簡易檢索 / 詳目顯示

研究生: 蔡莉萍
Tsai, Li-Ping
論文名稱: 探討入口部之幾何形狀對真空裝置吸嘴性能之影響
The influence of changing the geometry of the intake part on performance of suction nozzle of the vacuum device
指導教授: 苗君易
Miau, Jiun-Jih
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系碩士在職專班
Department of Aeronautics & Astronautics (on the job class)
論文出版年: 2020
畢業學年度: 107
語文別: 中文
論文頁數: 45
中文關鍵詞: CFD真空裝置設計吸頭
外文關鍵詞: CFD, vacuum device, design, suction nozzle
相關次數: 點閱:123下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究中是以CFD流體模擬分析軟體 ANSYS CFX(17.0版),針對所設計出不同的吸頭幾何形狀(入口與出口間形狀採用直線幾何或曲線幾何),探討不同幾何設計之收縮區對於真空裝置吸頭流場特徵之影響。在模擬域出風口邊界條件之相對總壓力設定為0 Pa,進風口速度邊界條件為10m/s,以及牆面邊界條件為No-slip wall的條件下,模擬出幾何內部流場的情況後,對於模擬得到的結果進行觀察。模擬結果指出,初步模擬出此兩種幾何形狀的其中之A TYPE壓損係數 (Static pressure loss coefficient)為0.85,低於B TYPE之總壓損係數0.19。且經過觀察指標壓損係數、模擬數值以及流場特徵的比較之後,可以歸納出B TYPE幾何設計較A TYPE幾何相對來說,吸頭性能有較佳的表現。最後在結果比較中也發現B TYPE吸頭存在著些微影響性能的設計問題,因此在本研究結論中也指出了B TYPE吸頭的修正方向,如此未來才能針對設計進行更好的修正,呈現出更好的產品性能。

    In this paper, the CFD fluid simulation software ANSYS CFX (version 17.0) was used to validate different suction nozzle geometries (linear or curved geometry of the side wall between inlet and outlet) and to explore the influencing factors of different geometric designs for the vacuum device. The influence of the different geometric design factors on the flow field characteristics of the suction nozzle on the vacuum device has been explored. The inlet boundary condition, which is the average velocity of an internal domain, is set to 10 m/s, the outlet boundary condition total pressure is set to 0 Pa atmospheric pressure, and the wall boundary condition is set to No-slip wall.
    After the analysis via simulation, the results indicate that the static pressure loss coefficient of the A TYPE geometry is 0.85, which is higher than the B TYPE geometry (0.19). And after comparing the static pressure loss coefficient (observation index with the simulation value) and the flow field characteristics, it can be concluded that the B TYPE geometric design has a better flow field performance than the A TYPE geometry design.
    After completing the discussion of the relative relationship between the flow field characteristics and the geometric design, it is also possible to realize the design principles of the suction nozzle at the inlet of the vacuum type product.

    摘要 I Abstract II 誌謝 V 目錄 VI 表目錄 VIII 圖目錄 IX 符號說明 XI 第一章 緒論 1 1-1 前言 1 1-2 文獻回顧 2 第二章 研究背景與方法 6 2-1 控制方程式 6 2-2 基本假設 7 2-3 模擬流程說明 8 2-4 流道模型建構流程 9 2-5 網格架構 15 2-6 邊界條件(Boundary condition)參數設定 17 2-7 觀察指標 18 2-7.1 壓損係數(Static pressure loss coefficient) 18 2-7.2 流場特徵討論 19 第三章 模擬結果討論 20 3-1 壓損係數(Static pressure loss Coefficient) 20 3-1.1 Q區域(Section 0.2至Section 0.4) 24 3-1.2 R區域(Section 0.2至Section 0.3) 24 3-1.3 S區域(Section 0.3至Section 0.4) 25 3-2 流場特徵討論 25 3-2.1 流速分布(Velocity Distribution) 25 3-2.2 邊界層分離(Boundary layer separation) 30 3-3 總結 35 第四章 結論 36 參考文獻 39 附錄 43

    [1] C. M. Chiang, P. C. Chou, W. A. Wang, and N. T. Chao, “A study of the impacts of outdoor air and living behavior patterns on indoor air quality-case studies of apartments in Taiwan,” Indoor Air, vol. 96, no. 3, pp. 735-40, 1996.
    [2] B. Holdsworth, and A. Sealey, A Design Primer for a Living Environment: Addison-Wesley Longman Ltd, 1993.
    [3] T. Godish, Indoor Air Pollution Control: Lewis Publishers, Inc., pp. 247-278, 1991.
    [4] Q. Y. Chen, “Detailed experimental data of room airflow with displacement ventilation,” Proc. Roomvent, vol. 98, no. 1, 1998.
    [5] P. Lioy, T. Wainman, J. F. Zhang, and S.Goldsmith, “Typical household vacuum cleaners: the collection efficiency and emissions characteristics for fine particles,” Journal of the Air & Waste Management Association, vol. 49, no. 2, pp. 200-206, 1999.
    [6] I. H. Son, Y. J. Noh, E. H. Choi, J. Y. Choi, Y. J. Ji, and K. N. Lim, “Optimization of the Flow Path Efficiency in a Vacuum Cleaner Fan,” Strojniski Vestnik/Journal of Mechanical Engineering, vol. 64, no. 4, 2018.
    [7] C.H. Park, S.G. Jun, K. H. Park, S. J. Lee, and K. S. Chang, “Methodology for system-level analysis of a fan–motor design for a vacuum cleaner,” Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, vol. 231, no. 20, pp. 3840-3854, 2017.
    [8] M. Čudina, and J. Prezelj, “Noise generation by vacuum cleaner suction units: Part I. Noise generating mechanisms–An overview,” Applied acoustics, vol. 68, no. 5, pp. 491-502, 2007.
    [9] W. H. Jeon, H. S. Rew, and C. J. Kim,”Aeroacoustic characteristics and noise reduction of a centrifugal fan for a vacuum cleaner,” KSME international journal, vol. 18, no. 2, pp. 185-192, 2004.
    [10] S. Trakumas, K. Willeke, T. Reponen, S. Grinshpun, and W. Friedman, “Comparison of filter bag, cyclonic, and wet dust collection methods in vacuum cleaners,” AIHAJ-American Industrial Hygiene Association, vol. 62, no. 5, pp. 573-583, 2001.
    [11] W. Heitbrink, and J. Santalla-Elias, “The effect of debris accumulation on and filter resistance to airflow for four commercially available vacuum cleaners,” Journal of occupational and environmental hygiene, vol. 6, no. 6, pp. 374-384, 2009.
    [12] E. Vicente, A. Vicente, M. Evtyugina, A. Calvo, F. Oduber, C. B. Alegre, A. Castro, R. Fraile, T. Nunes, F. Lucarelli, G. Calzolai, S. Nava, and C. Alves, “Impact of vacuum cleaning on indoor air quality,” Building and Environment, vol. 180, pp. 107059, 2020.
    [13] R. Corsi, J. Siegel, and C. Y. Chiang, “Particle resuspension during the use of vacuum cleaners on residential carpet,” Journal of Occupational and Environmental Hygiene, vol. 5, no. 4, pp. 232-238, 2008.
    [14] I. S. Park, C. H. Sohn, S. C. Lee, H. Y. Song, and J. K. Oh, “Flow-induced noise in a suction nozzle with a centrifugal fan of a vacuum cleaner and its reduction,” Applied acoustics, vol. 71, no. 5, pp. 460-469, 2010.
    [15] Y. C. Ahn, H. K. Jeong, H. S. Shin, Y. J. Hwang, G. T. Kim, S. I. Cheong, J. K. Lee, and C. Kim, “Design and performance evaluation of vacuum cleaners using cyclone technology,” Korean Journal of Chemical Engineering, vol. 23, no. 6, pp. 925-930, 2006.
    [16] G. H. Ha, E. D. Kim, Y. S. Kim, J. K. Lee, Y. C. Ahn, and D. G. Kim, “A study on the optimal design of a cyclone system for vacuum cleaner with the consideration of house dust,” Journal of mechanical science and technology, vol. 25, no. 3, pp. 689, 2011.
    [17] S. J. Lee, “Experimental analysis of flow fields inside intake heads of a vacuum cleaner,” Journal of mechanical science and technology, vol. 19, no. 3, pp. 894-904, 2005.
    [18] Y. B. Kim, and J. Koch, “Design and numerical investigation of advanced radial inlet for a centrifugal compressor stage,” ASME International Mechanical Engineering Congress and Exposition, vol. 47179, pp. 127-139, 2004.
    [19] C. W. Park, S. I. Lee, and S. J. Lee, “Effect of suction nozzle modification on the performance and aero-acoustic noise of a vacuum cleaner,” KSME international journal’18, vol. 9, pp. 1648-1660, 2004.
    [20] W. S. Cho, M. Moshfeghi, N. K. Hur, and J. S. Kim, “A Numerical Study on Removal Dust Particles in Carpet with Various Operating Condition in Cleaner,” 한국전산유체공학회 학술대회논문집, pp. 508-512, 2014.
    [21] X. B. Lai, H. S. Wang, and H. S. Liu, “Research on Duct Flow Field Optimisation of a Robot Vacuum Cleaner,” International Journal of Advanced Robotic Systems, vol. 8, no. 5, pp. 65, 2011.
    [22] J. J. Miau, T. S. Leu, J. H. Chou, S. A. Lin, and C. K. Lin, “Flow distortion in a circular-to-rectangular transition duct,” AIAA journal, vol. 28, no. 8, pp. 1447-1456, 1990.
    [23] F. Abernathy, Fundamentals of boundary layers: Education Development Center, 1970.
    http://web.mit.edu/hml/ncfmf/10FBL.pdf
    [24] D. Barratt, and T. B. Kim, “A banked wide-angle diffuser with application to electrostatic precipitators,” Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, vol. 229, no. 1, pp. 88-98, 2015.
    [25] E. Sparrow, J. Abraham, and W. Minkowycz, “Flow separation in a diverging conical duct: Effect of Reynolds number and divergence angle,” International Journal of Heat and Mass Transfer, vol. 52, no. 13-14, pp. 3079-3083, 2009.
    [26] M. Nabavi, “Three-dimensional asymmetric flow through a planar diffuser: Effects of divergence angle, Reynolds number and aspect ratio,” International Communications in Heat and Mass Transfer, vol. 37, no. 1, pp. 17-20, 2010.
    [27] A. Nouri-Borujerdi, and A. S. Ghazani, “Simulation of Compressible and Incompressible Flows Through Planar and Axisymmetric Abrupt Expansions,” Journal of Fluids Engineering, vol. 141, no. 11, 2019.
    [28] R. Fox, A. McDonald, and P. Pritchard, Introduction to FLUID MECHANICS,6th ed.: John Wiley & Sons Inc, 2005.
    [29] Ansys, Inc.”ANSYS ICEM CFD Tutorial Manual.”2012
    [30] Ansys, Inc.”ANSYS CFX-Solver Theory Guide.” 2008

    下載圖示 校內:2022-05-01公開
    校外:2024-01-01公開
    QR CODE