簡易檢索 / 詳目顯示

研究生: 林英志
Lin, Yin-Chih
論文名稱: 合金元素添加對鐵磁形狀記憶Fe-Pd合金 微結構與性質之影響
Effects of Alloying Elements Addition on the Microstructures and Properties of Ferromagnetic Shape Memory Fe-Pd Alloys
指導教授: 李驊登
Lee, Hwa-Teng
學位類別: 博士
Doctor
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 206
中文關鍵詞: Fe-Pd30合金添加微量銠(Rh)、鋁(Al)、與鎳(Ni)元素晶粒細化顯微結構磁特性
外文關鍵詞: Fe-Pd30 alloys, addition trace elements of Rh, Al, and Ni, grain size refinement, microstructures, magnetic properties
相關次數: 點閱:121下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究論文,主要在鐵(Fe)-30 (at.%)鈀(Pd)之鐵磁性形狀記憶合金中,各別添加微量銠(Rh)、鋁(Al)、與鎳(Ni)元素,再分為三部份,分別探討上述三種不同微元素添加後,對Fe-Pd30系鐵磁性形狀記憶合金,所產生之磁性相微結構與磁特性的影響。
    首先實驗證明添加微量Rh元素後,能顯著提升Fe-Pd30系合金的磁致伸縮應變值,其原因可能是Rh原子取代Pd的晶格位置,改變了磁原子間之交互作用,導致此合金磁晶體異向能常數(Ku)之增加,此外調幅式示差掃描量熱計(DSC)實驗結果顯示,在Fe-Pd30合金內添加微量Rh元素後,能有效的提高此合金系之沃斯田鐵相開始變態溫度(As),與沃斯田鐵相完成變態溫度(Af),其原因可能是添加Rh元素在Fe-Pd30合金中,降低了L10麻田散鐵相成核的自由能,促成L10麻田散鐵雙晶相容易成核,並使得L10麻田散鐵相更容易在較高溫度產生,此外Fe68-Pd30-Rh2與Fe66-Pd30-Rh4合金鍛造應變35~40%,經950–1050 ℃持溫適當時間,固溶退火再結晶處理,細化晶粒之後,能實質改善此合金之: (a)磁致伸縮應變值,(b)磁致伸縮應變/磁化率比值(rλ║s/rH),(c)作用磁場垂直試樣縱軸方向之飽和磁致伸縮應變值(λ^s),(d)增加延展性,(e)提高飽和磁感應強度(Ms),與增加磁晶體異向能常數(Ku)。掃描式與穿透式電子顯微鏡,對磁性相微結構的觀察發現,Fe-Pd-Rh合金,經鍛造應變固溶退火再結晶細化晶粒後,提升了磁致伸縮應變值,主要原因為固溶退火再結晶處理誘發晶粒細化,與再結晶處理所產生的變形雙晶(deformation twins)、變態雙晶(transformation twins)、與橫向雙晶(transverse twins)。磁滯(M-H)曲線實驗結果,顯示此合金試樣在低溫(100 K),具有較高的飽和磁感應強度(Ms),與較高的磁晶體異向能常數(Ku),這種現象主要歸因於在常溫(300 K)的(正方晶L10+單斜晶L1m)混合相,於低溫(100 K),相變態為單一正方晶L10麻田散鐵相所致。
    其次實驗結果證明,在Fe-Pd30合金中,添加微量Al (4 at.%)後,經由TEM研究觀察顯示,在淬火狀態此Fe66-Pd30-Al4鐵磁性合金,內部包含一單斜晶L1m麻田散鐵相,這種L1m單斜晶麻田散鐵組織由兩種雙晶組成,即變形雙晶(L1m-D)與變態雙晶(L1m-T),而且變態雙晶L1m-T之模式鑑定為{101}L1m,此外穿透式電子顯微鏡(TEM)觀察研究顯示,序化型L10正方晶麻田散鐵,在淬火狀態係沿著平行{101}L1m-T單斜晶板狀變態雙晶面成核,TEM、SEM、振動試樣測磁儀(VSM)、與磁致伸縮量測儀研究結果顯示,此合金固溶再時效於475 ℃持溫19小時之後,L1m-T變態雙晶+L10相分解成等化學計量L10+L1m+αbct微結構,導致此合金的矯頑磁力增強,同時破壞了此合金之磁致伸縮應變。
    最後在Fe-Pd30之鐵磁性形狀記憶合金中,添加微量Ni (4 at.%)後,用SEM、TEM、x-ray繞射儀(XRD)、振動試樣測磁儀(VSM)、與磁致伸縮量測儀,研究探討此Fe66-Pd30-Ni4合金之磁性相微結構與磁特性,研究結果發現,此合金固溶處理後之磁致伸縮應變值為λ║s=79×10−6,此應變值比原有狀態材料之磁致伸縮應變值λ║s=55×10−6高,原有狀態材料具較低之磁致伸縮應變值,其原因為原有狀態材料內部存在偏析,導致在磁場作用下,偏析阻礙了部分L10麻田散鐵雙晶晶界的移動,而造成原有狀態材料之磁致伸縮應變值較低。此外本研究之重要發現是;在Fe-Pd30系合金添加微量Ni替代Fe,則此合金鍛造應變,固溶退火再結晶處理,再經400 ℃ 持溫100小時時效處理後,似乎可以抑制L10+L1m雙晶相分解成等化學計量L10+L1m+αbct微結構,而使得此合金在400 ℃/持溫100小時,時效處理後之磁致伸縮應變值,仍然維持在λ║s=62×10−6;λ^s=−11×10−6,而且此時效試樣經x-ray繞射並未發現αbct相,此種磁特性證明此合金適合在高溫、高頻環境下(T<400 ℃)使用。又此合金鍛造應變,固溶退火再結晶處理後,試樣在500–700 ℃持溫100小時時效處理,經由x-ray繞射分析,發現試樣在500 ℃持溫100小時,時效處理後會有αbct相產生,此種αbct相的產生,導致此合金之磁致伸縮應變值大幅減少,同時造成此時效材料的維克氏微硬度值隨之上升,當此合金在600–700 ℃持溫100小時時效處理後,則發生過時效現象,同時促使L10+L1m+αbct麻田散鐵層狀組織再逐漸溶入基地,導致此合金之磁致伸縮應變值逐漸恢復。

    This research paper mainly presents investigation of bulk ferromagnetic shape memory (FSM) Fe-30 (at.%) Pd alloys with additions of various trace amounts of Rh, Al, and Ni elements. The research paper is divided into 3 parts, and the influences of the various additions of Rh, Al, and Ni elements on the magnetic structures and magnetic properties are investigated in detail.
    First, the experimental results indicate that additions of trace elements of Rh (2−4 at.%) to Fe-Pd30 alloy systems can significantly improve the magnetostrictive strains. The reason may be that Rh atom substitution for Pd in the atomic crystal position leads to a change the magnetic atomic interaction and an increase the magnetocrystalline anisotropy energy constant (Ku). In addition, the differential scanning calorimetry (DSC) test confirmed that Fe-Pd30 alloy systems doped with Rh (2−4 at.%) have an elevated austenite start transformation temperature (As) and austenite finish transformation temperature (Af). It can be inferred that doping Fe-Pd30 alloy system with Rh causes a decrease in L10 nucleation free energy, allowing easier generation of the L10 twin structure. Rh substitution for Pd in the Fe-Pd30 alloy systems also enhances the L10 phase formation at a higher temperature. In addition, the Fe68-Pd30-Rh2 and Fe66-Pd30-Rh4 (at.%) alloys strain-forged to a 35–40% reduction in thickness and recrystallized through thermal annealing at 950–1050 ℃ for proper times show improvements in the following: (a) magnetostrictive strains, (b) magnetostrictive susceptibility (rλ║s/rH), (c) perpendicular saturation magnetostriction (λ^s), (d) increase in ductility, and (e) elevation of the saturation magnetization and the magnetocrystalline anisotropy energy constant (Ku). SEM and TEM investigations indicate that the high magnetostriction of the strain-forged Fe-Pd-Rh alloy through solution treated (ST) and annealed recrystallization can mainly be ascribed to the grain refinement, as well as deformation twins, transformation twins, and transverse twins. The mass magnetization (M) versus magnetic field (H) M-H curves indicate that a specimen test at lower temperature (100 K) resulted in a higher saturated magnetization (Ms) as well as a higher magnetocrystalline anisotropy energy constant (Ku). This phenomenon is ascribed to the martensitic transformation from the mixed L10+L1m at RT (300 K) to a single L10 structure as the sample was tested at lower temperature (100 K).
    Next, the experimental results present the results of doping the Fe-Pd30 alloy systems with additions of trace elements of Al (4 at.%). TEM observation indicated that in the as quenched condition, the alloys consisted of a monoclinic L1m martensite phase. The L1m monoclinic martensite structure was comprised of two types of twins: deformation twins (L1m-D) and transformation twins (L1m-T). The transformation twinning L1m-T mode was also identified as {101}L1m. In addition, TEM observation indicated that an ordered L10 tetragonal martensite nucleates along parallel {101}L1m-T monoclinic transformation twin plates during the quenching. TEM, SEM, vibrating sample magnetometer (VSM), and magnetostrictive-meter investigations demonstrated that after ST and aging of the alloys at 475 ℃ for 19 h, the decomposition of L1m-T transformation twins+L10 phase into stoichiometric L10+L1m+αbct structures simultaneously leads to an increase in the coercivity and a destruction of the magnetostriction.
    Finally, the microstructures and magnetic properties of ferromagnetic shape memory Fe-Pd30 alloy systems additions of trace elements of Ni (4 at.%) were investigated by SEM, TEM, x-ray diffraction (XRD), VSM, and a magnetostriction meter. The research results show that the magnetostrictive strains of the Fe66-Pd30-Ni4 alloys after homogenization treatment (λ║s=79´10−6) are higher than those of as received materials (λ║s=55´10−6). The lower magnetostriction of the as received metal is due to segregation-impeded parts of the L10 twin boundary motion in realistic magnetic fields. In addition, an important discovery in this study was that doping the Fe-Pd30 alloy system with Ni substitution for Fe seems to prevent the decomposition of L10+L1m twin phase into stoichiometric L10+L1m+αbct structures, as the strain-forged alloys were ST and annealed recrystallization, then aged at 400 ℃ for 100 h. The magnetostrictive strains of the 400 ℃/100 h aged sample were maintained with λ║s=62×10−6;λ^s=−11×10−6, and the XRD analysis discovered no occurrence of the αbct phase in the aged sample. This magnetic property of the alloys is suitable for application in a high temperature and high frequency (T<400 ℃) environment. The strain-forged samples were ST and annealed recrystallization, then were aged at 500~700 ℃ for 100 h. Through analyzed by XRD, the formation of an αbct phase was observed as the specimen was aged at 500 ℃ for 100 h. This αbct phase occurrence caused large reductions in the magnetostrictive strains, while at the same time the hardness increased. When the samples were aged at 600~700 ℃ for 100 h, overaging occurred, the martensitic stoichiometric L10+L1m+αbct lamellar structures dissolved into the matrix simultaneously, and the magnetostrictive strains gradually recovered.

    總 目 錄 博士論文審查及口試合格證明 І 中文摘要 П 英文摘要 V 誌謝 VIІІ 總目錄 ІX 表目錄 XIІІ 圖目錄 XІV 簡寫表(符號說明) XXV 第一章 前言 1 1-1 磁致伸縮材料及其智能化應用 1 1-1-1 磁致伸縮效應 1 1-1-2 磁致伸縮係數(磁致伸縮應變值) 1 1-1-3 磁致伸縮材料之應用 2 1-2 磁致伸縮(magnetostriction) 3 1-3 磁致伸縮的物理意義 5 1-4 鐵磁性形狀記憶 6 1-5 研究的動機 12 第二章 文獻回顧 16 2-1 Fe-Pd形狀記憶合金之應用 16 2-2 Fe-Pd形狀記憶合金麻田散鐵之相變態 18 2-3 Fe-Pd合金之相圖 20 2-4 Fe-Pd合金之序化與非序化結構 21 2-5 Fe-Pd合金三種不同方位之麻田散鐵 23 2-6 Fe-Pd合金c/a軸比值隨溫度降低而減少 24 2-7 添加第三合金元素對Fe-Pd磁性形狀記憶合金磁性相 微結構與磁性之影響 25 第三章 實驗步驟與方法 26 3-1 本研究實驗流程圖 26 3-2 材料之準備 28 3-3 顯微組織之研究 30 3-4 DSC之研究 32 3-5 X-ray繞射之分析 33 3-6 VSM之磁性量測 33 3-7 磁致伸縮(magnetostriction)之量測 35 3-8 Fe-Pd30系合金無鍛造應變退火處理,與鍛造應變固溶退火 再結晶處理,兩者之磁致伸縮應變值比較 37 3-9 Hv維克氏微硬度試驗 38 第四章 結果與討論 39 4-1 Fe68-Pd30-Rh2合金的晶粒細化與磁致伸縮 39 4-1-1 Fe68-Pd30-Rh2合金顯微結構之探討 39 4-1-2 Fe68-Pd30-Rh2合金x-ray繞射圖案之分析 47 4-1-3 Fe68-Pd30-Rh2合金之維克氏(Vickers)微硬度 50 4-1-4 Fe68-Pd30-Rh2合金之磁致伸縮(magnetostriction) 51 4-1-5 Fe68-Pd30-Rh2合金之磁滯曲線特性 54 4-1-6 討論 56 4-2 Fe66-Pd30-Rh4合金的磁性相微結構與磁特性 57 4-2-1 Fe66-Pd30-Rh4合金TEM顯微結構之探討 57 4-2-2 Fe66-Pd30-Rh4合金SEM顯微組織之分析 65 4-2-3 Fe66-Pd30-Rh4合金x-ray繞射圖案分析 67 4-2-4 Fe66-Pd30-Rh4合金之磁滯曲線分析 69 4-2-5 Fe66-Pd30-Rh4合金之磁致伸縮 71 4-3 Fe-Pd-Rh鐵磁性形狀記憶合金鍛造應變固溶退火再結晶 處理之微結構與磁致伸縮 74 4-3-1 晶粒細化與無晶粒細化磁致伸縮之比較 74 4-3-2 SEM顯微結構的觀察研究 79 4-3-3 晶粒細化與無晶粒細化TEM顯微結構的觀察研究 84 4-3-4 DSC之研究分析 91 4-3-5 Fe-Pd-Rh合金無鍛造應變與鍛造應變固溶退火處理 試樣之x-ray繞射圖案比較 93 4-3-6 Fe-Pd-Rh合金正方晶L10相與單斜晶L1m結構晶格常數 計算 95 4-3-7 Fe-Pd-Rh合金磁滯曲線 96 4-3-7-1 Fe66-Pd30-Rh4合金之磁滯曲線分析 96 4-3-7-2 Fe66-Pd30-Rh2合金之磁滯曲線分析 100 4-4 Fe66-Pd30-Al4鐵磁性合金之麻田散鐵相變態與磁特性 102 4-4-1 麻田散鐵相變態與磁性的關係 102 4-4-2 Fe66-Pd30-Al4合金之磁性相微結構 104 4-4-2-1 Fe66-Pd30-Al4合金之TEM與SEM顯微組織的探討 104 4-4-2-2 Fe66-Pd30-Al4合金之x-ray繞射圖案分析 118 4-4-3 Fe66-Pd30-Al4合金之磁性分析 120 4-4-3-1 Fe66-Pd30-Al4合金之磁滯曲線 120 4-4-3-2 Fe66-Pd30-Al4合金之磁致伸縮 121 4-5 Fe66-Pd30-Ni4形狀記憶合金之磁性與磁性相微結構 124 4-5-1 Fe66-Pd30-Ni4合金之磁性 124 4-5-1-1 Fe66-Pd30-Ni4與Fe66-Pd30-Rh4合金磁致伸縮 應變值之比較 124 4-5-1-2 Fe66-Pd30-Ni4合金之磁滯曲線分析 135 4-5-2 Fe66-Pd30-Ni4合金之磁性相微結構 141 4-5-2-1 Fe66-Pd30-Ni4合金之x-ray繞射圖案分析 141 4-5-2-2 Fe66-Pd30-Ni4合金之SEM顯微結構與EDS分析 144 4-5-2-3 Fe66-Pd30-Ni4合金之TEM顯微結構探討 150 4-5-3 Fe66-Pd30-Ni4合金之維克氏(Vickers)微硬度測試 158 第五章 結論與建議 162 5-1 Fe68-Pd30-Rh2與Fe66-Pd30-Rh4合金 162 5-2 Fe66-Pd30-Al4合金 164 5-3 Fe66-Pd30-Ni4合金 165 5-4 建議 166 5-5 未來可能研究方向 167 參考文獻 168 附錄 A 186 附錄 B 192 表 目 錄 表4-3-1 Fe66-Pd30-Rh4合金αbct相,單斜晶L1m結構,與正方晶 L10結構之晶格常數 189 表4-3-2 Fe66-Pd30-Rh4合金αbct相,單斜晶L1m結構,與正方晶 L10(面心)結構之晶格常數 190 表4-3-3 Fe66-Pd30-Rh4合金,γ-fcc面心立方結構之晶格常數 191 表4-3-4 Fe68-Pd30-Rh2合金αbct相,單斜晶L1m結構,與正方晶 L10結構之晶格常數 196 表4-3-5 Fe68-Pd30-Rh2合金αbct相,單斜晶L1m結構,與正方晶 L10(面心)結構之晶格常數 197 表4-3-6 Fe68-Pd30-Rh2合金,γ-fcc面心立方結構之晶格常數 198 表4-3-7 Fe68-Pd30-Ni4合金αbct相,單斜晶L1m結構,與正方晶 L10結構之晶格常數 199 表4-3-8 Fe68-Pd30-Ni4合金αbct相,單斜晶L1m結構,與正方晶 L10(面心)結構之晶格常數 200 表4-4-1 Fe66-Pd30-Al4合金,L1m單斜晶結構晶格面之間距 107 表4-4-2 Fe66-Pd30-Al4合金,L1m單斜晶結構倒晶格之夾角 107 圖 目 錄 圖1-1 磁致伸縮之機構 5 圖1-2 磁場誘發雙晶生長、雙晶晶界移動示意圖 7 圖1-3 低磁晶體異向能常數與高磁晶體異向能常數之磁致 伸縮應變比較 9 圖 2-1 Fe-Pd鐵磁性形狀記憶合金之應用 16 圖 2-2 L10麻田散鐵中間相之晶格常數 19 圖 2-3 Fe-Pd二元合金之平衡相圖 20 圖 2-4 Fe-Pd合金之序化L10正方晶麻田散鐵結晶構造示意圖 22 圖 2-5 三種不同方位之正方晶麻田散鐵晶格變化示意圖 23 圖2-6 Fe-Pd30合金之c/a軸比值隨溫度冷卻之晶格變化示意圖 24 圖 3-1 實驗流程圖 26 圖 3-2 添加合金元素之Fe-Pd30系合金熔煉過程示意圖 28 圖 3-3 添加第三合金元素Fe-Pd30系合金試樣之真空石英封管 29 圖 3-4 VSM磁性量測示意圖 34 圖 3-5 磁致伸縮應變量測儀示意圖 36 圖4-1-1 Fe68-Pd30-Rh2合金鍛造應變~40%之顯微結構 39 圖4-1-2 Fe68-Pd30-Rh2合金鍛造應變~40%之TEM顯微組織 41 圖4-1-3 Fe68-Pd30-Rh2合金鍛造應變,(a)-(b)於950 ℃/持溫3小 時,與(c)-(d)於1050 ℃/持溫1.5小時,固溶退火再結晶 處理之SEM微結構 42 圖4-1-4 Fe68-Pd30-Rh2合金鍛造應變,於950 ℃/持溫3小時固溶 退火再結晶處理,SEM所攝取之EDS化學成份分佈 44 圖4-1-5 Fe68-Pd30-Rh2合金鍛造應變,於950 ℃/持溫3小時固溶 退火再結晶處理,TEM所攝取之L10麻田散鐵雙晶組織 45 圖4-1-6 Fe68-Pd30-Rh2合金鍛造應變,於950 ℃/持溫3小時固溶 退火再結晶處理,TEM所攝取之L10麻田散鐵雙晶組織 46 圖4-1-7 Fe68-Pd30-Rh2合金(a)鍛造應變~40%,與(b)鍛造後經950 ℃ /持溫3小時固溶退火再結晶處理之x-ray繞射圖案 48 圖4-1-8 Fe68-Pd30-Rh2合金鍛造應變試樣,(a)橫截剖面與(b)橫截 剖面之EDS線掃描 49 圖4-1-9 Fe68-Pd30-Rh2合金鍛造應變試樣,在950 ℃/持溫於各 種不同時間之維克氏微硬度曲線 50 圖4-1-10 Fe68-Pd30-Rh2合金鍛造應變試樣,在950-1100 ℃/持溫 1.5小時之維克氏微硬度曲線 50 圖4-1-11 Fe68-Pd30-Rh2合金鍛造應變~40%,與鍛造後經950 ℃/ 持溫3小時固溶退火再結晶處理試樣在常溫量測之磁 致伸縮應變曲線 52 圖4-1-12 Fe68-Pd30-Rh2合金鍛造應變~40%,與鍛造後經950 ℃/持 溫3小時固溶退火再結晶處理,試樣在常溫量測之飽和 磁致伸縮應變曲線 53 圖4-1-13 Fe68-Pd30-Rh2合金鍛造應變~40%,與鍛造後經950 ℃/持 溫3小時固溶退火再結晶處理,試樣在50、100與300 K 量測之磁滯(M-H)曲線 54 圖4-2-1 Fe66-Pd30-Rh4合金鍛造應變,於950 ℃/持溫1.5小時固溶 退火再結晶處理,TEM所攝取之L10麻田散鐵雙晶組織 57 圖4-2-2 Fe66-Pd30-Rh4合金鍛造應變,固溶退火再結晶處理後, 於550 ℃/持溫110小時時效處理之TEM顯微組織 59 圖4-2-3 Fe66-Pd30-Rh4合金鍛造應變,固溶退火再結晶處理後,於 550 ℃/持溫110小時時效處理之高解析HRTEM顯微組織 60 圖4-2-4 Fe66-Pd30-Rh4合金鍛造應變,固溶退火再結晶處理後, 於550 ℃/持溫110小時時效處理之TEM顯微組織 62 圖4-2-5 Fe66-Pd30-Rh4合金鍛造應變,固溶退火再結晶處理後, 於475 ℃/持溫17小時時效試樣之TEM顯微組織 63 圖4-2-6 Fe66-Pd30-Rh4合金鍛造應變,固溶退火再結晶處理後, 於450 ℃/持溫100小時時效試樣之TEM顯微組織 64 圖4-2-7 Fe66-Pd30-Rh4合金鍛造應變,固溶退火再結晶處理後, 分別持溫於(a)-(b)475 ℃/17小時,(c)400 ℃/100小時, 與(d)450 ℃/100小時,時效處理試樣之SEM顯微組織 65 圖4-2-8 Fe66-Pd30-Rh4合金鍛造應變,(a)-(b)於950 ℃/持溫1.5小時 固溶退火再結晶處理,與(c)-(d)固溶後於450 ℃/持溫100小 時時效處理,經SEM所攝取之EDS化學成份分佈 66 圖4-2-9 Fe66-Pd30-Rh4合金鍛造應變,經(a)950 ℃/1.5小時固溶 退火再結晶處理、與固溶後再分別經(b)450 ℃/100小時、 (c)550 ℃/110小時時效處理之x-ray繞射圖案 68 圖4-2-10 Fe66-Pd30-Rh4合金鍛造應變,(a)經950 ℃/1.5小時固溶 退火再結晶處理,與(b)固溶後再經450 ℃/持溫100小時 時效處理,在溫度50、200、與350 K量測之磁滯曲線 70 圖4-2-11 Fe66-Pd30-Rh4合金鍛造應變,經950 ℃/1.5小時固溶退 火再結晶處理、與固溶後再分別經400 ℃/100小時、與 550 ℃/110小時時效處理,試樣在常溫量測之磁致伸縮應 變曲線 72 圖4-2-12 Fe66-Pd30-Rh4合金鍛造應變,經950 ℃/1.5小時固溶退 火再結晶處理、與固溶後再分別經400 ℃/100小時、與 550℃/ 110小時時效處理,試樣在常溫量測之飽和磁致伸 縮應變曲線 73 圖4-3-1 Fe66-Pd30-Rh4合金原有狀態、與無鍛造應變和鍛造應變 35%經950 ℃/1.5小時固溶退火處理,試樣在常溫量測 之磁致伸縮應變曲線比較 74 圖4-3-2 Fe68-Pd30-Rh2合金無鍛造應變與鍛造應變39%,分別經 950 ℃/3小時與950 ℃/6小時固溶退火處理,試樣在常 溫量測之磁致伸縮應變曲線比較 76 圖4-3-3 Fe66-Pd30-Rh4合金原有狀態、與無鍛造應變和鍛造應變 35%經950 ℃/1.5小時固溶退火,試樣在常溫量測之飽 和磁致伸縮應變曲線比較 77 圖4-3-4 Fe68-Pd30-Rh2合金無鍛造應變、與鍛造應變39%,分別 經950 ℃/3小時與950 ℃/6小時固溶退火處理,試樣在 常溫量測之飽和磁致伸縮應變曲線比較 79 圖4-3-5 Fe66-Pd30-Rh4合金(a)-(b)原有鑄造狀態、與(c)-(d)鍛造 應變35%試樣之SEM微結構比較 80 圖4-3-6 Fe66-Pd30-Rh4合金(a)-(b)鍛造應變35%試樣、與(c)-(d)無 鍛造應變試樣,同時經950 ℃/1.5小時固溶退火處理之 SEM微結構比較 81 圖4-3-7 Fe68-Pd30-Rh2合金(a)-(b)原有狀態、與(c)-(d)鍛造應變 39%試樣之SEM微結構比較 82 圖4-3-8 Fe68-Pd30-Rh2合金(a)-(b)鍛造應變39%試樣、與(c)-(d)無 鍛造應變試樣,同時經950 ℃/3小時固溶退火處理之 SEM微結構比較 83 圖4-3-9 Fe66-Pd30-Rh4合金鍛造應變35%試樣,經950 ℃/1.5小 時固溶退火再結晶處理之TEM顯微組織 84 圖4-3-10 Fe66-Pd30-Rh4合金無鍛造應變試樣,經950 ℃/1.5小 時固溶退火處理之TEM顯微組織 85 圖4-3-11 Fe66-Pd30-Rh4合金鍛造應變35%試樣,經950 ℃/1.5小時 固溶退火再結晶處理尖晶石雙晶微結構之TEM顯微組織 87 圖4-3-12 Fe68-Pd30-Rh2合金鍛造應變39%試樣,經950 ℃/3小 時固溶退火再結晶處理之TEM顯微組織 88 圖4-3-13 Fe68-Pd30-Rh2合金無鍛造應變試樣,經950 ℃/3小時 固溶退火處理之TEM顯微組織 89 圖4-3-14 Fe68-Pd30-Rh2合金鍛造應變~40%試樣,經1050 ℃/1.5小 時固溶退火再結晶處理尖晶石微結構之TEM顯微組織 90 圖4-3-15 (a)Fe66-Pd30-Rh4與(b)Fe68-Pd30-Rh2合金之DSC曲線;圖中 顯示在Fe-Pd30合金內部添加Rh,提昇了As與Af之相 變態溫度 92 圖4-3-16 (a)-(b)Fe68-Pd30-Rh2與(c)-(d)Fe66-Pd30-Rh4合金無鍛造應 變試樣與鍛造應變試樣,固溶退火處理之x-ray繞射圖 案比較 94 圖4-3-17 Fe66-Pd30-Rh4合金鍛造應變35%,經950 ℃/1.5小 時固溶退火再結晶處理,試樣在100 K與300 K量 測之磁滯曲線 97 圖4-3-18 Fe66-Pd30-Rh4合金無鍛造應變,經950 ℃/1.5小時固溶 退火處理,試樣在100 K與300 K量測之磁滯曲線 98 圖4-3-19 Fe66-Pd30-Rh4合金鍛造應變35%,經950 ℃/1.5小時 固溶退火再結晶處理後,於400 ℃/持溫100小時時 效處理,試樣在100 K與300 K量測之磁滯曲線 99 圖4-3-20 Fe68-Pd30-Rh2合金鍛造應變39%試樣,經950 ℃/3小 時固溶退火再結晶處理,在100 K與300 K量測之磁 滯曲線 101 圖4-4-1 Fe66-Pd30-Al4合金在950 ℃/持溫1.5小時固溶退火處 理試樣之TEM顯微組織 105 圖4-4-2 Fe66-Pd30-Al4合金在950 ℃/持溫1.5小時固溶退火處 理試樣之TEM顯微組織 108 圖4-4-3 Fe66-Pd30-Al4合金在950 ℃/持溫1.5小時固溶退火處理, 再經475 ℃/持溫19小時時效試樣之TEM顯微組織 109 圖4-4-4 Fe66-Pd30-Al4合金在950 ℃/持溫1.5小時固溶退火處理, 再經475 ℃/19小時時效試樣之TEM顯微組織 110 圖4-4-5 Fe66-Pd30-Al4合金在950 ℃/持溫1.5小時固溶退火處理, 再於475 ℃/持溫19小時時效試樣之TEM顯微組織 112 圖4-4-6 Fe66-Pd30-Al4合金固溶退火,於480 ℃/持溫75小時 時效試樣之SEM與TEM顯微組織 113 圖4-4-7 Fe66-Pd30-Al4合金固溶退火處理,再於480 ℃/持溫75 小時時效試樣之TEM顯微組織 114 圖4-4-8 Fe66-Pd30-Al4合金(a)950 ℃/持溫1.5小時固溶退火處理, 與(b)-(d)固溶再於475 ℃/持溫19小時時效試樣之SEM 顯微組織 115 圖4-4-9 Fe66-Pd30-Al4合金固溶再分別於(a)-(b)475 ℃/持溫19 小時,與(c)-(d)480 ℃/持溫75小時時效試樣之SEM 顯微組織 116 圖4-4-10 Fe66-Pd30-Al4合金(a)-(b)950 ℃/持溫1.5小時固溶處理, 與(c)-(d)固溶後再於475 ℃/持溫19小時時效試樣,SEM 所攝取之EDS化學成份分佈 117 圖4-4-11 Fe66-Pd30-Al4合金(a) 950 ℃/持溫1.5小時固溶處理、與 固溶後再分別經(b)475 ℃/19小時、(c)480 ℃/75小時時效 試樣之x-ray繞射圖案 119 圖4-4-12 Fe66-Pd30-Al4合金(a)950 ℃/持溫1.5小時固溶處理、 與固溶後分別經(b)475 ℃/19小時、(c)480 ℃/75小時 時效試樣在常溫量測之磁滯曲線 121 圖4-4-13 Fe66-Pd30-Al4合金固溶處理試樣、與固溶後再於475 ℃ /持溫19小時時效試樣,在常溫量測之磁致伸縮應變 曲線 122 圖4-4-14 Fe66-Pd30-Al4合金固溶處理試樣、與固溶後再經475 ℃/ 持溫19小時時效處理試樣,在常溫量測之飽和磁致伸 縮應變曲線 123 圖4-5-1 Fe66-Pd30-Ni4合金原有狀態、1050 ℃/70小時均質化處理 、與均質化後(無鍛造應變)作950 ℃/6小時固溶處理,試 樣在常溫量測之磁致伸縮應變曲線 124 圖4-5-2 Fe66-Pd30-Ni4合金原有狀態、1050 ℃/70小時均質化處 理、與均質化處理後(無鍛造應變)作950 ℃/6小時固溶 處理,試樣在常溫量測之飽和磁致伸縮應變曲線 125 圖4-5-3 Fe66-Pd30-Ni4合金鍛造應變33%試樣,經950 ℃/20小時 固溶退火再結晶處理、與固溶處理後分別經400 ℃/ 100小時、與500 ℃/100小時時效處理,試樣在常溫 量測之磁致伸縮應變曲線 126 圖4-5-4 Fe66-Pd30-Ni4合金鍛造應變33%試樣,經950 ℃/20 小時固溶退火再結晶處理、與固溶處理後分別經400 ℃ /100小時、與500 ℃/100小時時效處理,試樣在常溫 量測之飽和磁致伸縮應變曲線 127 圖4-5-5 Fe66-Pd30-Ni4合金鍛造應變固溶退火再結晶,並經400 ℃/100小時時效試樣,與Fe66-Pd30-Rh4合金鍛造應變 固溶退火再結晶,並經400 ℃/100小時、550 ℃/110 小時時效試樣,兩種不同合金試樣在常溫量測之磁 致伸縮應變曲線比較 128 圖4-5-6 Fe66-Pd30-Ni4合金鍛造應變固溶退火再結晶,並經400 ℃/100小時時效試樣,與Fe66-Pd30-Rh4合金鍛造應變 固溶退火再結晶,並經400 ℃/100小時、550 ℃/110 小時時效試樣,兩種不同合金試樣在常溫量測之飽和 磁致伸縮應變曲線比較 130 圖4-5-7 Fe66-Pd30-Ni4合金鍛造應變33%,經固溶退火再結晶處理, 再分別於400 ℃、500 ℃、600 ℃、700 ℃持溫100小時 時效處理後,試樣在常溫量測之磁致伸縮應變曲線比較 131 圖4-5-8 Fe66-Pd30-Ni4合金鍛造應變33%,經固溶退火再結晶處理, 再分別於400 ℃、500 ℃、600 ℃、700 ℃持溫100小時時 效處理,試樣在常溫量測之飽合磁致伸縮應變曲線比較 132 圖4-5-9 Fe66-Pd30-Rh2合金鍛造應變,分別經固溶退火再結晶 於1050 ℃/1.5小時、950 ℃/6小時、950 ℃/0.5小時 、與固溶後分別於450 ℃/6小時、和450 ℃/50小時 時效,試樣在常溫量測之磁致伸縮應變曲線比較 133 圖4-5-10 Fe66-Pd30-Rh2合金鍛造應變,分別經固溶退火再結 晶於1050 ℃/1.5小時、950 ℃/6小時、950 ℃/0.5小 時、與固溶後於450 ℃/6小時、和450 ℃/50小時時 效,試樣在常溫量測之飽和磁致伸縮應變曲線比較 134 圖4-5-11 Fe66-Pd30-Ni4合金鍛造應變33%,經950 ℃/20小時固溶退 火再結晶處理,試樣在100 K與300 K量測之磁滯曲線 135 圖4-5-12 Fe66-Pd30-Ni4合金無鍛造應變,經950 ℃/6小時固溶 退火處理,試樣在100 K與300 K量測之磁滯曲線 137 圖4-5-13 Fe66-Pd30-Ni4合金鍛造應變33%,經950 ℃/3小時固溶退 火再結晶處理,試樣在100 K與300 K量測之磁滯曲線 138 圖4-5-14 Fe66-Pd30-Ni4合金鍛造應變33%,經950 ℃/3小時固溶 退火再結晶處理,並於500 ℃/持溫100小時時效,試樣 在100 K與300 K量測之磁滯曲線 139 圖4-5-15 Fe66-Pd30-Ni4合金(a)原有狀態、(b)1050 ℃/70小時均質 化處理、與(c)均質化處理後無鍛造應變作950 ℃/6小時 固溶處理,試樣在常溫之x-ray繞射圖案 141 圖4-5-16 Fe66-Pd30-Ni4合金(a)均質化後鍛造應變33%,並作 950 ℃/3小時固溶退火再結晶處理、與(b)固溶後經 400 ℃/100小時時效、(c)固溶後經500 ℃/100小時 時效,試樣在常溫之x-ray繞射圖案 143 圖4-5-17 Fe66-Pd30-Ni4合金(a)-(b)原有狀態、與(c)-(d)1050 ℃ /70小時均質化處理狀態,經SEM所攝取之EDS化 學成份分佈 144 圖4-5-18 Fe66-Pd30-Ni4合金(a)-(b)原有狀態、(c)1050 ℃/70小 時均質化處理、與(d)均質化處理後無鍛造應變,再 作950 ℃/6小時固溶處理試樣之SEM顯微組織 145 圖4-5-19 Fe66-Pd30-Ni4合金均質化處理並鍛造應變33%,再分 別固溶退火再結晶於(a)950 ℃/3小時、(b)950 ℃/20小時 、與固溶後分別時效於(c)400 ℃/100小時、(d)500 ℃/100 小時試樣之SEM顯微組織 146 圖4-5-20 Fe66-Pd30-Ni4合金鍛造應變33%,經950 ℃/3小時固 溶退火再結晶處理,再分別時效於(a)-(b)400 ℃/100小 時、與(c)-(d)500 ℃/100小時,藉由SEM所攝取之 EDS化學成份分佈 148 圖4-5-21 Fe66-Pd30-Ni4合金鍛造應變33%,經950 ℃/3小時固 溶退火再結晶處理,再分別時效於(a)-(b)600 ℃/100小 時、與(c)-(d)700 ℃/100小時,試樣之SEM顯微組織 149 圖4-5-22 Fe66-Pd30-Ni4合金鍛造應變33%,經950 ℃/3小時 固溶退火再結晶處理之TEM顯微組織 151 圖4-5-23 Fe66-Pd30-Ni4合金鍛造應變33%,經950 ℃/3小時固溶 退火再結晶處理之TEM顯微組織 152 圖4-5-24 Fe66-Pd30-Ni4合金鍛造應變33%,經950 ℃/3小時固溶 退火再結晶處理之TEM顯微組織 153 圖4-5-25 Fe66-Pd30-Ni4合金無鍛造應變,經950 ℃/6小時固溶 退火處理之TEM顯微組織 154 圖4-5-26 Fe66-Pd30-Ni4合金鍛造應變33%,經950 ℃/20小時 固溶退火再結晶處理之TEM顯微組織 155 圖4-5-27 Fe66-Pd30-Ni4合金鍛造應變33%,經950 ℃/3小時 固溶退火再結晶處理,再於500 ℃/持溫100小時時 效試樣之TEM顯微組織 156 圖4-5-28 Fe66-Pd30-Ni4合金鍛造應變33%,經950 ℃/3小時 固溶退火再結晶處理,再於500 ℃/持溫100小時時 效試樣之TEM顯微組織 157 圖4-5-29 Fe66-Pd30-Ni4合金鍛造應變33%,與鍛造後經固溶 退火再結晶於各種不同溫度/持溫3小時試樣之維 克氏微硬度曲線 159 圖4-5-30 Fe66-Pd30-Ni4合金鍛造應變33%,與鍛造後經950 ℃ /持溫於各種不同時間固溶退火再結晶,試樣之維克 氏微硬度曲線 160 圖4-5-31 Fe66-Pd30-Ni4合金鍛造應變33%,與鍛造後經950 ℃ /3小時固溶退火再結晶處理,再分別於各種不同溫度 /持溫100小時時效,試樣之維克氏微硬度曲線 161

    1. K. Tsuchiya, T. Nojiri, H. Ohtsuka, and M. Umemoto, “Effect of Co and Ni on martensitic transformation and magnetic properties in Fe-Pd ferromagnetic shape memory alloys”, Materials Transactions. The Japan Institute of Metals. Vol. 44, No. 12, 2003, pp. 2499-2502.
    2. T. Okazaki, H. Nakajima, and Y. Furuya, “Large magnetostriction of Fe-29.6 at % Pd alloy ribbon under tensile stress”, Materials Transactions. The Japan Institute of Metals. Vol. 44, No. 4, 2003, pp. 665-668.
    3. T. Sakamoto, T. Fukuda, and T. Kakeshita, etal, “Influence of magnetic field direction on rearrangement of martensite variants in an Fe-Pd alloy”, Materials Transactions. The Japan Institute of Metals. Vol. 44, No. 12, 2003, pp. 2495-2498.
    4. E. F. Kneller and R. Hawig, “The exchange-spring magnet: a new material principle for permanent magnets”, IEEE Transactions on Magnetics, Vol. 27, No. 4, 1991, pp. 3588-3600.
    5. J. S. Jiang and S. D. Bader, “Magnetic reversal in thin film exchange-spring magnets”, Scripta Materialia, Vol. 47, 2002, pp. 563-568.
    6. E. C. Oliver, T. Mori, M. R. Daymond, and P. J. Withers, “Neutron diffraction study of stress-induced martensitic transformation and variant change in Fe-Pd”, Acta Materialia, Vol. 51, 2003, pp. 6453-6464.
    7. S. Barabash, “Cluster expansion in Fe-(Ni, Pd, Pt) binary alloys”, National Renewable Energy Laboratory, Golden Research Report, Colorado USA, 2004, pp. 1-27.
    8. L. Wang, Z. Fan, and D. E. Laughlin, “Trace analysis for magnetic domain images of L10 polytwinned structures”, Scripta Materialia, Vol. 47, 2002, pp. 781-785.
    9. H. Masumoto and K. Watanabe, “The effect of silver on permanent magnet properties of iron and palladium alloys”, Transactions of the Japan Institute of Metals, Vol. 24, No. 3, 1983, pp. 139-143.
    10. D. Vokoun, C. T. Hu, and V. Kafka, “Magnetic properties of annealed Fe-29.9 at% Pd ribbons”, Journal of Magnetism and Magnetic Materials, Vol. 264, 2003, pp. 169-174.
    11. G. Y. Gou, Y. L. Wang, and C. T. Chen, “On the orbital magnetic moment and anisotropy energy of the ordered Fe0.5Pd0.5 alloy”, Journal of Magnetism and Magnetic Materials, Vol. 239, 2002, pp. 66-69.
    12. D. Vokoun and C. T. Hu, “Two-way shape memory effect in Fe-28.8 at% Pd melt-spun ribbons”, Scripta Materialia, Vol. 47, 2002, pp. 453-457.
    13. T. Kubota, T. Okazaki, Y. Furuya, and T. Watanabe, “Large magnetostriction in rapid-solidified ferromagnetic shape memory Fe-Pd alloy”, Journal of Magnetism and Magnetic Materials, Vol. 239, 2002, pp. 551-553.
    14. S. Inoue, K. Inoue, K. Koterazawa, and K. Mizuuchi, “Shape memory behavior of Fe-Pd alloy thin films prepared by dc magnetron sputtering”, Materials Science and Engineering A, Vol. 339, 2003, pp. 29-34.
    15. T. Sohmura, R. Oshima, and F. E. Fujita, “Thermoelastic FCC-FCT martensitic tramsformation in Fe-Pd alloy”, Scripta Metallurgica, Vol. 14, 1980, pp. 855-856.
    16. V. Gehanno, Y. Samson, A. Marty, B. Gilles, and A. Chamberod, “Magnetic susceptibility and magnetic domain configuration as a function of the layer thickness in epitaxial FePd(001) thin films ordered in the L10 structure”, Journal of Magnetism and Magnetic Materials, Vol. 172, 1997, pp. 26-40.
    17. H. Kato, T. Wada, Y. Liang, T. Tagawa, M. Taya, and T. Mori, “Martensite structure in polycrystalline Fe-Pd”, Materials Science and Engineering A, Vol. 332, 2002, pp. 134-139.
    18. M. Sugiyama, R. Oshima, and F. E. Fujita, “Mechanism of FCC-FCT thermoelastic martensite transformation in Fe-Pd alloys”, Trans. of the Japan Institute of Metals, Vol. 27, No. 10, 1986, pp. 719-730.
    19. S. Muto, R. Oshima, and F. E. Fujita, “Elastic softening and elastic strain energy consideration in the FCC-FCT transformation of Fe-Pd alloys”, Acta metall. mater., Vol. 38, No. 4, 1990, pp. 685-694.
    20. S. Muto, R. Oshima, and F. E. Fujita, “Relation of magnetic domain structure to FCT martensite variants in Fe-Pd alloys”, Scripta Metallurgica, Vol. 21, 1987, pp. 465-468.
    21. Y. Furuya, N. W. Hagood, H. Kimura, and T. Watanabe, “Shape memory effect and magnetostriction in rapidly solidified Fe-29.6 at% Pd alloy”, Materials Trans. JIM, Vol. 39, No. 12, 1998, pp. 1248-1254.
    22. C. T. Hu, T. Goryczka, and D. Vokoun, “Effects of the spinning wheel velocity on the microstructure of Fe-Pd shape memory melt-spun ribbons”, Scripta Materialia, Vol. 50, 2004, pp. 539-542.
    23. R. Oshima, M. Sugiyama, and F. E. Fujita, “Tweed structures associated with Fcc-Fct transformations in Fe-Pd alloys”, Metall. Trans. A., Vol. 19A, 1988, pp. 803-810.
    24. R. Oshima, “Successive martensitic transformations in Fe-Pd alloys”, Scripta Metallurgica, Vol. 15, 1981, pp. 829-833.
    25. K. Watanabe, “The permanent magnet in iron and palladium alloys-pallamagnet”, Phys. Stat. Sol. (a) 66, 1981, pp. 697-701.
    26. K. Watanabe, “Isothermal heat-treatment and phase transformation of Fe-Pd permanent magnet alloys”, Trans. of the Japan Institute of Metals, Vol. 24, No. 3, 1983, pp. 144-148.
    27. Y. Murakami, D. Shindo, M. Suzuki, M. Ohtsuka, and K. Itagaki, “Magnetic domain structure in Ni53.6Mn23.4Ga23.0 shape memory alloy films studied by electron holography and Lorentz microscopy”, Acta Materialia, Vol. 51, 2003, pp. 485-494.
    28. Y. Murakami, D. Shindo, K. Oikawa, R. Kainuma, and K. Ishida, “Magnetic domain structure in Co-Ni-Al shape memory alloys studied by Lorentz microscopy and electron holography”, Acta Materialia, Vol. 50, 2002, pp. 2173-2184.
    29. K. Sato, B. Bian, T. Hanada, and Y. Hirotsu, “Oriented L10-FePt nanoparticles and their magnetic properties”, Scripta Mater. Vol. 44, 2001, pp. 1389-1393.
    30. T. J. Klemmer, C. Liu, N. Shukla, X. W. Wu, D. Weller, M. Tanase, D. E. Laughlin, and W. A. Soffa, “Combined reactions associated with L10 ordering”, Journal of Magnetism and Magnetic Materials, Vol. 266, 2003, pp. 79-87.
    31. B. D. Cullity: “Introduction to Magnetic Materials”, ed. by M. Cohen, Addison-Wesley, Reading, Massachusetts, USA, 1972, chap. 1-2, and chap. 8.
    32. B. Zhang and W. A. Soffa, “Magnetic domains and coercivity in polytwinned ferromagnets”, Phys. Stat. Sol. (a), Vol. 131, 1992, pp. 707-725.
    33. K. Ullakko, J. K. Huang, V. V. Kokorin, and R. C. O. Handley, “Magnetically controlled shape memory effect in Ni2MnGa intermetallics”, Scripta Materialia, Vol. 36, No. 10, 1997, pp. 1133-1138.
    34. J. Cui, T. W. Shield, and R. D. James, “Phase transformation and magnetic anisotropy of an iron-palladium ferromagnetic shape-memory alloy”, Acta Materialia, Vol. 52, 2004, pp. 35-47.
    35. H. Kato, Y. Liang, and M. Taya, “Stress-induced FCC/FCT phase transformation in Fe-Pd alloy”, Scripta Materialia, Vol. 46, 2002, pp. 471-475.
    36. T. Wada, Y. Liang, H. Kato, T. Tagawa, M. Taya, and T. Mori, “Structural change and straining in Fe-Pd polycrystals by magnetic field”, Materials Science and Engineering A, Vol. 361, 2003, pp. 75-82.
    37. R. Oshima, S. Muto, and F. E. Fujita, “Initiation of FCC-FCT thermoelastic martensite transformation from premartensitic state of Fe-30 at%Pd alloys”, Materials Trans. JIM, Vol. 33, No. 3, 1992, pp. 197-202.
    38. T. J. Klemmer, D. Hoydick, H. Okumura, B. Zhang, and W. A. Soffa, “Magnetic hardening and coercivity mechanisms in L10 ordered FePd ferromagnets”, Scripta Metallurgica et Materialia, Vol. 33, 1995, pp. 1793-1805.
    39. M. Sugiyama, R. Oshima, and F. E. Fujita, “Martensitic transformation in the Fe-Pd alloy system”, Trans. of the Japan Institute of Metals, Vol. 25, No. 9, 1984, pp. 585-592.
    40. A. L. Erzinkyan, N. N. Delyagin, V. P. Parfenova, and S. I. Reyman, “Origin of the strong influence of rhodium on the Curie temperature of Pd-Fe alloy: the spin reorientation in (Pd100-xRhx)90Fe10 alloys”, Journal of Magnetism and Magnetic Materials, Vol. 231, 2001, pp. L20-L22.
    41. Y. Ohtani and I. Hatakeyama, “Features of broad magnetic transition in FeRh thin film”, Journal of Magnetism and Magnetic Materials, Vol. 131, 1994, pp. 339-344.
    42. C. Dahmoune, S. Lounis, M. Talanana, M. Benakki, S. Bouarab, and C. Demangeat, “Ab initio study of the magnetic configurations on the (001) surfaces of binary FePd and FeRh ordered alloys”, Journal of Magnetism and Magnetic Materials, Vol. 240, 2002, pp. 368-370.
    43. S. Yuasa, T. Katayama, K. Murata, M. Usukura, and Y. Suzuki, “Epitaxial growth and magnetic properties of B2-type ordered FeRh alloys”, Journal of Magnetism and Magnetic Materials, Vol. 177-181, 1998, pp. 1296-1298.
    44. K. Tanaka and R. Oshima, “Role of annealing twin in the formation of variant structure of bct martensite in Fe-Pd alloy”, Materials Trans. JIM, Vol. 32, No. 4, 1991, pp. 325-330.
    45. K. Tanaka, K. Hiraga, and R. Oshima, “Origin of tetragonality of BCT martensite in substitutional Fe-Pd(-Ni) disordered alloys”, Materials Trans. JIM, Vol. 33, No. 3, 1992, pp. 215-219.
    46. K. Shimizu and T. Tadaki, “Recent studies on the precise crystal-structural analyses of martensitic transformations”, Materials Trans. JIM, Vol. 33, No. 3, 1992, pp. 165-177.
    47. A. G. Khachaturyan, S. M. Shapiro, and S. Semenovskaya, “Adaptive phase formation in martensitic transformation”, Physical Review B, Vol. 43, No. 13, 1991, pp. 10832-10843.
    48. J. D. Livingston, “The history of permanent magnet materials”, Historcial Insight, JOM, 1990, pp. 30-34.
    49. P. G. Evans and M. J. Dapino, “Efficient model for field-induced magnetization and magnetostriction of Galfenol”, Journal of Applied Physics, 105, 2009, pp. 113901 (1)-(6).
    50. Z. Li, C. Jing, H. L. Zhang, Y. F. Qiao, S. X. Cao, J. C. Zhang, and L. Sun, “A considerable metamagnetic shape memory effect without any prestrain in Ni46Cu4Mn38Sn12 Heusler alloy”, Journal of Applied Physics, 106, 2009, pp. 083908 (1)-(3).
    51. J. Wang, H. Bai, C. Jiang, Y. Li, and H. Xu, “A highly plastic Ni50Mn25Cu18Ga7 high-temperature shape memory alloy”, Materials Science and Engineering A, Vol. 527, 25, 2010, pp. 1975-1978.
    52. D. C. Jr William, “Materials Science and Engineering An Introduction”, John Wiley & Sons, Inc., N. Y., 2002, pp. 180-187.
    53. R. W. Cahn and P. Haasen, “Physical Metallurgy”, Elsevier Science Publishers BV, 1983, pp. 1595-1665.
    54. W-J. Zhang, U. Lorenz, and F. Appel, “Recovery, recrystallization and phase transformations during thermomechanical processing and treatment of TiAl-based alloys”, Acta Mater., 48, 2000, pp. 2803-2813.
    55. S. L. Semiatin, V. Seetharaman, and V. K. Jain, “Microstructure develop-
    -ment during conventional and isothermal hot forging of a near-gamma titanium aluminide”, Metall. Trans. A, Vol. 25, 1994, pp. 2753-2768.
    56. J. Zurbitu, S. Kustov, G. Castillo, L. Aretxabaleta, E. Cesari, and J. Aurrekoetxea, “Instrumented tensile–impact test method for shape memory alloy wires”, Materials Science and Engineering A, Vol. 524, 25, 2009, pp. 108-111.
    57. J.-H. Jeon, A. B. Godfrey, P. A. Blenkinsop, W. Voice, and Y.-D. Hahn, “Rcrystallization in cast 45-2-2 XDTM titanium aluminide during hot isostatic pressing”, Mater., Sci. Engin. A, Vol. A271, 1999, pp. 128-133.
    58. J. J. Felten, T. J. Kinkus, A. C. E. Reid, J. B. Cohen, and G. B. Olson, “Solid-solution structure and the weakly first-order displacive transformation in Fe-Pd alloys”, Metall. and Mater. Trans. A, Vol. 28A, 1997, pp. 527-536.
    59. J. G. Speer and D. V. Edmonds, “An investigation of the γ → α martensitic transformation in uranium alloys”, Acta metall. mater., Vol. 36, No. 4, 1988, pp. 1015-1033.
    60. F. Appel, P. A. Beaven, and R. Wagner, “Deformation processes related to interfacial boundaries in two-phase γ-titanium aluminides”, Acta metall. mater., Vol. 41, No. 6, 1993, pp. 1721-1732.
    61. J. W. Christian, “The Theory of Transformations in Metals and Alloys”, Pergamon Press, Oxford, 1965.
    62. A. Raghunathan, J. E. Snyder, and D. C. Jiles, “Comparison of alternative techniques for characterizing magnetostriction and inverse magnetostriction in magnetic thin films”, IEEE Transactions on Magnetics, Vol. 45, No. 9, Sep., 2009, pp. 3269-3273.
    63. D. Vokoun, Y. W. Wang, T. Goryczka, and C. T. Hu, “Magnetostrictive and
    shape memory properties of Fe-Pd alloys with Co and Pt additions”, Smart Materials and Structures, 14, 2005, pp. S261-S265.
    64. Y. Liu, Z. Xie, J. V. Humbeeck, and L. Delaey, “Deformation of shape memory alloys associated with twinned domain re-configurations”, Materials Science and Engineering A, A273–275, 1999, pp. 679-684.
    65. K. Ullakko, J. K. Huang, C. Kantner, R. C. O. Handley, and V. V. Kokorin, “Large magnetic-field-induced strains in Ni2MnGa single crystals”, Appl. Phys. Lett., 69, No. 13, 1996, pp. 1966-1968.
    66. J. E. Schmidt and L. Berger, “Magnetostriction of Pd-Fe alloys”, Journal Appl. Phys., 55, 15, 1984, pp. 1073-1080.
    67. J. J. Felten, T. J. Kinkus, A. C. E. Reid, J. B. Cohen, and G. B. Olson, “Solid-solution structure and the weakly first-order displacive transformation in Fe-Pd alloys”, Metall. and Mater. Trans. A, Vol. 28A, 1997, pp. 527-536.
    68. T. Kakeshita, T. Fukuda, and T. Takeuchi, “Magneto-mechanical evaluation for twinning plane movement driven by magnetic field in ferromagnetic shape memory alloys”, Materials Science and Engineering A, Vol. 438-440, 2006, pp. 12-17.
    69. S. M. Na and A. B. Flatau, “Deformation behavior and magnetostriction of polycrystalline Fe-Ga-X (X=B, C, Mn, Mo, Nb, NbC) alloys”, Journal of Applied Physics, Vol. 103, 2008, pp. 07D304 (1)-(3).
    70. T. Wada, T. Tagawa, and M. Taya, “Martensitic transformation in Pd-rich Fe-Pd-Pt alloy”, Scripta Materialia, vol. 48, 2003, pp. 207-211.
    71. F. E. Luborsky, J. D. Livingston, and G. Y. Chin, “Physical Metallurgy”, (R. W. Cahn and P. Haasen, eds.), Elsevier Science Publishers BV, 1983, pp. 1674-1734.
    72. H. E. Karaca, I. Karaman, B. Basaran, Y. Ren, Y. I. Chumlyakov, and H. J. Maier, “Magnetic field-induced phase transformation in NiMnCoIn magnetic shape-memory alloys─A New Actuation Mechanism with Large Work Output”, Adv. Funct. Mater., 19, 2009, pp.1-16.
    73. Y. Liu and Z. L. Xie, “Twinning and detwinning of <011> type П twin in shape memory alloy”, Acta Materialia, Vol. 51, 2003, pp. 5529-5543.
    74. R. S. Hay and D. B. Marshall, “Deformation twinning in monazite”, Acta Materialia, Vol. 51, 2003, pp. 5235-5254.
    75. R. S. Hay, “(120) and (1 22) monazite deformation twins”, Acta Materialia, Vol. 51, 2003, pp. 5255-5262.
    76. J. W. Edington, “Practical Electron Microscopy in Materials Science”, USA New York, Van Nostrand Reinhold Company, 1976, pp. 282-291.
    77. W. F. Smith, “Foundation of Materials Science and Engineering”, USA New York, McGraw–Hill Inc, 1993, pp. 419-504.
    78. Y. C. Lin, “Structures and superparamagnetic properties of overaged Fe-Al-Mn-C alloys”, Acta Mater., Vol. 47, No. 18, 1999, pp. 4665-4681.
    79. R. Ranjan, S. Singh, H. Boysen, D. Trots, and S. Banik, “Competing tetragonal and monoclinic phases in Ni2.2Mn0.8Ga”, Journal of Applied Physics, Vol. 106, 033510, 2009, pp. 033510 (1)-(8).
    80. M. Reinhold, D. Kiener, W. B. Knowlton, G. Dehm, and P. Müllner, “Deformation twinning in Ni-Mn-Ga micropillars with 10M martensite”, Journal of Applied Physics, Vol. 106, 053906, 2009, pp. 053906 (1)-(6).
    81. T. Jourdan, A. Masseboeuf, F. Lancon, P. B. Guillemaud, and A. Marty, “Magnetic bubbles in FePd thin films near saturation”, Journal of Applied Physics, Vol. 106, 073913, 2009, pp. 073913 (1)-(8).
    82. A. V. Andrew, E. A. Tereshina, and J. Prokleska, “Magnetostriction of a U2Fe13Si4 single crystal”, Journal of Alloys and Compounds, 491, 2010, pp. 4-7.
    83. G. Filoti, V. Kuncse, E. Navarro, A. Hernando, and M. Rosenberg, “Hyperfine fields and Fe magnetic moments in Fe-Rh alloys; a Mössbauer spectroscopy study”, Journal of Alloys and Compounds, 278, 1998, pp. 60-68.
    84. M. P. Ruffoni and S. Pascarelli, “Measurement of intrinsic magnetostriction in Fe-Ga alloys”, IEEE Transactions on Magnetics, Vol. 45, No. 10, Oct., 2009, pp. 4136-4141.
    85. N. Mehmood, G. Vlasak, F. Kubel, R. S. Turtelli, R. Grössinger, M. Kriegisch, H. Sassik, and P. Svec, “Magnetostriction of rapidly quenched Fe-X (X=Al, Ga) ribbons as function of quenching rate”, IEEE Transactions on Magnetics, Vol. 45, No. 10, Oct., 2009, pp. 4128-4131.
    86. M. W. Fogle, J. B. Restorff, J. M. Cuseo, I. J. Garshelis, and S. Bitar, “Magnetostriction and magnetization of common high strength steels”, IEEE Transactions on Magnetics, Vol. 45, No. 10, Oct., 2009, pp. 4112-4115.
    87. C. F. Lin and J. B. Yang, “Grain size reduction and magnetic property of Fe-Pd-Rh alloys”, IEEE Transactions on Magnetics, Vol. 45, No. 6, June, 2009, pp. 2499-2502.
    88. S. M. Na, J. H. Yoo, and A. B. Flatau, “Abnormal (110) grain growth and magnetostriction in recrystallized galfenol with dispersed niobium carbide”, IEEE Transactions on Magnetics, Vol. 45, No. 10, Oct., 2009, pp. 4132-4135.
    89. V. S. Alarcos, V. Recarte, J. I. P. Landazabal, M. A. Gonzalez, and J. A. R. Velamazan, “Effect of Mn addition on the structural and magnetic properties of Fe-Pd ferromagnetic shape memory alloy”, Acta Materialia, Vol. 57, 2009, pp. 4224-4232.
    90. F. Dalle, E. Perrin, P. Vermaut, M. Masse, and R. Portier, “Interface mobility in Ni49.8Ti42.2Hf8 shape memory alloy”, Acta Materialia, Vol. 50, 2002, pp. 3557-3565.
    91. J. Liu, T. G. Woodcock, N. Scheerbaum, and O. Gutfleisch, “Influence of annealing on magnetic field-induced structural transformation and magnetocaloric effect in Ni-Mn-In-Co ribbons’’, Acta Materialia, Vol. 57, 2009, pp. 4911-4920.
    92. D. Y. Cong, Y. D. Zhang, Y. D. Wang, M. Humbert, X. Zhao, T. Watanabe, L. Zuo, and C. Esling, “Experiment and theoretical prediction of martensitic transformation crystallography in a Ni-Mn-Ga ferromagnetic shape memory alloy”, Acta Materialia, Vol. 55, 2007, pp. 4731-4740.
    93. Y. Ni, Y. M. Jin, and A. G. Khachaturyan, “The transformation sequences in the cubic → tetragonal decomposition”, Acta Materialia, Vol. 55, 2007, pp. 4903-4914.
    94. W. Lu, B. Yan, and T. Suzuki, “Magnetic phase transition and magneto-optical properties in epitaxial FeRh0.95Pt0.05 (0 0 1) single-crystal thin film”, Scripta Materialia, 61, 2009, pp. 851-854.
    95. T. Fukuda, H. Kushida, M. Todai, T. Kakeshita, and H. Mori, “Crystal structure of the martensite phase in the ferromagnetic shape memory compound Ni2MnGa studied by electron diffraction”, Scripta Materialia, 61, 2009, pp. 473-476.
    96. J. A. Chelvane, M. Palit, H. Basumatary, S. Pandian, and V. Chandrasekaran, “Effects of Ti addition on the microstructure and magnetic properties of magnetostrictive Tb–Dy–Fe alloys”, Scripta Materialia, 61, 2009, pp. 548-551.
    97. Z. F. Gu, M. H. Jiang, J. C. Zhao, G. Cheng, J. Q. Li, P. H. Lin, Q. Y. Han, and Z. F. Huang, “Structure and magnetostriction of Tb0.2Pr0.8(Fe0.4Co0.6)1.93-xCx intermetallic compounds”, Journal of Magnetism and Magnetic Materials 321, 2009, pp. 3426-3429.
    98. J. Li, X. Gao, J. Zhu, J. Jia, and M. Zhang, “The microstructure of Fe–Ga powders and magnetostriction of bonded composites”, Scripta Materialia, 61, 2009, pp. 557-560.
    99. H. Beladi, P. Cizek, and P. D. Hodgson, “Texture and substructure characteristics of dynamic recrystallization in a Ni–30%Fe austenitic model alloy”, Scripta Materialia, 61, 2009, pp. 528-531.
    100. S. M. Na and A. B. Flatau, “Secondary recrystallization, crystallographic texture and magnetostriction in rolled Fe-Ga based alloys”, Journal of Applied Physics, Vol. 101, 2007, pp. 09N518 (1)-(3).
    101. G. F. Dong, W. Cai, Z. Y. Gao, and J. H. Sui, “Effect of isothermal ageing on microstructure, martensitic transformation and mechanical properties of Ni53Mn23.5Ga18.5Ti5 ferromagnetic shape memory alloy”, Scripta Materialia, 58, 2008, pp. 647-650.
    102. E. Cesari, J. Font, J. Muntasell, P. Ochin, J. Pons, and R. Santamarta, “Thermal stability of high-temperature Ni–Mn–Ga alloys”, Scripta Materialia, 58, 2008, pp. 259-262.
    103. Y. Xin, Y. Li, L. Chai, and H. Xu, “Shape memory characteristics of dual-phase Ni–Mn–Ga based high temperature shape memory alloys”, Scripta Materialia, 57, 2007, pp. 599-601.
    104. W. Cai, L. Gao, A. L. Liu, J. H. Sui, and Z. Y. Gao, “Martensitic transformation and mechanical properties of Ni–Mn–Ga–Y ferromagnetic shape memory alloys”, Scripta Materialia, 57, 2007, pp. 659-662.
    105. Y. H. Wen, W. Zhang, N. Li, H. B. Peng, and L. R. Xiong, “Principle and realization of improving shape memory effect in Fe–Mn–Si–Cr–Ni alloy through aligned precipitations of second-phase particles”, Acta Materialia, 55, 2007, pp. 6526-6534.
    106. X. Qi and D. Wu, “Enhancement of the magnetostrictive properties of Co0.9Mn0.1Fe2O4 synthesized by using the precursor preparation technique”, Journal of Magnetism and Magnetic Materials, 320, 2008, pp. 666-670.
    107. N. Scheerbaum, D. Hinz, O. Gutfleisch, K. H. Müller, and L. Schultz, “Textured polymer bonded composites with Ni–Mn–Ga magnetic shape memory particles”, Acta Materialia, 55, 2007, pp. 2707-2713.
    108. V. Stoilov, “A theoretical model of martensitic transformations in magnetic shape memory alloys: Model formulation and variant reorientation”, Acta Materialia, 56, 2008, pp. 1001-1010.
    109. I. Aaltio, O. Söderberg, Y. Ge, and S. P. Hannula, “Twin boundary nucleation and motion in Ni-Mn-Ga magnetic shape memory material with a low twinning stress”, Scripta Mater., 62, 2010, pp. 9-12.
    110. S. Doi, F. Wang, K. Hosoiri, and T. Watanabe, “Preparation and characterization of electrodeposited Fe-Pd binary alloy film”, Materials Transactions, Vol. 44, No. 4, 2003, pp. 649-652.
    111. M. Matsui, T. Shimizu, H. Yamada, and K. Adachi, “Magnetic properties and thermal expansion of Fe-Pd invar alloys”, Journal of Magnetism and Magnetic Materials, 15-18, 1980, pp. 1201-1202.
    112. S. Datta, J. Atulasimha, and A. B. Flatau, “Figures of merit of magnetostrictive single crystaliron–gallium alloys for actuator and sensor applications”, Journal of Magnetism and Magnetic Materials, 321, 2009, pp. 4017-4031.
    113. V. Hari Babu, G. Markandeyulu, and A. Subrahmanyam, “Magnetostriction of TbxHo0.75-xPr0.25(Fe0.9B0.1)2 (x¼0–0.3) compounds”, Journal of Magnetism and Magnetic Materials, 320, 2008, pp. 990-993.
    114. X. Guan, X. Dong, and J. Ou, “Magnetostrictive effect of magnetorheological elastomer”, Journal of Magnetism and Magnetic Materials, 320, 2008, pp. 158-163.
    115. S. Y. Yu, S. S. Yan, L. Zhao, L. Feng, J. L. Chen, and G. H. Wu, “Intermartensitic transformation and magnetic field effect in NiMnInSb ferromagnetic shape memory alloys”, Journal of Magnetism and Magnetic Materials, 322, 2010, pp. 2541-2544.
    116. S. Zhang, M. Zhang, Y. Qiao, X. Gao, D. Ling, and S. Zhou, “Magnetostriction, Curie temperature and microstructure of Tb0.29(Dy1- _xPrx)0.71Fe1.97 oriented alloys”, Journal of Magnetism and Magnetic Materials, 322, 2010, pp. 2304-2307.
    117. F. Yang, W. Liu, X. K. Lv, B. Li, S. Q. Li, J. Li, and Z. D. Zhang, “Structural, magnetic properties and magnetostriction studies of Sm1-xNdxFe1.55 alloys”, Journal of Magnetism and Magnetic Materials, 322, 2010, pp. 2095-2098.
    118. Y. Zhou, B. W. Wang, S. Y. Li, Z. H. Wang, W. M. Huang, S. Y. Cao, and W. P. Huang, “The magnetostriction of Fe–(18-x) at% Ga–x at% Al (3≤x≤13.5) alloys”, Journal of Magnetism and Magnetic Materials, 322, 2010, pp. 2104-2107.
    119. T. Ma, C. S. Zhang, P. Zhang, and M. Yan, “Effect of magnetic annealing on magnetostrictive performance of a <110> oriented crystal Tb0.3Dy0.7Fe1.95”, Journal of Magnetism and Magnetic Materials, 322, 2010, pp. 1889-1893.
    120. C. B. Nunes, R. S. Turtelli, R. Grössinger, H. Müller, and H. Sassik, “Magnetostriction of melt-spun Fe85Ga15, Fe78Ni7Ga15 and Fe78Co7Ga15 stacked ribbon samples”, Journal of Magnetism and Magnetic Materials, 322, 2010, pp. 1605-1608.
    121. N. Mehmood, R. S. Turtelli, R. Grössinger, and M. Kriegisch, “Magnetostriction of polycrystalline Fe100-xAlx (x=15,19,25)”, Journal of Magnetism and Magnetic Materials, 322, 2010, pp. 1609-1612.
    122. A. Viana, J. L. Coulomb, L. L. Rouve, and G. Cauffet, “Numerical resolution of the modified Langevin equation using a differential expression: Application to the Jiles magnetostriction law of approach”, Journal of Magnetism and Magnetic Materials, 322, 2010, pp. 186-189.
    123. A. Javed, T. Szumiata, N. A. Morley, and M. R. J. Gibbs, “An investigation
    of the effect of structural order on magnetostriction and magnetic behavior of Fe–Ga alloy thin films”, Acta Materialia, 58, 2010, pp. 4003-4011.
    124. Y. Li, Y. Xin, L. Chai, Y. Mad, and H. Xu, “Microstructures and shape memory characteristics of dual-phase Co–Ni–Ga high-temperature shape memory alloys”, Acta Materialia, 58, 2010, pp. 3655-3663.
    125. J. Frenzel, E. P. George, A. Dlouhy, Ch. Somsen, M. F. X. Wagner, and G. Eggeler, “Influence of Ni on martensitic phase transformations in NiTi shape memory alloys”, Acta Materialia, 58, 2010, pp. 3444-3458.
    126. A. Shibata, T. Furuhara, and T. Maki, “Interphase boundary structure and accommodation mechanism of lenticular martensite in Fe–Ni alloys”, Acta Materialia, 58, 2010, pp. 3477-3492.
    127. B. S. Chun, S. D. Kim, Y. S. Kim, J. Y. Hwang, S. S. Kim, J. R. Rhee, T. W. Kim, J. P. Hong, M. H. Jung, and Y. K. Kim, “Effects of Co addition on microstructure and magnetic properties of ferromagnetic CoFeSiB alloy films”, Acta Materialia, 58, 2010, pp. 2836-2842.
    128. H. Rösner, N. Boucharat, K. A. Padmanabhan, J. Markmann, and G. Wilde, “Strain mapping in a deformation-twinned nanocrystalline Pd grain”, Acta Materialia, 58, 2010, pp. 2610-2620.
    129. K. Rolfs, M. Chmielus, R. C. Wimpory, A. Mecklenburg, P. Müllner, and R. Schneider, “Double twinning in Ni–Mn–Ga–Co”, Acta Materialia, 58, 2010, pp. 2646-2651.
    130. P. K. Kumar and D. C. Lagoudas, “Experimental and microstructural characterization of simultaneous creep, plasticity and phase transformation in Ti50Pd40Ni10 high-temperature shape memory alloy”, Acta Materialia, 58, 2010, pp. 1618-1628.
    131. V. Phatak, A. Gupta, V. R. Reddy, S. Chakravarty, H. Schmidt, and R. Rüffer, “Effect of addition of N on L10 transformation and atomic diffusion
    in FePt films”, Acta Materialia, 58, 2010, pp. 979-988.
    132. M. Foos, C. Frantz, and M. Gantois, “Phenomenes premartensitiques dans L’alliage Fe3Pt”, Scripta Metallurgica, 12, 1978, pp. 795-798.
    133. J. H. Li, X. X. Gao, J. Zhu, X. Q. Bao, T. Xia, and M. C. Zhang, “Ductility, texture and large magnetostriction of Fe–Ga-based sheets”, Scripta Materialia, 63, 2010, pp. 246-249.
    134. X. G. Zhao, C. C. Hsieh, J. H. Lai, X. J. Cheng, W. C. Chang, W. B. Cui, W. Liu, and Z. D. Zhang, “Effects of annealing on the magnetic entropy change and exchange bias behavior in melt-spun Ni–Mn–In ribbons”, Scripta Materialia, 63, 2010, pp. 250-253.
    135. J. H. Li, X. X. Gao, T. Xia, L. Cheng, X. Q. Bao, and J. Zhu, “Textured Fe–Ga magnetostrictive wires with large Wiedemann twist”, Scripta Materialia, 63, 2010, pp. 28-31.
    136. Y. Xin, Y. Li, and Zongde Liu, “Thermal stability of dual-phase Ni58Mn25Ga17 high-temperature shape memory alloy”, Scripta Materialia, 63, 2010, pp. 35-38.
    137. W. Ito, R. Y. Umetsu, R. Kainuma, T. Kakeshita, and K. Ishida, “Heat-induced and isothermal martensitic transformations from kinetically arrested parent phase in NiCoMnIn metamagnetic shape memory alloy”, Scripta Materialia, 63, 2010, pp. 73-76.
    138. H. Zuo, S. Ge, Z. Wang, Y. Xiao, and D. Yao, “Soft magnetic Fe–Co–Si/native oxide multilayer films on flexible substrates for high-frequency applications”, Scripta Materialia, 62, 2010, pp. 766-769.
    139. R. Chulist, C. G. Oertel, W. Skrotzki, and T. Lippmann, “Direction of modulation during twin boundary motion”, Scripta Materialia, 62, 2010, pp. 235-237.
    140. J. Wang and C. Jiang, “A single-phase wide-hysteresis shape memory alloy Ni50Mn25Ga17Cu8”, Scripta Materialia, 62, 2010, pp. 298-300.
    141. A. K. Nayak, N. V. R. Rao, K. G. Suresh, and A. K. Nigam, “Magneto-
    -thermal and magneto-transport behavior around the martensitic transition in Ni50−xCoxMn40Sb10 (x=9, 9.5) Heusler alloys”, Journal of Alloys and Compounds, 499, 2010, pp. 140-143.
    142. B. Z. Cui, J. Clark, J. W. Sui, K. Han, and S. A. Shaheen, “Textured anisotropic FePd/α-Fe nanocomposite foils by sheath repetitive cold-rolling”, Journal of Alloys and Compounds, 496, 2010, pp. 43-52.
    143. A. Kulinska, P. Wodniecki, and M. Uhrmacher, “Martensitic transformation in TiPd shape memory alloys studied by PAC method with 111Cd probes”, Journal of Alloys and Compounds, 494, 2010, pp. 17-21.
    144. T. D. Hatchard, A. E. George, S. P. Farrell, M. O. Steinitz, C. P. Adams, M. Cormier, and R. A. Dunlap, “Production and characterization of <100> textured magnetostrictive Fe–Ga rods”, Journal of Alloys and Compounds, 494, 2010, pp. 420-425.
    145. M. Zeng, S. Wing Or, Helen Lai, and Wa Chan, “Ultra high anisotropic damping in ferromagnetic shape memory Ni–Mn–Ga single crystal”, Journal of Alloys and Compounds, 493, 2010, pp. 565-568.
    146. B. R. Kanth, N. V. Ramarao, A. K. Panda, R. Gopalan, A. Mitra, and P. K. Mukhopadhyay, “Effect of annealing on the martensitic transformation of a CoNiAl ferromagnetic shape memory alloy”, Journal of Alloys and Compounds, 491, 2010, pp. 22-25.
    147. W. Zaki, “An approach to modeling tensile–compressive asymmetry for martensitic shape memory alloys”, Smart Mater. Struct., 19, 2010, 025009, pp. 1-7.
    148. S. J. Hong, W. R. Yul, and J. H. Youk, “Two-way shape memory behavior of shape memory polyurethanes with a bias load”, Smart Mater. Struct., 19, 2010, 035022, pp. 1-9.
    149. H. Sadiq, M. B. Wong, R. A. Mahaidi, and X. L. Zhao, “The effects of heat treatment on the recovery stresses of shape memory alloys”, Smart Mater.
    Struct., 19, 2010, 035021, pp. 1-7.
    150. N. N. Sarawate and M. J. Dapino, “Magnetomechanical characterization and unified energy model for the quasistatic behavior of ferromagnetic shape memory Ni–Mn–Ga”, Smart Mater. Struct., 19, 2010, 035001, pp. 1-20.
    151. L. Sun, W. M. Huang, and J. Y. Cheah, “The temperature memory effect and the influence of thermo-mechanical cycling in shape memory alloys”, Smart Mater. Struct., 19, 2010, 055005, pp. 1-8.
    152. O. E. Ozbulut, P. N. Roschke, P. Y. Lin, and C. H. Loh, “GA-based optimum design of a shape memory alloy device for seismic response mitigation”, Smart Mater. Struct., 19, 2010, 065004, pp. 1-14.

    下載圖示 校內:2012-08-26公開
    校外:2012-08-26公開
    QR CODE