = 0, 0.25 has a triclinic structure (Pī, #2). These results show that five migration pathways could be established, assuming the interstitial oxygen passes the larger opening within the crystal structure. These five migration pathways are sinusoid-like three-dimensional routes along the c-axis. Since x = 0, 0.25 transforms to a triclinic phase, the migration opening becomes narrower and lowers the ionic conductivity. The Arrhenius plot of x = 0.25 demonstrated a sharp decrease in activation energy, indicating that the phase transition from triclinic to hexagonal occurred at around 650°C.

    摘要 I Abstract II 誌謝 X 目錄 XI 圖目錄 XIV 表目錄 XVIII 第一章 緒論 1 1-1 前言 1 1-2 研究動機 3 1-3 研究目的 5 第二章 文獻回顧與理論基礎 6 2-1 燃料電池 6 2-1-1 燃料電池之原理 6 2-1-2 燃料電池之種類及優缺點 7 2-1-3 燃料電池之分類與應用 10 2-2 固態氧化物燃料電池 10 2-2-1 固態氧化物燃料電池的原理及要求 10 2-2-2 固態氧化物燃料電池之電解質種類 11 2-3 磷灰石結構固態電解質 15 2-3-1 磷灰石結構固態電解質導電載體 16 2-3-2 間隙氧離子在磷灰石結構中的傳遞情形 17 2-4 鍺酸鑭基電解質 19 2-5 矽酸鑭基與鍺酸鑭基電解質的比較 19 2-6 影響磷灰石結構電解質導電率的因素 20 第三章 實驗方法與分析 26 3-1 粉末製備 27 3-1-1 起始原料 27 3-1-2 鍺酸鑭基 (La10-xGe6O27-1.5x) 粉末製備 27 3-1-3 粉末之熱差/熱重分析 28 3-2 煅燒粉末製備 28 3-3 煅燒粉末分析 29 3-3-1 X 光繞射儀 29 3-3-2 同步輻射 XRD 31 3-3-3 掃描式電子顯微鏡 31 3-4 生胚製備 32 3-4-1 生胚燒結收縮量測 32 3-5 燒結體製備 32 3-6 燒結體分析 32 3-6-1 密度量測 32 3-6-2 X 光繞射儀 33 3-6-3 掃描式電子顯微鏡 33 3-6-4 導電率量測 33 3-6-5 活化能計算 34 第四章 結果與討論 35 4-1 起始粉末分析 35 4-1-1 氧化鑭熱重/熱差分析 35 4-1-2 粉末微結構分析 36 4-2 粉末之熱差/熱重分析 37 4-3 粉末煅燒分析 38 4-3-1 結晶相分析 38 4-3-2 Rietveld refinement 41 4-3-3 同步輻射 XRD 分析 44 4-3-4 高溫 XRD 45 4-4 晶體結構分析 49 4-4-1 間隙氧移動路徑分析 (1) 53 4-4-2 間隙氧移動路徑分析 (2) 58 4-5 煅燒粉末微結構分析 60 4-6 燒結體分析 62 4-6-1 燒結收縮量測 62 4-6-2 結晶相分析 64 4-6-3 微結構分析 65 4-6-4 電性分析 68 4-7 晶體結構與導電率綜合分析 71 4-8 與添加鎢/鎳樣品比較 72 4-8-1 晶格常數 72 4-8-2 晶體結構 73 4-8-3 導電率 74 4-8-4 活化能 76 第五章 結論 78 參考文獻 79

    [1] 台灣電力公司,電源開發規劃,台北:經濟部,2013。
    [2] S. Nakayama, T. Kageyama, H. Aono and Y. Sadaoka, “Ionic conductivity of lanthanoid silicates, Ln10(SiO4)6O3 (Ln = La, Nd, Sm, Gd, Dy, Y, Ho, Er and Yb).” Journal of Materials Chemistry, 5(11), 1801-1805, 1995.
    [3] S. Nakayama and M. Sakamoto, “Electrical properties of new type high oxide ionic conductor Re10Si6O27 (Re = La, Pr, Nd, Sm, Gd, Dy).” Journal of The European Ceramic Society, 18(10), 1413-1418, 1998.
    [4] H. Arikawa, H. Nishiguchi, T. Ishihara and Y. Takita, “Oxide ion conductivity in Sr-doped La10Ge6O27 apatite oxide.” Solid State Ionics, 136, 31-37, 2000.
    [5] S.Nakayama, Y. Higuchi, Y. Kondo and M. Sakamoto, “Effect of cation- or oxide ion-defect on conductivities of apatite-type La-Ge-O system ceramics.” Solid State Ionics, 170(3), 219-223, 2004.
    [6] 林立武、黃啟原,「鎢摻雜之鍺酸鑭基磷灰石離子導體之晶體結構與電性」,國立成功大學資源工程所碩士論文,2014。
    [7] 林鈺烜、黃啟原,「鎳摻雜之鍺酸鑭基磷灰石離子導體之晶體結構與電性」,國立成功大學資源工程所碩士論文,2015。
    [8] L. Malavasi, C. A. J. Fisher and M. S. Islam, “Oxide-ion and proton conducting electrolyte materials for clean energy applications: structural and mechanistic features.” Chemecal Society Reviews, 39(11), 4370-4387, 2010.
    [9] 楊哲化,固態氧化物燃料電池 (SOFC) 原理與檢測,國立台北科技大學製造科技所,2006。
    [10] 鄭耀宗等,現場型磷酸燃料應用於大用戶之可行性研究,香港城市大學,1995。
    [11] 楊明坤,燃料電池的發展與應用趨勢,樂活節能屋系列,2010。
    [12] J. Sunarso, S. Baumann, J. M. Serra, W. A. Meulenberg, S. Liu, Y. S. Lin and
    [13] J. C. Diniz da Costa, “Mixed ionic-electronic conducting (MIEC) ceramic-based membranes for oxygen seperation.” Journal of Membrane Science, 320(1), 13-41, 2008.
    [14] D. Elbio, H. Takashi and M. Adriana, “Colossal magnetoresistant materials: the key role of phase seperation.” Physics Reports, 344(1), 1-153, 2001.
    [15] M. Higuchi, Y. Masubuchi, S. Nakayama, S. Kikkawa and K. Kodaira, “Single crystal growth and oxide ion conductivity of apatite-type rare-earth silicates.” Solid State Ionics, 174(1), 73-80, 2004.
    [16] J. R. Tolchard, M. S. Islam and P. R. Slater, “Defect chemistry and oxygen ion migration in apatite-type materials La9.33Si6O26 and La8Sr2O26.” Journal of Materials Chemistry, 13(8), 1956-1961, 2003.
    [17] S. Nakayama, M. Sakamoto, M. Higuchi, K. Kodaira, M. Sato, S. Kakita,
    T. Suzuki and K. Itoh, “Oxide ionic conductivity of apatite type Nd9·33(SiO4)6O2 single crystal.” Journal of The European Ceramic Society, 19(4), 507-510, 1999.
    [18] A. Orera, T. Baikie, P. Panchmatia, T. J. White, J. Hanna, M. E. Smith,
    M. S. Islam, E. Kendrick and P. R. Slater, “Strategies for the Optimisation of the oxide ion conductivities of apatite type germinates.” Fuel Cells, 11(1), 10-16, 2010.
    [19] L. Leon-Reina, E. R. Losilla, M. Martinez-Lara, S. Bruque and
    M. A. G. Aranda, “Interstitial oxygen conduction in lanthanum oxy-apatite
    Electrolytes” Journal of Materials Chemistry, 14(7), 1142-1149, 2004.
    [20] L. Leon-Reina, M. C. Martin-Sedeno, E. R. Losilla, A. Cabeza,
    M. Martinez-Lara, S.Bruque, F. M. B. Marques, D. V. Sheptyakov and
    M. A. G. Aranda, “Crystalchemistry and oxide ion conductivity in the
    lanthanum oxygermanate apatite series.” Chemistry of Materials, 15(10), 2099-2108, 2003.
    [21] E. J. Abram, C. A. Kirk, D. C. Sinclair and A. R. West, “Synthesis and characterisation of lanthanum germanate-based apatite phases.” Solid State Ionics, 176(23), 1941-1947, 2005.
    [22] J. E. H. Sansom, D. Richings and P. R. Slater, “A powder neutron diffraction study of the oxide-ion-conducting apatite-type phases, La9.33Si6O26, and La8Sr2Si6O26.” Solid State Ionics, 139(3), 205-210, 2001.
    [23] L. Leon-Reina, J. M. Porras-Vazquez, E. R. Losilla and M. A. G. Aranda, “Interstitial oxide positions in oxygen-excess oxy-apatites.” Solid State Ionics, 177(15), 1307-1315, 2006.
    [24] L. Leon-Reina, J. M. Porras-Vazquez, E. R. Losilla and M. A. G. Aranda, “Phase transition and mixed oxide-proton conductivity in germanium oxy-apatites.” Journal of Solid State Chemistry, 180(4), 1250-1258, 2007.
    [25] P. J. Panteix, I. Julien, P. Abelard and D. Bernache-Assollant, “Influence of porosity on the electrical properties of La9.33(SiO4)6O2 oxyapatite.” Ceramics International, 34(7), 1579-1586, 2008.
    [26] R. A. Young, “The Rietveld Method.” International Union of Crystallography, 21-26, 1993.
    [27] W. Liu, S. Yamaguchi, T. Tsuchiya, S. Miyoshi, K. Kobayashi and W. Pan, “Sol–gel synthesis and ionic conductivity of oxyapatite-type La9.33+xSi6O26+1.5x.” Journal of Power Sources, 235, 62-66, 2013.
    [28] P. R. Slater, J. E. H. Sansom and J. R. Torchard, “Development of apatite-type oxide ion conductors.” Chemical Record, 4(6), 373-384, 2004.
    [29] E. Kendrick, M. S. Islam and P. R. Slater, “Atomic-scale mechanistic features of oxide ion conduction in apatite-type germinates.” Chemical communications, 715-717, 2008.
    [30] J. E. H. Sansom, A. Najib and P. R. Slater, “Oxide ion conductivity in mixed Si/Ge-based apatite-type systems.” Solid State Ionics, 175(1), 353-355, 2004
    [31] T. Liao, T. Sasaki and Z. Q. Sun, “The oxygen migration in the apatite-type lanthanum silicate with the cation substitution.” Physical Chemistry Chemical Physics, 15(40), 17553-17559, 2013.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE