| 研究生: |
陳正威 Chen, Zheng-Wei |
|---|---|
| 論文名稱: |
鍺酸鑭基磷灰石離子導體之晶體結構與電性 Crystal Structure and Electrical Properties of La/Ge Based Apatite Ionic Conductors |
| 指導教授: |
黃啟原
Huang, Chi-Yuen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 82 |
| 中文關鍵詞: | 鍺酸鑭 、固態氧化物燃料電池 、離子導體 、磷灰石 |
| 外文關鍵詞: | lanthanum germanate, SOFC, apatite structure, ionic conductors |
| 相關次數: | 點閱:137 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用固態反應法製備計量比不同之鍺酸鑭 (La10-xGe6O27-1.5x,x = 0、0.25、0.5、0.75、1),探討晶體結構與電性之間的關聯,並模擬間隙氧在結構中的移動路徑。
實驗結果顯示 1200°C/3 h 的煅燒條件下,所有成分點皆可合成單一相的鍺酸鑭,透過 PDF卡號比對,LGO9、LGO9.25、LGO9.5 為六方晶系 (P63/m),而 LGO9.75、LGO10 繞射峰數目變多,經比對後屬於三斜晶系的繞射峰,透過晶格常數精算,三軸長度 (a、b、c) 與夾角 (α、β、γ) 皆不相等,結構為三斜晶系 (Pī)。透過高溫 XRD 分析,六方晶系成分點在 500°C -800°C 繞射峰無明顯變化,而三斜晶系成分點繞射峰數目有變少的趨勢,其中 LGO9.75 在 600°C - 700°C 已由三斜晶系轉為六方晶系;而 LGO10 並未發生相轉換,結構仍維持三斜晶系。本研究模擬出 5 條間隙氧移動路徑,其中 1 條繞著鍺氧四面體在結構中穿梭;另外 4 條則是繞著通道氧移動,但所有間隙氧移動路徑皆沿 c 軸以類正弦模式傳遞。六方晶系成分點之導電率、間隙氧移動空間皆大於三斜晶系成分點,且導電率與間隙氧移動空間呈正相關,代表間隙氧移動空間越大,導電率越高。
Apatite structures have the highest conductivity of all solid oxide fuel cell (SOFC) electrolytes because of their conduction mechanism. Among all apatite-type electrolytes, lanthanum germanates possess the highest conductivity. To observe the relationship between composition, crystal structure, and ionic conductivity, lanthanum germanates (La10-xGe6O27-1.5x, x = 0, 0.25, 0.5, 0.75, 1) were synthesized using the solid-state method. The XRD pattern showed that a single phase could be obtained for all compositions calcined at 1200°C/3 h. Crystal structure analysis using the Rietveld refinement approach indicated that x = 0.5, 0.75, 1 has a hexagonal structure (P63/m, #176) and x = 0, 0.25 has a triclinic structure (Pī, #2). These results show that five migration pathways could be established, assuming the interstitial oxygen passes the larger opening within the crystal structure. These five migration pathways are sinusoid-like three-dimensional routes along the c-axis. Since x = 0, 0.25 transforms to a triclinic phase, the migration opening becomes narrower and lowers the ionic conductivity. The Arrhenius plot of x = 0.25 demonstrated a sharp decrease in activation energy, indicating that the phase transition from triclinic to hexagonal occurred at around 650°C.
[1] 台灣電力公司,電源開發規劃,台北:經濟部,2013。
[2] S. Nakayama, T. Kageyama, H. Aono and Y. Sadaoka, “Ionic conductivity of lanthanoid silicates, Ln10(SiO4)6O3 (Ln = La, Nd, Sm, Gd, Dy, Y, Ho, Er and Yb).” Journal of Materials Chemistry, 5(11), 1801-1805, 1995.
[3] S. Nakayama and M. Sakamoto, “Electrical properties of new type high oxide ionic conductor Re10Si6O27 (Re = La, Pr, Nd, Sm, Gd, Dy).” Journal of The European Ceramic Society, 18(10), 1413-1418, 1998.
[4] H. Arikawa, H. Nishiguchi, T. Ishihara and Y. Takita, “Oxide ion conductivity in Sr-doped La10Ge6O27 apatite oxide.” Solid State Ionics, 136, 31-37, 2000.
[5] S.Nakayama, Y. Higuchi, Y. Kondo and M. Sakamoto, “Effect of cation- or oxide ion-defect on conductivities of apatite-type La-Ge-O system ceramics.” Solid State Ionics, 170(3), 219-223, 2004.
[6] 林立武、黃啟原,「鎢摻雜之鍺酸鑭基磷灰石離子導體之晶體結構與電性」,國立成功大學資源工程所碩士論文,2014。
[7] 林鈺烜、黃啟原,「鎳摻雜之鍺酸鑭基磷灰石離子導體之晶體結構與電性」,國立成功大學資源工程所碩士論文,2015。
[8] L. Malavasi, C. A. J. Fisher and M. S. Islam, “Oxide-ion and proton conducting electrolyte materials for clean energy applications: structural and mechanistic features.” Chemecal Society Reviews, 39(11), 4370-4387, 2010.
[9] 楊哲化,固態氧化物燃料電池 (SOFC) 原理與檢測,國立台北科技大學製造科技所,2006。
[10] 鄭耀宗等,現場型磷酸燃料應用於大用戶之可行性研究,香港城市大學,1995。
[11] 楊明坤,燃料電池的發展與應用趨勢,樂活節能屋系列,2010。
[12] J. Sunarso, S. Baumann, J. M. Serra, W. A. Meulenberg, S. Liu, Y. S. Lin and
[13] J. C. Diniz da Costa, “Mixed ionic-electronic conducting (MIEC) ceramic-based membranes for oxygen seperation.” Journal of Membrane Science, 320(1), 13-41, 2008.
[14] D. Elbio, H. Takashi and M. Adriana, “Colossal magnetoresistant materials: the key role of phase seperation.” Physics Reports, 344(1), 1-153, 2001.
[15] M. Higuchi, Y. Masubuchi, S. Nakayama, S. Kikkawa and K. Kodaira, “Single crystal growth and oxide ion conductivity of apatite-type rare-earth silicates.” Solid State Ionics, 174(1), 73-80, 2004.
[16] J. R. Tolchard, M. S. Islam and P. R. Slater, “Defect chemistry and oxygen ion migration in apatite-type materials La9.33Si6O26 and La8Sr2O26.” Journal of Materials Chemistry, 13(8), 1956-1961, 2003.
[17] S. Nakayama, M. Sakamoto, M. Higuchi, K. Kodaira, M. Sato, S. Kakita,
T. Suzuki and K. Itoh, “Oxide ionic conductivity of apatite type Nd9·33(SiO4)6O2 single crystal.” Journal of The European Ceramic Society, 19(4), 507-510, 1999.
[18] A. Orera, T. Baikie, P. Panchmatia, T. J. White, J. Hanna, M. E. Smith,
M. S. Islam, E. Kendrick and P. R. Slater, “Strategies for the Optimisation of the oxide ion conductivities of apatite type germinates.” Fuel Cells, 11(1), 10-16, 2010.
[19] L. Leon-Reina, E. R. Losilla, M. Martinez-Lara, S. Bruque and
M. A. G. Aranda, “Interstitial oxygen conduction in lanthanum oxy-apatite
Electrolytes” Journal of Materials Chemistry, 14(7), 1142-1149, 2004.
[20] L. Leon-Reina, M. C. Martin-Sedeno, E. R. Losilla, A. Cabeza,
M. Martinez-Lara, S.Bruque, F. M. B. Marques, D. V. Sheptyakov and
M. A. G. Aranda, “Crystalchemistry and oxide ion conductivity in the
lanthanum oxygermanate apatite series.” Chemistry of Materials, 15(10), 2099-2108, 2003.
[21] E. J. Abram, C. A. Kirk, D. C. Sinclair and A. R. West, “Synthesis and characterisation of lanthanum germanate-based apatite phases.” Solid State Ionics, 176(23), 1941-1947, 2005.
[22] J. E. H. Sansom, D. Richings and P. R. Slater, “A powder neutron diffraction study of the oxide-ion-conducting apatite-type phases, La9.33Si6O26, and La8Sr2Si6O26.” Solid State Ionics, 139(3), 205-210, 2001.
[23] L. Leon-Reina, J. M. Porras-Vazquez, E. R. Losilla and M. A. G. Aranda, “Interstitial oxide positions in oxygen-excess oxy-apatites.” Solid State Ionics, 177(15), 1307-1315, 2006.
[24] L. Leon-Reina, J. M. Porras-Vazquez, E. R. Losilla and M. A. G. Aranda, “Phase transition and mixed oxide-proton conductivity in germanium oxy-apatites.” Journal of Solid State Chemistry, 180(4), 1250-1258, 2007.
[25] P. J. Panteix, I. Julien, P. Abelard and D. Bernache-Assollant, “Influence of porosity on the electrical properties of La9.33(SiO4)6O2 oxyapatite.” Ceramics International, 34(7), 1579-1586, 2008.
[26] R. A. Young, “The Rietveld Method.” International Union of Crystallography, 21-26, 1993.
[27] W. Liu, S. Yamaguchi, T. Tsuchiya, S. Miyoshi, K. Kobayashi and W. Pan, “Sol–gel synthesis and ionic conductivity of oxyapatite-type La9.33+xSi6O26+1.5x.” Journal of Power Sources, 235, 62-66, 2013.
[28] P. R. Slater, J. E. H. Sansom and J. R. Torchard, “Development of apatite-type oxide ion conductors.” Chemical Record, 4(6), 373-384, 2004.
[29] E. Kendrick, M. S. Islam and P. R. Slater, “Atomic-scale mechanistic features of oxide ion conduction in apatite-type germinates.” Chemical communications, 715-717, 2008.
[30] J. E. H. Sansom, A. Najib and P. R. Slater, “Oxide ion conductivity in mixed Si/Ge-based apatite-type systems.” Solid State Ionics, 175(1), 353-355, 2004
[31] T. Liao, T. Sasaki and Z. Q. Sun, “The oxygen migration in the apatite-type lanthanum silicate with the cation substitution.” Physical Chemistry Chemical Physics, 15(40), 17553-17559, 2013.