簡易檢索 / 詳目顯示

研究生: 馮炳勳
Feng, Ping-Hsun
論文名稱: 台灣水泥業因應二氧化碳排放減量策略之研究
A Study on the CO2 Reduction Strategies in the Taiwan Cement Industry
指導教授: 陳家榮
Chen, Chia-Yon
學位類別: 博士
Doctor
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 199
中文關鍵詞: 二氧化碳減量系統動態學
外文關鍵詞: CO2 Reduction, System Dynamics
相關次數: 點閱:114下載:23
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本論文的目的在進行台灣水泥業因應CO2排放減量策略之研究。方法上,首先分析台灣水泥業整體產業的經營發展趨勢及CO2排放情形。然後,根據國外水泥業已提出的CO2減量措施,再考量國內水泥業的能源使用效率,初步擬定台灣水泥業可行的CO2排放減量因應策略。接著,以各水泥廠的生產及能源使用資料,建構水泥業的產品製造及CO2排放系統動態模擬模式。再以情境模擬的方式,模擬水泥產業環境變動及CO2減量策略執行後對台灣水泥業造成的影響。最後,根據上述研究結果,研擬台灣水泥業未來因應CO2排放減量的最適發展策略,供作各界參考。
      為探討水泥業的CO2減量因應策略,本研究在模式應用上將範疇界定在由工廠至產業的層級。模式建構方法類似「部分均衡模式」,屬於由下而上(bottom-up)的方式,以水泥工廠為基本單位,以此為基礎而向上發展至公司層級,再至產業層級。在目前國內外水泥業因應CO2減量的研究中,本研究是首次嘗試將廠商競爭的產量消長關係與CO2減量效果進行連結與模擬分析,其結果不僅有助於瞭解CO2減量政策對水泥產業內部的影響,亦可提供給目前以產業層級為基本單位的評估模式作為參考。
      本研究參考國內水泥業的能源使用情形、產業經營發展的狀況,以及國外水泥業的減量措施,提出台灣水泥業的CO2排放減量因應策略,主要有:(1)提升設備能源使用效率。(2)利用廢棄物作為輔助燃料。(3)降低熟料/水泥比例。
      由於能源使用效率水準會影響到CO2排放減量的潛力,為瞭解台灣水泥業的能源使用效率水準,本研究對台灣與日本水泥業進行跨國比較。結果顯示,兩地水泥業在比較資料上存有以下差異:(1)水泥產量中混合水泥的計算方式不同。(2)廢棄物列入燃料的計算比例不同。(3)燃料熱值換算標準不同。經本研究對相關資料進行適當修正後,1997年日本水泥業的單位產品燃料耗用量為833.2千卡/公斤水泥,單位產品電力耗用量為100.2度/公噸水泥(實際耗電量應該更高,因為部份廢棄物替代水泥原料有省電效果)。在相同的比較基準上,台灣水泥業的耗能量為843.5千卡/公斤水泥及111.3度/公噸水泥。國內在2001年台泥和平廠投產後,整體水泥業的能源使用效率已較1997年提升。因此,目前台灣與日本水泥業的設備能源使用效率之差距不大。
      根據上述比較,在提升設備能源使用效率的策略方面,由於我國水泥需求高峰已過,參考日本水泥業的發展經驗,國內業者面對水泥需求不振,投資意願將會大幅下降,加上主要省能技術來源的日本,對於新式製程的研發已經近乎停滯,未來數年內國內水泥業要再依靠投資更新設備來大幅提昇能源使用效率,其可能性將會相當有限。
      在利用廢棄物作為輔助燃料的策略方面,2000年國內水泥業廢棄物燃料替代化石燃料的比例不到1%,相較於歐洲及日本水泥業平均10%以上的水準,國內仍有相當大的應用空間。而且擴大水泥業的廢棄物燃燒量,亦有助於解決國內日益增加的廢棄物量。因此,未來政府應將此策略列為短中期的優先項目。
      在降低熟料/水泥比例的策略方面,目前國內水泥業除高爐石及飛灰外,其他廢棄物使用量尚很有限。但長期而言,若能由政府及業者共同努力開發新的低碳水泥產品來降低熟料/水泥比例,將可發揮相當大的CO2減量效果。
      根據本研究模式的模擬結果顯示,在沒有執行CO2減量策略及無遭受經濟衝擊的情境下,即使熟料產量維持在2000年的水準,至2020年水泥業的CO2總排放量仍可下降2.7%。此結果是因為廠商經過長期競爭後,部分的熟料產量由小型廠商轉移至能源使用效率較佳的大型廠商,因此使得整體產業的CO2排放量下降。
      在水泥業遭受經濟衝擊的模擬情境下,國內小型廠商因為能源使用成本較高,以及營運資金普遍不如大型廠商充裕,因此經濟衝擊造成小型廠商加快退出市場。尤其是當整體產業的產量成長時,在遭受經濟衝擊後,所有的產量增加量幾乎全部由效率較佳的大型廠商吸收,因此CO2減量效果明顯增加。
      在執行CO2減量策略的模擬情境方面,當產量維持2000年的水準下,執行設備能源效率改善、廢棄物替代化石燃料比例增加,以及水泥業者進行生產策略調整等減量策略,將使CO2總排放量減少8.2%,比沒有執行減量策略的情境只高出5.5%。但若假設熟料/水泥比例可以降低30%,則CO2總排放量就不只減少8.2%,而是是擴大到36.3%,其減量效果非常顯著。這樣的結果凸顯「降低熟料/水泥比例」的策略在長期減量規劃上的重要性。
      整體而言,政府對於國內水泥業的CO2排放減量規劃,在政策推動方向上應基於「長期的創造」,而非「短期的限制」。「長期的創造」是長期持續的透過對民眾的教育宣導及資源回收利用機制的強化,增加水泥業者低碳原料的投入量,然後鼓勵業者研發,以創造出低碳的產品。「短期的限制」則是限制水泥業者在幾年內必須達到某一特定的減量目標,這樣的政策看似短期就能奏效,但若政策中沒有促進水泥從原料投入、生產製造到產品應用的低碳化流程,在政策短期奏效後,後續的減量空間將會相當有限。

     This research aims to establish a system dynamic model to evaluate the impact of the CO2 emission reduction strategies for the cement industry in Taiwan, and to choose workable strategies to achieve the reduction target. The major tasks of this research include: (1) to analyze the market development and the CO2 emission trend, (2) to preliminary set the CO2 reduction strategies, (3) to use a system dynamics model to construct the feedback effect between CO2 reduction strategies and cement industry development, (4) to simulate the industry impact of the reduction strategies in different scenarios, and to provide the suggests to the policy-makers.

     This model is a bottom-up model. It bases on cement plant level, and then extends to company and industry level. In literature for the subsequence research, this model originally simulates the feedback effect between the market competition and the CO2 reduction inside the cement industry. The results of this research provide useful information to other models based on industry level.

     Referring to abroad CO2 reduction actions and domestic energy consumption of cement industry, the three measures of CO2 reductions are as follows:

    1. Improvement of energy efficiency

    Most cement plants in Taiwan have upgraded their equipment. Investing in new production lines is the main way to improve energy efficiency of equipment. As the average efficiency has been near the current technological ceiling, the potential for improvement is limited and the current 4.8 Mt of cement overcapacity will significantly dampen inclination to invest. Even if the government implemented climate change policies such as ETS or taxes in the future, such implementation would not stimulate the establishment of new production line because the investment costs significantly exceed the emission trading cost. However, these policies may gradually reduce the market share of the cement plants with lower energy efficiency.

    2. Use of waste as an alternative fuel

    The main cement companies in Taiwan have been investigating these techniques since the early 1990s. However, alternative fuels currently only substitute for 5% of virgin fossil fuels because of the opposition of local residents. According to the literature, the substation rate is expected to exceed 20% in the future, depending upon the regulatory environment. Clearly, use of waste as an alternative fuel has significant CO2 reduction potential if the opposition of local residents can be reconciled. The government plays an important role in arbitrating the dispute.

    3. Reduction of clinker/cement ratio

    Though this measure is commonly used for cutting specific CO2 emissions in countries, challenges exist for increasing available industrial by-products in Taiwan. For example, demand for blast furnace slag has grown markedly during the last decade, but about 40% of blast furnace slag was imported in 2003. In a future carbon-constrained world, the availability of imported slag might decline. Additionally, supply of fly ash is forecast to grow through 2015, but slower than the historical rate due to plans to cut down the new coal-based power generation. Though the challenges mentioned above is expected to find more admixtures to substitute cement, further opportunities may be created for the cement industry to reduce CO2 emissions. In a carbon-constrained world, society will tend to consume low carbon products. Such a trend implies that the structure of the building material industry will change. The advantage of using industrial by-products and wastes provides the cement industry with increased opportunities to provide low carbon-intense solutions compared to other building material industries.

     According to the simulation results, without CO2 reduction strategies implemented and economic impacts, the cement industry would still achieve 2.9% CO2 emission reductions at the same cement production level of 2000. After long term competition, part of the clinker production will transfer from small firms to large firms of better energy efficiency, thus the change makes the CO2 emissions of the industry fall.

     In the scenario of economic impacts, with higher energy cost and less capital, economic impacts would stimulate the small firms to retreat from the market. After economic impacts, especially when the production of the industry is growing, the large firms will take the increasing part largely, therefore the CO2 emissions will decrease greatly.

     In the scenario of CO2 reduction strategies implemented, reduction strategies such as improvement of energy efficiency, using of waste as an alternative fuel and adjustment in productive strategies will make 8.2% decrease of CO2 emissions, merely 5.5% more than the situation without CO2 reduction strategies. However, if we can reduce the clinker/cement ratio into 30%, we can achieve a 36.3% decrease of CO2 emissions. The analysis shows that reduction of clinker/cement ratio is important in long term strategies.

     Overall, the CO2 reduction policies should focus on shifting cement production to lower carbon intensive products rather than constraining cement production in the long term. To achieve this goal, this research proposes that the government should be involved in the input of cement production, while industry should focus on output. Under such a proposal the government should manage waste recycling mechanisms more effectively to increase the use of lower carbon intensive materials in cement manufacture, while the industry should develop lower carbon intensive products.

    中文摘要 I 英文摘要 V 誌謝 IX 目錄 XI 圖表目錄 XIII 第一章 緒論 1 第一節 研究背景 1 第二節 研究目的與內容 4 第三節 文獻回顧與探討 5 第四節 研究方法與架構 11 第二章 水泥業生產概況 15 第一節 水泥概論 15 第二節 水泥生產製程概況 19 第三節 產業供需概況 24 第三章 水泥業二氧化碳排放情形及減量因應策略 29 第一節 水泥業二氧化碳排放情形 29 第二節 國外水泥業二氧化碳減量措施 36 第三節 國內水泥業過去之節能措施 42 第四節 台日水泥業能源使用效率之比較分析 55 第五節 國內水泥業二氧化碳減量因應策略 69 第四章 台灣水泥業二氧化碳排放模式之建立 79 第一節 系統動態學 79 第二節 資料來源處理 83 第三節 模式變數與連結方程式說明 90 第四節 模式有效性分析 124 第五章 情境模擬與結果分析 135 第一節 情境假設 135 第二節 模擬結果分析 143 第六章 結論與建議 154 參考文獻 162 附錄 系統動態模式電腦程式 166

    1.中華人民共和國國家統計局(2005),中國統計年鑑,北京。
    2.日本資源能源廳(1998),省能源便覽,東京。
    3.台灣水泥工業同業公會(1989-2005),台灣區水泥工業概況,台北。
    4.亞洲水泥股份有限公司(1993-2004),亞洲水泥股份有限公司年報,台北。
    5.林素貞(1998),「我國水泥業二氧化碳排放減量策略探討」,環保資訊,第25期,頁17-24。
    6.孫福龍(1992),環境與政策對於台灣水泥業未來發展的影響-系統動態模式的建構與模擬,碩士論文,國立交通大學管理科學研究所。
    7.陳家榮、馮炳勳(1999),水泥業CO2減量排放規劃,經濟部工業局專案計畫報告。
    8.陳家榮、馮炳勳(2000),水泥業因應CO2排放減量發展策略之成本效益分析,經濟部工業局專案計畫報告。
    9.陳家榮、馮炳勳(2001),水泥業二氧化碳排放與減量研究,經濟部工業局專案計畫報告。
    10.曾志雄(1998),「我國水泥工業因應氣候變化綱要公約之二氧化碳排放減量策略與措施」,工業簡訊,第28卷,第4期,頁118-138。
    11.馮炳勳(1996),水泥廠生產製程動態模擬分析,碩士論文,國立成功大學資源工程研究所。
    12.馮炳勳、陳家榮(2003),「台灣水泥業因應二氧化碳排放減量策略之研究」,福建環境,第20卷,第1期,頁16-19。
    13.黃孝信(2005),「我國工業溫室氣體排放量現況與因應措施」,工程,第78卷,第4期,頁15-38。
    14.楊任徵、蔡政修(2000),我國能源有關溫室氣體排放統計,工業技術研究院能源與資源研究所。
    15.楊維修(1996),水泥業溫室效應氣體減量潛力分析與評估,碩士論文,國立成功大學環境工程研究所。
    16.經濟部能源局(2004),台灣能源平衡表,台北。
    17.謝長宏(1980),系統動態學-理論、方法與應用-,中興管理顧問公司,台北。
    18.蘇茂豐、謝禎檣、陳仁亮、蘇進興(2005),「我國產業溫室氣體盤查工作之建置—以水泥業為例」,環境工程會刊,第16卷,第1期,頁24-29。
    19.Barlas, Y. (1996), “Formal Aspects of Model Validity and Validation in System Dynamics”, System Dynamics Review, Vol. 12, No. 3, pp. 183-210.
    20.Bridges, M. and Shaw, D. (2004), “Impart of Emission Trading”, World Cement, Vol. 35, No. 4, pp. 19-24.
    21.Cahn, D., et al. (1997), “Atmospheric CO2 and US Cement Industry”, World Cement, Vol. 28, No. 8, pp. 64-68.
    22.CEMBUREAU (1999), Best Available Techniques for the Cement Industry, http://www.cembureau.be/.
    23.De Beer, J. and Phylipsen, D. (2001), Economic Evaluation of Sectoral Emission Reduction Objectives for Climate Change, DG environment, European Commission, http://europa.eu.int/comm/environment/enveco.
    24.Grubb, M. and Wilde, J. (2004), The European Emissions Trading Scheme: Implications for Industrial Competitiveness, The Carbon Trust, UK.
    25.Hashimoto, S. I. (2002), “Evolution of A Mill”, World Cement, Vol. 33, No. 12, pp. 31-36.
    26.Hendriks, C. A., et al. (1999), Emission Reduction of Greenhouse Gases from the Cement Industry, IEA Greenhouse Gas R&D Program, Cheltenham, UK.
    27.Japan Cement Association (1997-2001), Cement in Japan, Tokyo.
    28.Japan Cement Association,http://www.jcassoc.or.jp.
    29.Kumar, R. and Vrat, P. (1989), “Using Computer Models in Corporate Planning”, Long Range Planning, Vol. 22, No. 2, pp. 114-120.
    30.Nisbet, M. (1999), “A Source of Competitive Advantage?”, World Cement, Vol. 30, No. 3, pp. 9-14.
    31.OECD/IEA (2000), Emission Baselines – Estimating the Unknown, Paris.
    32.Phylipsen, G. J. M., Blok, K. and Worrell, E. (1998), Handbook on International Comparisons of Energy Efficiency in the Manufacturing Industry, Dept. of Science, Technology and Society, Utrecht University, Utrecht.
    33.Reinaud, J. (2005), Industrial Competitiveness under the European Union Emissions Trading Scheme, IEA Information paper, Paris.
    34.Scheubel, B. (1997), “The Development of Cement Technology and Its Influence on Refractory Linings”, World Cement, Vol. 28, No. 9, pp. 55-62.
    35.Sterman, J. D. (2002), “All Model Are Wrong: Reflections on Becoming a Systems Scientist”, System Dynamics Review, Vol. 18, No. 4, pp. 501-531.
    36.Sutherland, R. J. (1998), “The Impact of Potential Climate Change Commitments on Six Industries in the United States”, Energy Policy, Vol. 26, No. 10, pp. 765-776.
    37.Worrell, E., et al. (2000), “Potentials for Energy Efficiency Improvement in the US Cement Industry”, Energy, Vol. 25, pp. 1189-1214.

    下載圖示 校內:立即公開
    校外:2006-02-09公開
    QR CODE