簡易檢索 / 詳目顯示

研究生: 鄞宗賢
Yin, Zong-Xian
論文名稱: 模糊模式應用於智慧型聚類演算法
Fuzzy Modeling for Intelligent Clustering Algorithms
指導教授: 蔣榮先
Chiang, Jung-Hsien
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 128
中文關鍵詞: 離散資料模糊覆蓋聚類數量表現趨勢基因表現時間序列潛藏變數小樣本群模糊歸屬度模糊理論聚類
外文關鍵詞: time series, cluster analysis, pattern analysis, data mining, bioinformatics, trend, gene expression, number of clusters, fuzzy cover, categorical data, minor prototype, fuzzy, clustering, latent variable
相關次數: 點閱:158下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文提出五組新的聚類演算法,第一個方法是適應性C群集(Adaptive C-Populations, ACP)聚類法。這個方法能夠正確的從未標注類別的資料集中偵測出樣本群聚的地方,以及具關鍵性的小樣本群.第二個方法稱為可能性潛藏變數(Possibilitic Latent Variable, PLV)聚類法。這個方法利用模糊潛藏變數來取代二元潛藏變數,並不採用高斯機率密度函數的假設,而假設一個可能性函數來度量一個樣本和群組之間的關係。這個新的方法可以適應許多不同的分佈,並不會限制在只能處理集中型的高斯分佈。第三個所提出的方法被命名為累加式模糊潛藏變數(Aggregative Fuzzy Latent Variable, AFLV)聚類法。這個方法是使用可能性潛藏變數聚類法相同的假設,但是設計來分析順序型資料。它首先根據各屬性上每一個參考值的出現頻率,估算出不同分佈的機率密度函數;然後再根據不同維度上分佈的相依關係,計算出每一個樣本的最後模糊歸屬度。第四個方法是模糊覆蓋聚類(Fuzzy Cover Clustering, FCC)法。這個方法利用模糊覆蓋來尋找資料集中的支持點。因為這些支持點總會落在資料密集的區域中,它們可以被連接起來構成類別的骨幹。而最終的類別數量可以反應出實際的資料群集狀況。最後一個方法是用來分析隨時間變化的基因表現資料集,找出共同表現樣板,這個方法被稱為變異量為基準的共同表現樣板偵測(Variation-based Co-expression Detection, VCD)法。這個方法一方面延續先前的模糊覆蓋理論,另外再提出一套可以量測基因表現趨勢的度量法.這個方法也不需要事先指定聚類數量,它可以根據基因表現的相似程度,自動找出共同表現的樣板個數。本論文根據各演算法的特性,設計不同的實驗資料集,驗證所提出方法的效能。

    The dissertation presents five novel clustering algorithms. The first one is the Adaptive C-Populations (ACP) clustering algorithm. The algorithm is capable of identifying dense regions, as well as influential minor prototypes, in an unlabeled dataset. The second is referred to as the Possibilitic Latent Variable (PLV) clustering algorithm. The algorithm replaces the binary latent variable with the fuzzy latent variable and rejects the use of the Gaussain probability density function in favor of a possibilitic function to measure the cost for associating point with clusters. The algorithm is suitable for many different kinds of populations, not solely for compact Gaussian distribution. The third is entitled as the Aggregative Fuzzy Latent Variable (AFLV) clustering algorithm. It extends the method of the PLV algorithm, and is designed to analyze the ordinal data. The algorithm evaluates membership degrees of objects to mixtures in each attribute according to accumulative occurrences of reference values, and aggregates the degrees of dependent mixtures from different attributes to construct final clusters. The fourth is the Fuzzy Cover Clustering (FCC) algorithm. The fuzzy cover in the algorithm is used to identify the holding points in the dataset. Since these holding points are always located in dense regions, they can service as the backbones of final clusters. The results evolve naturally to reflect actual groups in the data. The last algorithm, designated as the Variation-based Co-expression Detection (VCD) algorithm, is proposed to detect co-expression patterns from time-vary gene expression data. The algorithm adopts the cover and features a new measurement criterion for calculating the degree of change of the expressions between adjacent time points and evaluating their trend similarities. It is also unnecessary to determine the number of clusters in advance since the algorithm automatically detects those genes whose profiles are grouped together. The performances of the proposed algorithms are carefully verified by conducting clustering tasks on the contents of datasets with different characteristics.

    中文摘要 I ABSTRACT II ACKNOWLEDGE III TABLE OF CONTENTS IV LIST OF FIGURES VII LIST OF TABLES IX CHAPTER 1. INTRODUCTION 1 1.1 ADAPTIVE DEVIATION WITH DENSE REGIONS 2 1.2 DISCRIMINATE OVERLAPPED CLUSTERS 3 1.3 SPECIFY NUMBER OF CLUSTERS EVOLVED TO REFLECT GROUPS IN THE DATASET 4 1.4 ORGANIZATION OF DISSERTATION 5 CHAPTER 2. AN OVERVIEW OF CLUSTERING METHODS 7 2.1 CATEGORIES OF CLUSTERING ALGORITHMS 7 2.2 RELATED WORK 8 2.2.1 Conditional Constrains 8 2.2.2 Category Data Clustering 9 2.2.3 Transitive Closure 10 2.2.4 Biological Expressions Analyzing 10 CHAPTER 3. CLUSTERING WITH ADAPTIVE DEVIATION FACTOR 12 3.1 MINOR PROTOTYPE 12 3.2 ADAPTIVE C-POPULATIONS (ACP) CLUSTERING ALGORITHM 14 3.3 PSEUDO CODE OF ACP ALGORITHM 20 3.4 ADAPTIVE PROPERTIES OF ACP ALGORITHM 20 3.5 EXPERIMENTAL RESULTS OF THE ACP ALGORITHM 24 3.5.1 Synthetic Unequal Populations Datasets 25 3.5.2 Detecting Allographs from Handwritten Digits Datasets 27 3.6 REMARK 36 CHAPTER 4. CLUSTERING WITH POSSIBILITIC LATENT VARIABLE 37 4.1 LATENT VARIABLES MODELS 37 4.2 POSSIBILITIC LATENT VARIABLES (PLV) CLUSTERING ALGORITHM 39 4.3 PROCEDURE OF THE PLV ALGORITHM 42 4.4 EXPERIMENTAL RESULTS OF THE PLV ALGORITHM 42 4.4.1 Synthetic dataset with multiple Gaussian mixtures 43 4.4.2 Medical Dataset Analysis on Cancer Diagnosis Records 47 4.4.3 Prediction of Protein Localization Sites 52 4.5 AGGREGATIVE FUZZY LATENT VARIABLE (AFLV) ALGORITHM 54 4.5.1 Ordinal Categories 55 4.5.2 Description of AFLV Algorithm 57 4.5.3 Evaluate Fuzzy Membership Degree in Each Attribute 58 4.5.4 Mixtures Aggregation base on Fuzzy Entropy 62 4.5.5 Pseudo Code of AFLV Algorithm 64 4.6 EXPERIMENTAL RESULTS OF THE AFLV ALGORITHM 64 4.6.1 Synthetic dataset with multiple attributes 66 4.6.2 Breast cancer databases from the University of Wisconsin 66 4.6.3 United States Congressional Voting Records 68 4.7 REMARK 69 CHAPTER 5. CLUSTERING WITH COVERS 71 5.1 FUZZY COVERS 71 5.2 FUZZY COVER CLUSTERING (FCC) ALGORITHM 74 5.2.1 Construct Fuzzy Covers for Samples 75 5.2.2 Find Minimal Number of Covers to Enclose the Samples 77 5.2.3 Splicing Covers into a Cluster 79 5.2.4 Goodness of 81 5.2.5 Membership degree computation 82 5.3 EXPERIMENTAL RESULTS OF THE FCC ALGORITHM 82 5.3.1 Gaussian Distributed Data 82 5.3.2 Non-Spherical Problem 83 5.3.3 Breast Cancer Databases from the University of Wisconsin 84 5.3.4 Allograph Analysis in Handwritten Digits 85 5.4 VARIATION BASED CO-EXPRESSION DETECTION (VCD) ALGORITHM 89 5.4.1 Gene Variation Vectors 90 5.4.2 Foundation of VCD Algorithm 95 5.4.3 Translate Time-series Expressions into Vectors, and Construct a Cover for each Vector (TE2V Stage) 96 5.4.4 Find Minimal Number of Covers to Enclose the Vectors (FMC Stage) 97 5.4.5 Splicing Covers into a Co-expression Pattern 100 5.5 EXPERIMENTAL RESULTS OF THE VCD ALGORITHM 101 5.5.1 Patterns recognition capability of proposed algorithm 102 5.5.2 Comparison with other unsupervised algorithms 103 5.5.3 Investigation of biological annotations for recognized patterns 104 5.6 REMARK 114 CHAPTER 6. FURTHER WORK 115 REFERENCES 117 VITA 127

    [1]. J. Bezdek, Pattern Recognition with Fuzzy Objective Function Algorithms, Plenum, 1981.
    [2]. R. N. Dave, and R. Krishnapuram, “Robust Clustering Methods: A Unified View”, IEEE Trans. on Fuzzy Systems, Vol.5, NO.2, pp.270-293, 1997.
    [3]. K. E. Rose, Gurewitz, and G. C. Foz, “Constrained Clustering as an Optimization Method,” IEEE Trans. Pattern Analysis and Machine Intelligence, Vol.15, NO.8, pp.785-794, 1993.
    [4]. J.–H. Chiang, S. Yue, and Z.–X. Yin, “A New Fuzzy Cover Approach to Clustering,” IEEE Trans. On Fuzzy Systems, Vol. 12, NO. 2, pp. 199-208, 2004.
    [5]. S. Chen, and D. Zhang, “Robust Image Segmentation Using FCM with Spatial Constraints based on New Kernel-Induced Distance Measure,” IEEE Trans. On Systems, Man, and Cybernetics – Part B: Cybernetics, Vol. 34, NO. 4, pp. 1907-1916, 2004.
    [6]. H. Frigui, and O. Nasraoui, “Unsupervised learning of prototypes and attribute weights,” Pattern Recognition, Vol. 37, NO. 3, pp. 567-581, 2004.
    [7]. A. Robles-Kelly, and E. R. Hancock, “A probabilistic spectral framework for grouping and segmentation,” Pattern Recognition, Vol. 37, NO. 7, 1387-1405, 2004.
    [8]. M. R. Berthold, B. Wiswedel, and D. E. Patterson, “Interactive exploration of fuzzy clusters using Neighborgrams,” Fuzzy Sets and Systems, Vol. 149, NO. 1, pp. 21-37, 2005.
    [9]. C. S. Moller-Levet, F. Klawonn, K.-H. Cho, H. Yin, and O. Wolkenhauer, “Clustering of unevenly sampled gene expression time-series data,” Fuzzy Sets and Systems, Vol. 152, NO. 1, pp. 49-66, 2005.
    [10]. O. S. Pianykh, “Analytically tractable case of Fuzzy C-Means clustering,” Pattern Recognition, Vol. 39, NO. 1, pp. 35-46, 2006.
    [11]. M. Laszlo, and S. Mukherjee, “A Genetic Algorithm Using Hyper-Quadtrees for Low-Dimensional K-means Clustering,” IEEE Trans. On Pattern Analysis and Machine Intelligence, Vol. 28, NO. 4, pp. 533-543, 2006.
    [12]. D. Jiang, C. Tang, and A. Zhang, “Cluster Analysis for Gene Expression Data: A Survey,” IEEE Trans. Knowledge and Data Engineering, Vol. 16, NO. 11, pp. 1370-1386, 2004.
    [13]. J. Macqueen, “Some Methods for Classification and Analysis of Multivariate Observations,” Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability, Vol.1, pp.281-297, 1967.
    [14]. I. S. Dhillon, Y. Guan, and J. Kogan, “Iterative Clustering of High Dimensional Text Data Augmented by Local Search,” Proceedings of 2nd IEEE Intl. Conf. on Data Mining, pp. 131, 2002.
    [15]. P. Tamayo, D. Slonim, J. Mesirov, Q. Zhu, S. Kitareewan, E. Dmitrovsky, E. S. Lander, and T. Golub, “Interpreting patterns of gene expression with self organizing maps,” Proc. of the National Academy of Sciences of the United States of America, Vol. 96, NO. 6, pp. 2907-2912, 1999.
    [16]. M. B. Eisen, P. T. Spellman, P. O. Brown, and D. Botstein, “Cluster Analysis and Display of Genome-Wide Expression Patterns,” Proceedings of the National Academy of Sciences of the United States of America, Vol.95, NO.25, pp.14863-14868, 1998.
    [17]. D. Jiang, J. Pei, and A. Zhang, “DHC: A Density-based Hierarchical Clustering Method for Time Series Gene Expression Data,” Proceedings of the 3rd IEEE Symposium on BioInformatics and BioEngineering, pp.393, 2003.
    [18]. R. Shamir, and R. Sharan, “Click: A Clustering Algorithm for Gene Expression Analysis,” Proc. of 8th Intl. Conf. Intelligent Systems for Molecular Biology, pp.6-7, 2000
    [19]. A. Ben-Dor, R. Shamir, and Z. Yakhini, “Clustering Gene Expression Patterns,” Journal of Computational Biology, Vol.6, NO.3/4, pp.281-297, 1999.
    [20]. K. Y. Yeung, C. Fraley, A. Murua, A. E. Raftery, and W. L. Ruzzo, “Model-based clustering and data transformations for gene expression data,” Bioinformatics, Vol.17, NO. 10, pp.977-987, 2001.
    [21]. A. V. Lukashin, and R. Fuchs, “Analysis of temporal gene expression profiles: clustering by simulated annealing and determining the optimal number of clusters,” Bioinformatics, Vol. 17, NO. 5, pp. 405-414, 2001.
    [22]. D. Ghosh, and A. M. Chinnaiyan, “Mixture modeling of gene expression data from microarray experiments,” Bioinformatics, Vol.18, NO.2, pp.275-286, 2002.
    [23]. G. J. McLachlan, R. W. Bean, and D. Peel, “A mixture model-based approach to the clustering of microarray expression data,” Bioinformatics, Vol.18, NO.3, pp.413-422, 2002.
    [24]. J. C. Bezdek, and S. K. Pal, FUZZY MODELS FOR PATTERN RECOGNITION, IEEE Press, Piscataway, N.J., 1992.
    [25]. H. Imai, A. Tanaka, and M. Miyakoshi, “A Method of Identifying Influential Data in Fuzzy Clustering”, IEEE Trans. on Fuzzy Systems, Vol. 6, NO. 1, 90-101, 1998
    [26]. L. Cinque, G. Foresti, and L. Lombardi, “A clustering fuzzy approach for image segmentation,” Pattern Recognition, Vol. 37, NO. 9, pp. 1797-1807, 2004.
    [27]. A. P. Gasch, and M. B. Eisen, “Exploring the conditional co-regulation of yeast gene expression through fuzzy k-means clustering,” Genome Biology, Vol.3, NO.11, pp.1-22, 2002.
    [28]. W. Pedrycz, “Conditional Fuzzy C-Means”, Pattern Recognition Letters, Vol. 17, pp. 625-631, 1996.
    [29]. E. H. Sbai, “Cluster analysis by adaptive rank-order filters,” Pattern Recognition, Vol. 34, NO. 10, pp. 2015-2027. 2001.
    [30]. N. Belacel, P. Hansen, and N. Mladenovic, “Fuzzy J-Means: a new heuristic for fuzzy clustering,” Pattern Recognition, Vol. 35, NO. 10, pp. 2193-2200, 2002.
    [31]. J. M. Leski, “Generalized Weighted Conditional Fuzzy Clustering,” IEEE Trans. On Fuzzy Systems, Vol. 11, NO. 6, pp. 709-715, 2003.
    [32]. R. Nock, and F. Nielsen, “On Weighting Clustering,” IEEE Trans. On Pattern Analysis and Machine Intelligence, Vol. 28, NO. 8, pp. 1223-1235, 2006.
    [33]. J. C. Dunn, “A graph theoretic analysis for pattern classification via Tamura’s fuzzy relation.” IEEE Trans. on Systems, Man and Cybernetics, Vol. 4, NO. 3, 310-313, 1974.
    [34]. G. J. Klir, and Y. Bo, FUZZY SETS AND FUZZY LOGIC - THEORY AND APPLICATIONS, Prentice Hall, 1995.
    [35]. L. Gonzalez, and A. Marin, “Level-based extension of relations”, Fuzzy Sets and Systems, Vol. 84, pp 95-96, 1996.
    [36]. G. Fu, “Optimization methods for fuzzy clustering”, Fuzzy Sets and Systems, Vol. 98, pp 301-309, 1998.
    [37]. U. Manber, INTRODUCTION TO ALGORITHMS – A CREATIVE APPROACH, Addison Wesley, pp208-212, 1989.
    [38]. D. Jiang, J. Pei, and A. Zhang, “An Interactive Approach to Mining Gene Expression Data,” IEEE Trans. On Knowledge and Data Engineering, Vol.17, NO.10, 2005.
    [39]. V. S. Tseng, and C.-P. Kao, “Efficiently Mining Gene Expression Data via a Novel Parameterless Clustering Method,” IEEE/ACM Trans. On Computational Biology and Bioinformatics, Vol.2, NO.4, pp.355-365, 2005.
    [40]. A. Schliep, I. G. Costa, C. Steinhoff, and A. Schonhuth, “Analyzing Gene Expression Time-Courses,” IEEE/ACM Trans. on Computational and Bioinformatics, Vol.2, NO.3, pp. 179-193, 2005.
    [41]. I. S. Dhillon, E. Marcotte, and R. Usman, “Diametrical Clustering for identifying anti-correlated gene clusters,” Bioinformatics, Vol. 19, NO. 13, pp. 1612-1619, 2003.
    [42]. M. Parizeau, and Plamondon, R., “A fuzzy-syntactic approach to allograph modeling for cursive script recognition,” IEEE Trans. Pattern Analysis Machine Intelligence, Vol. 17, NO. 7, pp. 702-712, 1995
    [43]. J.-H. Chiang, and P. Gader, “Hybrid Fuzzy-Neural Systems in Handwritten Word Recognition,” IEEE Trans. On Fuzzy Systems, Vol. 5, NO. 4, pp. 497-510, 1997.
    [44]. R. Krishnapuram, and J. M. Keller, “A possibilistic Approach to Clustering,” IEEE Trans. On Fuzzy Systems, Vol. 1, NO. 2, pp 98-110, 1993.
    [45]. A. Keller, “Fuzzy Clustering with Outliers,” Fuzzy Information Processing Society, 2000. NAFIPS. 19th International Conference of the North American, pp. 143-147, 2000.
    [46]. S. Haykin, Neural Networks: A Comprehensive Foundation, Prentice Hall, 1999.
    [47]. A. V. Oppenheim, and R. W. Schafer, Discrete-Time Signal Processing, Prentice Hall Inc., N. J., 1989.
    [48]. X. L. Xie, and G. Beni, “A validity measure for fuzzy clustering,” IEEE Trans. Pattern Analysis and Machine Intelligence, Vol. 13, NO. 8, pp. 841-846, 1991.
    [49]. A. M. Bensaid, L. O. Hall, J. C. Bezdek, and L. P. Clarke, M. L. Silbiger, J. A. Arrington, and R. F. Murtagh “Validity-Guided (Re)Clustering with Applications to Image Segmentation”, IEEE Trans. Fuzzy Systems, Vol. 4, NO. 2, pp. 112-123, 1996.
    [50]. J.-S. Park, and S.–W. Lee, “Adaptive Nonlinear Shape Matching for Unconstrained Handwritten Character Recognition”, Pattern Recognition, Vol. 28, NO. 8, pp. 1223-1235, 1995.
    [51]. A. K. Jain, and D. Zongker, “Representation and recognition of handwritten digits using deformable templates,” IEEE Trans. Pattern Analysis and Machine Intelligence, Vol. 19, NO. 12, pp. 1386-1390, 1997.
    [52]. J. J. Hull, “A Database for Handwritten Text Recognition Research”, IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 16, pp. 550-554, 1994.
    [53]. P. Gader, M. Mohamed, and J.-H. Chiang, "Handwritten Word Recognition with Character and Inter-Character Neural Networks", IEEE Trans. on Systems, Man, and Cybernetics, Vol. 27, NO. 1, pp. 158-164, 1997.
    [54]. G. H. Demiroz, A. Govenir, and N. Ilter, “Learning Differential Diagnosis of Eryhemato-Squamous Diseases using Voting Feature Intervals,” Artificial Intelligence in Medicine, Vol. 13, pp. 147-165, 1998.
    [55]. B. S. Everitt, AN INTRODUCTION TO LATENT VARIABLE MODELS. London: Chapman and Hall, 1984.
    [56]. Z. Q. Hong, and J.Y. Yang, "Optimal Discriminant Plane for a Small Number of Samples and Design Method of Classifier on the Plane," Pattern Recognition, Vol. 24, NO. 4, pp. 317-324, 1991.
    [57]. O. L. Mangasarian, R. Setiono, and W.H. Wolberg, “Pattern recognition via linear programming: Theory and application to medical diagnosis,” LARGE-SCALE NUMERICAL OPTIMIZATION, pp. 22-30, 1990.
    [58]. O. L. Mangasarian, and W. H. Wolberg, “Cancer diagnosis via linear programming,” SIAM News, Vol. 23, no. 5, pp. 1-18, 1990.
    [59]. W. H. Wolberg, and O.L. Mangasarian, “Multisurface method of pattern separation for medical diagnosis applied to breast cytology”, Proceedings of the National Academy of Sciences, Vol. 87, pp. 9193-9196, 1990.
    [60]. J. Zhang, “Selecting typical instances in instance-based learning,” Proceedings of the Ninth International Machine Learning Conference, pp. 470-479, 1992.
    [61]. P. Horton, and K. Nakai, “A Probablistic Classification System for Predicting the Cellular Localization Sites of Proteins,” Intelligent Systems in Molecular Biology, pp. 109-115, 1996.
    [62]. P. Cheesman, and J. Stutz, “Bayesian Classification (AUTOCLASS): Theory and Results,” Advances in Knowledge Discovery and Data Mining, 1995.
    [63]. H. Ralambondrainy, “A conceptual version of the k-means algorithm,” Pattern Recognition Lett.,Vol. 16, pp. 1147-1157, 1995.
    [64]. Z. Huang, “Extensions to the k-means Algorithm for Clustering Large Data Set with Categorical Values,” Data Mining Knowledge Discovery, Vol. 2, NO. 3, 1998.
    [65]. Z. Huang, and N. K. Michael, “A Fuzzy k-Modes Algorithm for Clustering Categorical Data,” IEEE Trans. On Fuzzy System, Vol. 7, NO. 4, pp. 446-452, 1999.
    [66]. V. Ganti, J. Gehrke, and R. Ramakrishnan, “CACTUS-Clustering Categorical Data Using Summaries,” Proc. Of 5th ACM SIGKDD intl. Conf. On Knowledge Discovery and Data Mining, pp. 73-83, 1999.
    [67]. S. Guha, R. Rastogi, and K. Shim, “ROCK: A Robust Clustering Algorithm for Categorical Attribute,” 15th Intl.Conf. on Data Engineering. 1999.
    [68]. D. Gibson, J. Kleinberg, and P. Raghavan, “Clustering Categorical Data: An Approach Based on Dynamical Systems,” In 26th Intl. Conf. On Very Large Databases, Springer-Verlag, pp. 222-236, 2000.
    [69]. D. Barbara, J. Couto and Y. Li, “COOLCAT: An entropy-based algorithm for Categorical Clustering,” Conf. on Information and Knowledge Management, ACM press, pp. 582-589, 2002.
    [70]. M. Bohanec, and V. Rajkovic, “Knowledge acquisition and explanation for multi-attribute decision making.” In 8th Intl Workshop on Expert Systems and their Applications, Avignon, France. Pp. 59-78, 1988.
    [71]. S. Theodoridis, and K. Koutroumbas, PATTERN RECOGNITION, ACADEMIC PRESS, 1999.
    [72]. Schlimmer, J. C., “Concept acquisition through representational adjustment.” Doctoral dissertation, Department of Information and Computer Science, University of California, Irvine, CA, 1987.
    [73]. L. A. Zadeh, “Similarity Relations and Fuzzy Orderings”, Information Sciences, Vol. 3, pp. 177-200, 1971.
    [74]. S. Ovchinnikov, “Similarity relations, fuzzy partitions and fuzzy orderings”, Fuzzy Sets and Systems, Vol. 40, pp. 107-126, 1991.
    [75]. S. Skiena, "Minimum Vertex Cover." Implementing Discrete Mathematics: Combinatorics and Graph Theory with Mathematica. Reading, MA: Addison-Wesley, p. 218, 1990.
    [76]. F. Toshihiro, “Approximation Algorithms for Submodular Set Cover with Applications”, IEICE Trans. INF. & SYST., E83-D(3), March 2000.
    [77]. N. R. Pal, and J. C. Bezdek, “On Cluster Validity for the Fuzzy C-Means Model”, IEEE Trans. on Fuzzy Systems, Vol. 3, NO, 3, pp. 370-379, 1995.
    [78]. G. Nagy, “State of the art in pattern recognition”, Proc. IEEE, 56, pp. 836-882, May 1968.
    [79]. R. Lippmann, “An introduction to computing with neural network”, IEEE Acoust., Speech, Signal Processing Mag., Vol. 61, pp. 4-22, 1987.
    [80]. J. W. Shin, T. Y. Chang, C. H. Yu, P. Y. Hsu, S. C. W. Wang, C. L. Chin, B. W. Chen, J. H. Chiang, “Blastocystis hominis Modulates Oncogenesis in Human Intestinal Epithelial Cells: Protein-Protein Interaction and Pathway Module Prediction,” 12th International Congress of Protozoology, 2005.
    [81]. X. Peng, R. R.K.M. Karuturi, and L.D. Miller, et al., “Identification of Cell Cycle-regulated Genes in Fission Yeast,” Molecular Biology of the Cell, Vol. 16, pp.1026-1042, 2005.
    [82]. SGD Gene Ontology Term Finder: http://db.yeastgenome.org/cgi-bin/GO/goTermFinder
    [83]. G. Zhu, Paul T. Spellman, Tom Volpe, Patrick O. Brown, David Botstein, Trisha N. Davis, and Bruce Futcher, “Two yeast forkhead genes regulated the cell cycle and pseudohyphal growth,” Nature, 406(6), pp. 90-94, 2000
    [84]. A. Bouchachia, and W. Pedrycz, “Enhancement of fuzzy clustering by mechanisms of partial supervision,” Fuzzy Sets and Systems, Vol. 157, NO. 13, pp. 1733-1759, 2006.
    [85]. G. Peters, “Some refinements of rough k-means clustering,” Pattern Recognition, Vol. 39, NO. 8, pp. 1481-1491, 2006.
    [86]. G. Beni, and X. Liu, “A Least Biased Fuzzy Clustering Method,” IEEE Trans. On Pattern Analysis and Machine Intelligence, Vol. 16, NO. 9, pp. 954-960, 1994.
    [87]. M. C. Bishop, and M. E. Tipping, “A Hierarchical Latent Variable Model for Data Visualization,” IEEE Trans. On Pattern Analysis and Machine Intelligence, Vol. 20, NO. 3, pp.281-293, 1998.
    [88]. A. B. Geva, “Hierarchical Unsupervised Fuzzy Clustering,” IEEE Trans. On Fuzzy Systems, Vol. 7, NO. 6, pp.723-733, 1999.
    [89]. R. J. Hathaway, and J. C. Bezdek, “Switching Regression Models and Fuzzy Clustering,” IEEE Trans. On Fuzzy Systems, Vol. 1, NO. 3, pp.195-203, 1993.
    [90]. N. B. Karayiannis, and P.-I Pai, “Fuzzy Algorithms for Learning Vector Quantization,” IEEE Trans. On Neural Networks, Vol. 7, NO. 5, pp.1196-1211, 1996
    [91]. K. Nakai, and M. Kanehisa, “A knowledge base for predicting protein localization sites in eukaryotic cells,” Genomics, Vol. 14, NO. 4, pp. 897-911, 1992.
    [92]. N. R. Pal, and J. C. Bezdek, “Measuring Fuzzy Uncertainty,” IEEE Trans. On Fuzzy Systems, vol. 2, no. 2, pp. 107-118, 1994.
    [93]. A. Papoulis, PROBABILITY, RANDOM VARIABLES, AND STOCHASTIC PROCESSES, McGRAW-HILL, 1991.
    [94]. A. C. Tsoi, S. Zhang, and M. Hagenbuchner, “Pattern discovery on Australian medical claim data – a systematic approach,” IEEE Trans. On Knowledge and Data Engineering, Vol 17, NO. 10, pp. 1420-1435, 2005.
    [95]. T. A. Runkler, and J. C. Bezdek, “Alternating Cluster Estimation: A New Tool for Clustering and Function Approximation,” IEEE Trans. On Fuzzy Systems, Vol. 7, NO. 4, pp.377-393, 1999.
    [96]. H. Suh, J.-H. Kim, and F.C.-H Rhee, “Convex-Set-Based Fuzzy Clustering,” IEEE Trans. On Fuzzy Systems, vol. 7, no. 3, pp.271-285, 1999.
    [97]. A. Agresti, CATEGORICAL DATA ANALYSIS, Wiley-Interscience, 2002.
    [98]. R. R. Yager, “On the Completion of Qualitative Possibility Measures,” IEEE Trans. On Fuzzy Systems, Vol. 1, NO. 3, pp. 184-194, 1993.
    [99]. R. R. Yager, “On the Entropy of Fuzzy Measures,” IEEE Trans. On Fuzzy Systems, Vol. 8, NO. 4, pp. 453-461, 2000.
    [100]. C. Li, and G. Biswas, “Unsupervised Learning with Mixed Numeric and Nominal Data,” IEEE Trans. On Knowledge and Data Engineering, Vol. 14, NO. 4, pp. 673-690, 2002.
    [101]. K. C. Gowda, and E. Diday, “Symbolic clustering using a new dissimilarity measure,” Pattern Recognition, Vol. 24, NO. 6, pp. 567-578, 1991.
    [102]. M. Gluck, and J. Corter, “Information, Uncertainty, and the Utility of Categories,” Proc. Seventh Ann. Conf. Cognitive Soc., pp. 283-287, 1985.
    [103]. P. T. Spellman, G. Sherlock, M. Q. Zhang, V.R. Iyer, K. Anders, M. B. Eisen, P. O. Brown, D. Botstein, and B. Futcher, “Comprehensive Identification of Cell Cycle-regulated Genes of the Yeast Saccharomyces cerevisiae by Microarray Hybridization,” Molecular Biology of the Cell, Vol.9, pp. 3273-3297, 1998.
    [104]. H. L. Turner, T. C. Bailey, W. J. Krzanowski, and C. A. Hemingway, “Biclustering Models for Structured Microarray Data,” IEEE/ACM Trans. On Computational Biology and Bioinformatics, Vol.2, NO.4, pp.316-329, 2005.
    [105]. H. K. Yoon, Yang, and C. Shahabi, “Feature Subset Selection and Feature Ranking for Multivariate Time Series,” IEEE Trans. On Knowledge and Data Engineering, Vol.17, NO.9, pp.1186-1198, 2005.
    [106]. W.-H. Au, K. C.C. Chan, A. K.C. Wong, and Y. Wang, “Attribute Clustering for Grouping, Selection, and Classification of Gene Expression Data,” IEEE/ACM Trans. On Computational Biology and Bioinformatics, Vol.2, NO.2, pp.83-101, 2005
    [107]. H. Cho, I. S. Dhillon, Y. Guan, and S. Sra, “Minimum Sum-Squared Residue Co-clustering of Gene Expression Data,” Proceedings of 4th SLAM Intl. Conf. on Data Mining, pp. 114-125, 2004.

    下載圖示 校內:立即公開
    校外:2007-01-31公開
    QR CODE