簡易檢索 / 詳目顯示

研究生: 楊宗瑋
Yang, Tsung-Wei
論文名稱: 生醫級Ti6Al4V合金與316L不鏽鋼經表面處理後的電化學反應、生物相容性和磨耗性質之研究
Tribological performance, electrochemical behavior and biocompatibility of surface-treated biomedical Ti6Al4V alloy and 316L stainless steel Key word: Nitriding, Biocompatibility, Tribology, Electrochemical behavior, DLC.
指導教授: 蘇演良
Su, Yan-Liang
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 212
中文關鍵詞: 氮化類鑽碳磨潤電化學生物相容性
外文關鍵詞: Nitriding, DLC, Tribology, Electrochemical behavior, Biocompatibility
相關次數: 點閱:78下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究採用離子氮化法與高溫氣體氮化法,分別氮化316L不鏽鋼與Ti6Al4V合金,再使用非平衡磁控濺鍍法被覆含鈦類鑽碳於上列底材。分析氮化後的316L不鏽鋼與Ti6Al4V合金和類鑽碳鍍層之微結構、機械性值,並以SRV磨耗試驗研究其磨潤特性與磨耗機構;以電化學分析法評估各種底材的抗腐蝕能力;培養Raw 264.7小鼠單核巨噬細胞於所有底材上,探討這些材料的生物相容性。
    氮化後的316L與Ti6Al4V底材機械性質都大幅提升,並降低磨耗深度與磨耗率,改善DLC鍍層附著性與增加鍍層磨耗壽命;本實被覆類鑽碳在氮化底材後,在低荷重下有極佳磨耗壽命與抗磨耗能力。
    316L不鏽鋼氮化後會破壞原有的氧化鉻鈍化層,導致氮化316L的抗腐蝕能力下降;Ti6Al4V的抗蝕性比316L更佳,且氮化後不降低抗蝕性。類鑽碳能夠大幅提升抗蝕能力,氮化且被覆類鑽碳之Ti6Al4V在所有試片中擁有最佳的抗腐蝕能力。
    經過五天的細胞培養,細胞數目最多的為原底材316L與Ti6Al4V,氮化後與被覆DLC後由於接觸角上升,會使得細胞增生率減緩。

    In this study, plasma nitriding and high temperature gas nitridingwere performed on 316L stainless steel and Ti6Al4V alloy samples respectively, and Ti-DLC coatings were deposited on above samples by unbalanced magnetron sputtering system. The main purposes of this research were: (i) Analysis microstructures and mchanical properties of nitrided 316L stainless steel and nitride Ti6Al4V alloy and DLC film. Discusstribological properties and failure mechanism by using Schwingung Reibung and Verschleiss(SRV) Tester. (ii) Assesscorrosion resistance of all samples by electrochemical test. (iii) Raw 264.7 cells were cultured on all samples in order to investigate the biocompatibility of these materials.
    The results indicate that:
    (i) Mchanical properties of 316L and Ti6Al4V enhance sharply after nitriding.It is shown that nitriding treatment not only reduce wear depth and wear rate, but also improve adhesion and wear life of DLC, and increase wear resistance of substrate. The hardness of DLC film is poor because of unstable C2H2 gas flow during sputtering, but it still has excellent wear life and wear resistance in low wear load.
    (ii) Corrosion resistance of nitrided 316L decreased because the CrO3 passivation layer has been destroyed during nitriding process. Corrosion resistance of Ti6Al4V is better than 316L, and it does not decrease after nitriding. Deposit DLC increases corrosion resistance sharply.
    (iii) After five days of cell culture, the largest number of cells has been found on 316L and Ti6Al4V substrate. After nitriding or depositing DLC coating will cause the contact angle increases, and decrease the cell culture rate. Because of low corrosion resistance, nitrided 316L oxidize and released metal ions during the culture process, we can’t culture cells on it.

    考試合格證明.........................I 摘要...............................II Abstract..........................III 誌謝...............................IV 總目錄..............................V 表目錄.............................VII 圖目錄.............................VIII 附錄...............................XI 第一章 緒論..........................1 1-1 前言............................1 1-2 研究動機.........................2 第二章理論基礎與文獻回顧................3 2-1 金屬表面氮化處理..................3 2-1-1離子氮化原理....................3 2-1-2氣體氮化原理....................4 2-2 類鑽碳基本性質....................4 2-3 DLC鍍膜製程方法..................6 2-4 利用非平衡磁控濺鍍法製DLC膜的特性....7 2-5 奈米壓痕分析於薄膜上的應用..........8 2-6 赫茲接觸應力在磨耗方面之應用........9 2-7 拉曼光譜分析在類鑽碳膜上的應用.......10 2-8 磨耗機構原理.....................11 2-9 接觸角原理.......................12 2-10電化學腐蝕原理....................14 2-11 生物相容性......................15 第三章 實驗方法與步驟..................17 3-1 實驗目的.........................17 3-2 實驗流程.........................17 3-3 表面氮化處理及參數.................17 3-4 鍍膜製作.........................18 3-4-1濺鍍參數與鍍層安排................18 3-4-2 濺鍍系統與靶材配置...............18 3-5 實驗方法.........................18 3-5-1氮化層、類鑽碳鍍膜顯微結構分析......18 3-5-2 氮化層、鍍膜成分與元素分佈分析.....19 3-5-3 硬度實驗.......................20 3-5-4 附著性實驗......................20 3-5-5 磨耗實驗.......................21 3-5-6 接觸角量測實驗..................22 3-5-7 電化學腐蝕實驗..................22 3-5-8 生物相容性實驗..................23 3-6 實驗設備.........................24 第四章 實驗結果與討論..................26 4-1 氮化層、類鑽碳膜基本性質............26 4-1-1氮化層分析......................26 4-1-2類鑽碳膜分析.....................28 4-1-3類鑽碳膜附著性分析................30 4-1-4接觸角分析.......................30 4-2 SRV磨耗性能測試...................31 4-2-1點磨耗試驗.......................31 4-2-2線磨耗試驗.......................32 4-3 SRV磨耗機構探討...................35 4-3-1磨耗機構討論.....................35 4-3-2磨耗實驗結果整理與討論.............42 4-4 電化學腐蝕實驗結果.................45 4-4-1 316L系列底材極化曲線............45 4-4-2 Ti6Al4V系列底材極化曲線.........46 4-5 生物相容性實驗結果.................46 4-5-1 316L系列表面生長型態............46 4-5-2 Ti6Al4V系列表面生長型態.........47 4-5-3 細胞增殖數量統計................47 第五章 結論...........................50 5-1 結論.............................50 5-2 實驗心得與改進空間..................51 第六章 參考文獻........................52

    [1]Yamunah Kandasamy, “Analysis of the Orthopedic Implants Market - The Future of Joint Replacements.” Frost & Sullivan, 29 February 2012, (http://www.frost.com/reg/my-account.do)

    [2]Andy Croft , “World Medical Market Forecasts 2017” Espicom Healthcare Intelligence Research, 17 August 2012, ( http://www.espicom.com/)

    [3]行政院衛生署統計公布欄,“門診主要疾病就診率統計” (http://www.doh.gov.tw/CHT2006/DM/DM2_2.aspx?class_no=440&level_no=1)28 October, 2011.
    [4]YH Zhu, KY Chiu and WM Tang, Department of Orthopaedic Surgery, The University of Hong Kong, Hong Kong , “Review Article: Polyethylene wear and osteolysis in total hip arthroplasty.”Journal of Orthopaedic Surgery, 9(2001) 91-99

    [5]Sumit Pramanik1, Avinash Kumar Agarwal2, and K. N. Rai1, Chronology of “Total Hip Joint Replacement and Materials Development.”Trends Biomater. Artif. Organs, 19(1) (2005) 15-26

    [6]A. Unswotih. “Recent developments in the tribology of artificial joints” Tribology International, 28 (1995) 485-495

    [7]D. Dowson. “A comparative study of the performance of metallic and ceramic femoral head components in total replacement hip joints” Wear, 190 (1995) 171-183

    [8]Bizot P, Banallec L, Sedel L, Nizard R. “Alumina-on-alumina total hip prostheses in patients 40 years of age or younger.” Clin Orthop 379 (2000) 68-76

    [9]P. Boyera, D. Hutenb, P. Loriauta, V. Lestrat a, C. Jeanrota, P. Massina. “Is alumina-on-alumina ceramic bearings total hip replacement the right choice in patients younger than 50 years of age? A 7- to 15-year follow-up study.” Orthopaedics & Traumatology: Surgery & Research 96(2010) 616-622

    [10]Marcel Pourbaix , “Electrochemical corrosion of metallic biomaterials.” Biomaterials, 5(1984) 122-134

    [11]LifeBridge Health Home, “Conserve Plus Metal-on-Metal Hip Replacement”(http://www.lifebridgehealth.org/RIAO/FDAMetalonMetalStudy.aspx)

    [12]Steven F. Harwin, MD, FACS, “Ceramic Hip Replacements & Hip Replacement Surgery.” (http://drharwin.com/home/)

    [13]L. Wang, J.F. Su, X. Nie, “Corrosion and tribological properties and impact fatigue behaviors of TiN- and DLC-coated stainless steels in a simulated body fluid environment.” Surface & Coatings Technology, 205 (2010) 1599-1605
    [14]Jigang Wang, Min Liu, “Study on the tribological properties of hard films deposited on biomedical NiTi alloy.”Materials Chemistry and Physics, 129 (2011) 40- 45

    [15]Lakshman Randeniya, Avi Bendavid, Phil Martin, Julie Cairney , Anna Sullivan , Stephanie Webster, Gwenaelle Proust, Fengzai Tang, Ramin Rohanizadeh. “Thin film composites of nanocrystalline ZrO2 and diamond-like carbon: Synthesis, structural properties and bone cell proliferation.” Acta Biomaterialia, 6 (2010) 4154-4160

    [16]T.L. Parker, K.L. Parker, I.R. McColl, D.M. Grant, and J.V. Wood, “The biocompatibility of low temperature diamond-like carbon films: a transmission electron microscopy, scanning electron microscopy and cytotoxicity study.”Diamond and Related Materials,3(1994) 1120-1123

    [17]J. Narayan, W.D. Fan, R.J. Narayan, P. Tiwari, and H.H. Stadelmaier, “Diamond, diamond-like and titanium nitride biocompatible coatings for human body parts.”Materials Science and Engineering, 25 (1994) 5-10

    [18]E. Salgueiredo , M. Vila , M.A. Silva, M.A. Lopes, J.D. Santos , F.M. Costa, R.F. Silva, P.S. Gomes, M.H. Fernandes . “Biocompatibility evaluation of DLC-coated Si3N4 substrates for biomedical applications.” Diamond & Related Materials, 17 (2008) 878-881

    [19]Alicia Calzado-Martin, Laura Saldana, Hannu Korhonen, Antti Soininen, Teemu J. Kinnari ,Enrique Gomez-Barrena, Veli-Matti Tiainen, Reijo Lappalainen, Luis Munuera, Yrjo T. Konttinen, Nuria Vilaboa. “Interactions of human bone cells with diamond-like carbon polymer hybrid coatings.” Acta Biomaterialia, 6 (2010) 3325-3338

    [20]A. Almaguer-Flores, R. Olivares-Navarrete, A. Lechuga-Bernal, L.A. Ximénez-Fyvie, S.E. Rodil. “Oral bacterial adhesion on amorphous carbon films.” Diamond & Related Materials, 18 (2009) 1179-1185

    [21]Yasuharu Ohgoe, Kenji K. Hirakuri , Hidetoshi Saitoh , Takahiro Nakahigashi , Naoto Ohtake , Atsushi Hirata, Kazuhiro Kanda, Masanori Hiratsuka, Yasuhiro Fukui. “Classification of DLC films in terms of biological response.” Surface & Coatings Technology, 207(2012) 350-354

    [22]Y. Li, L. Wang, J. Xu, D. Zhang. “Plasma nitriding of AISI 316L austenitic stainless steels at anodic potential.” Surface and Coatings Technology, 206(2012) 2430-2437

    [23]F. Borgioli, A. Fossati, E. Galvanetto, T. Bacci, G. Pradelli. “Glow discharge nitriding of AISI 316L austenitic stainless steel: Influence of treatment pressure.” Surface and Coatings Technology, 200(2006) 5505-5513

    [24]E. Skolek-Stefaniszyn, S. Burdynska, W. Mroz, T. Wierzchon. “Structure and wear resistance of the composite layers produced by glow discharge nitriding and PLD method on AISI 316L austenitic stainless steel.” Vacuum, 83(2009) 1442-1447

    [25]J.C. Stinville, P. Villechaise, C. Templier, J.P. Riviere, M. Drouet. “Plasma nitriding of 316L austenitic stainless steel: Experimental investigation of fatigue life and surface evolution.” Surface and Coatings Technology, 204( 2010) 1947-1951

    [26]Li Guijiang, Peng Qian, Li Cong, Wang Ying, Gao Jian, Chen Shuyuan, Wang Jun, Shen Baoluo. “Influence ofprocess parameters on microstructure and wear property of 316L stainless steel by high voltage DC plasma glow-discharge nitriding.” Shanghai Metals, 29(2007) 3969

    [27]D.Q. Peng, T.H. Kim, J.H. Chung, J.K. Park. “Development of nitride-layer of AISI 304 austenitic stainless steel during high-temperature ammonia gas-nitriding.” Applied Surface Science, 256(2010) 7522-7529

    [28]Hideaki Shibata, Keiro Tokaji, Takeshi Ogawa, Chiaki Hori. “The effect of gas nitriding on fatigue behaviour in titanium alloys.” International Journal of Fatigue, 16(1994) 370-376

    [29]S.K. Wu, H.C. Lin, C.Y. Lee. “Gas nitriding of an equiatomic TiNi shape-memory alloy: Part I: Nitriding parameters and microstructure characterization” Surface and Coatings Technology, 113(1999) 17-24

    [30]R. Arvind Singh, Kyounghwan Na, Jin Woo Yi, Kwang-Ryeol Lee, Eui-Sung Yoon, “DLC nano-dot surfaces for tribological applications in MEMS devices.”Applied Surface Science, Vol. 257 (2011) 3153-3157

    [31]Bharat Bhushan, “Nanotribology and nanomechanics of MEMS/NEMS and BioMEMS/BioNEMS materials and devices.” Microelectronic Engineering, Vol. 84 (2006) 387-412.

    [32]池永勝 "日本機械學會論文集" Vol. 66 (2000) pp 755-760

    [33]R. Paul, S. Dalui, S.N. Das, R. Bhar, A.K. Pal, “Hydrophobicity in DLC films prepared by electrodeposition technique.” Applied Surface Science, Vol. 255 (2008) 1705-1711

    [34]W.G. Cui, Q.B. Lai, L. Zhang, F.M. Wang , “Quantitative measurements of sp3 content in DLC films with Raman spectroscopy.” Surface and Coatings Technology, Vol. 205 (2010) 1995-1999

    [35]R.P.C.C. Statuti, P.A. Radi, L.V. Santos, V.J. Trava-Airoldi , “A tribological study of the hybrid lubrication of DLC films with oil and water.”Wear, Vol. 267 (2009) 1208-1213

    [36]P.L. Wong, F. He, X. Zhou, “Interpretation of the hardness of worn DLC particles using micro-Raman spectroscopy.”Tribology International, Vol. 43 (2010) 1806-1810

    [37]Zeng Lin , Shao-Bo Lv , Zhao-Ji Yu , Ming Li , Tie-Yuan Lin , De-Chun Ba , Chi-Kyu Choi , In-Seop Lee , “Effect of bias voltage on Diamond-like carbon film deposited on PMMA substrate.” Surface & Coatings Technology, Vol. 202 (2008) 5386–5389

    [38]Hongxuan Li, Tao Xu, Chengbing Wang, Jianmin Chen, Huidi Zhou, Huiwen Liu, “Tribochemical effects on the friction and wear behaviors of a-C:H and a-C films in different environment.” Tribology International, Vol. 40 (2007) 132-138

    [39]D. Caschera, F. Federici, S. Kaciulis, L. Pandolfi, A. Cusmà, G. Padeletti, “Deposition of Ti-containing diamond-like carbon (DLC) films by PECVD technique.” Materials Science and Engineering: C, Vol. 27 (2007) 1328-1330
    D. Caschera, F. Federici, S. Kaciulis, L. Pandolfi, A. Cusmà, G. Padeletti

    [40]C.T. Guo, K.-H. Dittrich, “Diamond-like carbon films deposited by a hybrid ECRCVD system.” Applied Surface Science, Vol. 253 (2007) 4935-4941

    [41]C. Popov, M. Novotny, M. Jelinek, S. Boycheva, V. Vorlicek, M. Trchova, W. Kulisch, “Chemical bonding study of nanocrystalline diamond films prepared by plasma techniques.” Thin Solid Films, Vol.506-507 (2006) 297-302

    [42]Dongcan Zhang, Bin Shen, Fanghong Sun, “Study on tribological behavior and cutting performance of CVD diamond and DLC films on Co-cemented tungsten carbide substrates.” Applied Surface Science, Vol. 256 (2010) 2479-2489

    [43]Lingxia Hang, Y. Yin, Junqi Xu, “Optimisation of diamond-like carbon films by unbalanced magnetron sputtering for infrared transmission enhancement.” Thin Solid Films, Vol. 515 ( 2006) 357-361

    [44]Hirotaka Ito, Kenji Yamamoto, Masabumi Masuko, “Thermal stability of UBM sputtered DLC coatings with various hydrogen contents.” Thin Solid Films, Vol. 517 (2008) 1115-1119

    [45]I. Ahmad, P. D. Maguire, P. Lemoine, S. S. Roy, J. A. McLaughlin, “Deposition of carbon films onto metal and silicon substrates by filtered cathodic vacuum arc, plasma enhanced CVD and unbalanced magnetron sputtering.” Diamond and Related Materials, Vol. 13 (2004) 1346-1349

    [46]I. Ahmad, S.S. Roy, P.D. Maguire, P. Papakonstantinou, J.A. McLaughlin, “Effect of substrate bias voltage and substrate on the structural properties of amorphous carbon films deposited by unbalanced magnetron sputtering.”Thin Solid Films, Vol. 482 (2005) 45-49

    [47]R. Hauert, G. Thorwarth, U. Müller, M. Stiefel, C.V. Falub, K. Thorwarth, T.J. Joyce. “Analysis of the in-vivo failure of the adhesive interlayer for a DLC coated articulating metatarsophalangeal joint.” Diamond and Related Materials, 25(2012) 34-39

    [48]A. Tomita, M. Kusuda, S. Otsuki, Y. Oka, Y. Nishimura, A. Murakami, M. Yatsuzuka. “Enhancement of adhesive strength of DLC film prepared by PBIID on Co–Cr alloy for biomaterial.” Thin Solid Films, 506–507(2006) 59-62

    [49]Jungmin Lee, Chanjoo Lee, Byungmin Kim, “Reverse analysis of nano-indentation using different representative strains and residual indentation profiles.” Materials & Design, Vol. 30 (2009) 3395-3404

    [50]J.M. Lee, D.C. Ko, K.S. Lee, B.M Kim, “Identification of the bulk behavior of coatings by nano-indentation test and FE-analysis and its application to forming analysis of the coated steel sheet.” Journal of Materials Processing Technology, Volumes 187-188 (2007) 309-313

    [51]Teruyuki Kitagawa, Isao Yamada, Noriaki Toyoda, Harushige Tsubakino, Jiro Matsuo, G. H. Takaoka, Allen Kirkpatrick, “Hard DLC film formation by gas cluster ion beam assisted deposition.” Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, Vol.201 (2003) 405-412

    [52]A.K. Nanda Kumar, M.D. Kannan, S. Jayakumar, K.S. Rajam, V.S. Raju, “Investigations on the mechanical behaviour of rough surfaces of TiNi thin films by nano-indentation studies.” Surface and Coatings Technology, Vol. 201 (2006)

    [53]Robert C. Juvinall, Kurt M. Marshek / Fundamentals of Machine Component Design / Wiley

    [54]Brian K. Bay, Andrew J. Hamel, Steve A. Olson and Neil A. Sharkey. “Statically equivalent load and support conditions produce different hip joint contact pressures and periacetabular strains.” PII: SOO21-9290(96)00120-O 0021-9290

    [55]H. Yoshida, A. Faust, J. Wilckens, M. Kitagawa, J. Fetto, Edmund Y.-S. Chao. “Three-dimensional dynamic hip contact area and pressure distribution during activities of daily living.” Journal of Biomechanics, 39 (2006) 1996–2004

    [56]Koumei Baba, Ruriko Hatada, “Preparation and properties of metal-containing diamond-like carbon films by magnetron plasma source ion implantation.”Surface and Coatings Technology,96(2005)207-210

    [57]P.L. Wong, F. He, X. Zhou, “Interpretation of the hardness of worn DLC particles using micro-Raman spectroscopy.” Tribology International, Vol. 43 (2010) 1806-1810

    [58]Namwoong Paik,“Raman and XPS studies of DLC films prepared by a magnetron sputter-type negative ion source.” Surface and Coatings Technology, Vol.56 (2005) 2170-2174

    [59]K.G, Budinski, “Surface Engineering for Wear Resistance.”, Prentice Hall, New Jersey

    [60]N.K.ADAM, “Use of the Term 'Young's Equation' for Contact Angles.”, Nature 180(1957) 809 – 810

    [61]Hamid Reza Asgari Bidhendi, Majid Pouranvari. “Corrsion Study Of Metallic Biomaterials In Simulated Body Fluid.”Metalurgija-MJoM, 17(2011) 13-22

    [62]M.A. Khan, R.L. Williams, D.F. Williams, “Conjoint corrosion and wear in titanium alloys.”Biomaterials 20 (1999) 765-772

    [63]Daryl L. Roll, P.E. “Passivation and the Passive Layer.” (2010) 1-8

    [64]Ho-Gun Kim, Seung-Ho Ahn, Jung-Gu Kim, Se Jun Park, Kwang-Ryeol Lee. “Corrosion performance of diamond-like carbon (DLC)-coated Ti alloy in the simulated body fluid environment.” Diamond and Related Materials, 14(2005) 35-41

    [65]Morten S. Jellesen , Thomas L. Christiansen, Lisbeth Rischel Hilbert, Per Moller. “Erosion-corrosion and corrosion properties of DLC coated low temperature gas-nitrided austenitic stainless steel.” Wear, 267 (2009) 1709-1714

    [66]R. Hauert, C.V. Falub , G. Thorwarth , K. Thorwarth, Ch. Affolter , M. Stiefel , L.E. Podleska, G. Taeger. “Retrospective lifetime estimation of failed and explanted diamond-like carbon coated hip joint balls.” Acta Biomaterialia (2012) 7-14

    [67]美國食品藥物管理局網FDA,“Safety Communication: Metal-on-Metal hip implants.”
    (http://www.fda.gov/MedicalDevices/Safety/AlertsandNotices/ucm335775.htm) 2013/01/17

    [68]P. Wang, X. Wang, Y. Chen, G. Zhang, W. Liu, J. Zhang, Appl. “The effect of applied negative bias voltage on the structure of Ti-doped a-C:H films deposited by FCVA.” Applied Surface Science 253 (2007) 3722-3733

    [69]R.D. Mansano, R. Ruas, A.P. Mousinho, L.S. Zambom , T.J.A. Pinto, L.H. Amoedo, M. Massi, “Use of diamond-like carbon with tungsten (W-DLC) films as biocompatible material.” Surface & Coatings Technology 202(2008) 2813-2816

    [70]Heon Woong Choi, Reinhold H. Dauskardt, Seung-Cheol Lee, Kwang-Ryeol Lee, Kyu Hwan Oh. “Characteristic of silver doped DLC films on surface properties and protein adsorption.” Diamond & Related Materials 17 (2008) 252-257

    [71]S. Kukieka,W. Gulbin ski, Y. Pauleau, S.N. Dub, J.J. Grob, “Composition, mechanical properties and friction behavior of nickel/hydrogenated amorphous carbon composite films.” Surf. Coat. Technol. 200 (2006) 6258-6262

    [72]N. Ali, Y. Kousar, T.I. Okpalugo, V. Singh, M. Pease, A.A. Ogwu, J. Gracio, E. Titus, E.I. Meletis, M.J. Jackson, “Human micro-vascular endothelial cell seeding on Cr-DLC thin films for mechanical heart valve applications.” Thin Solid Films 515 (2006) 59-65

    [73]Hyung Jin Kim, Deok Yong Yun, Won Seok Choi, Byungyou Hong. “Selective assembly of DNA using DLC film as passivation layer for the application to nano-device.” Diamond and Related Materials, 18 (2009) 1015-1018

    [74]P. Yang a,b, N. Huang , Y.X. Leng , Z.Q. Yao , H.F. Zhou, M. Maitz, Y. Leng , P.K. Chu, “Wettability and biocompatibility of nitrogen-doped hydrogenated amorphous carbon films: Effect of nitrogen.” Nuclear Instruments and Methods in Physics Research, 242 (2006) 22-25

    [75]D. Li , S. Guruvenket , M. Azzi , J.A. Szpunar , J.E. Klemberg-Sapieha , L. Martinu , “Corrosion and tribo-corrosion behavior of a-SiCx:H, a-SiNx:H and a-SiCxNy:H coatings on SS301 substrate.” Surface & Coatings Technology, 204 (2010) 1616-1622

    [76]R. Hauert, L. Knoblauch-Meyer , G. Francz, A. Schroeder , E. Wintermantel . “Tailored a-C:H coatings by nanostructuring and alloying.” Surface and Coatings Technology, 120-121 (1999) 291-296

    [77]P. Vijai Bharathya,c, D. Nataraja, Paul K. Chub, Huaiyu Wangb, Q. Yangc, M.S.R.N. Kirand, J. Silvestre-Alberoe, D. Mangalaraj. “Effect of titanium incorporation on the structural, mechanical and biocompatible properties of DLC thin films prepared by reactive-biased target ion beam deposition method.” Applied Surface Science 257 (2010) 143-150

    [78]Dau-Chung Wang, Ken-Yen Chen, Cheng-Hsien Tsai, Gen-You Chen, Chuan-Hung Chen. “AFM membrane roughness as a probe to identify oxidative stress-induced cellular apoptosis.” Journal of Biomechanics, 44(2011) 2790-2794

    [79]Ziyang Zhang, José T. Egaña, Ann K. Reckhenrich, Thilo Ludwig Schenck, Jörn A. Lohmeyer, Jan Thorsten Schantz, Hans-Günther Machens, Arndt F. Schilling. “Cell-based resorption assays for bone graft substitutes.” Acta Biomaterialia, 8(2012) 13-19

    [80]YANG Ping,ZHOU Hong-fang,LENG Yong-xiang,WANG Jing,CHEN Jun-ying,WAN Guo-jiang, SUN Hong,HUANG Nan. “Influence on biocompatibility: wettability of the a-C:H film.”35(2004) 2477-2478

    [81]T. Hasebe , T. Ishimaru , A. Kamijo , Y. Yoshimoto , T. Yoshimura , S. Yohena ,H.Kodama , A. Hotta , K. Takahashi , T. Suzuki . “Effects of surface roughness on anti-thrombogenicity of diamond-like carbon films.”Diamond & Related Materials. 16 (2007).1343-1348.

    [82]Joao Costa-Rodrigues, Anabela Fernandes, Maria A. Lopes, Maria H. Fernandes. “Hydroxyapatite surface roughness: Complex modulation of the osteoclastogenesis of human precursor cells.” Acta Biomaterialia 8 (2012) 1137–1145

    [83]T. Arai, H. Fujita, M. Watanabe, “Evaluation of adhesion strength of thin hard coatings.” Thin Solid Films, Vol.154 (1987) 387-401

    [84]Masao Kamiya, Hideto Tanoue , Hirofumi Takikawa , Makoto Taki ,Yushi Hasegawa , Masao Kumagai, “Preparation of various DLC films by T-shaped filtered arc deposition and the effect of heat treatment on film properties.”Vacuum 83 (2009) 510-514

    [85]ASTM G3 – 89 (Reapproved 2010), “Standard Practice for Conventions Applicable to Electrochemical Measurements in Corrosion Testing.”

    [86]E. De Las Heras, D.A. Egidi, P. Corengia, D. González-Santamaría, A. García-Luis, M. Brizuela, G.A. López, M. Flores Martinez. “Duplex surface treatment of an AISI 316L stainless steel; microstructure and tribological behavior.” Surface & Coatings Technology 202 (2008) 2945–2954

    [87]J.R.G. da Silva, Rex B. McLellan. “Diffusion of carbon and nitrogen in B.C.C. iron.” Materials Science and Engineering, 26(1976) 83-87

    [88]M.J Baldwin, S Kumar, J.M Priest, M.P Fewell, K.E Prince, K.T Short. “Plasma-nitrided AISI-316 stainless steel examined by scanning electron microscopy and secondary ion mass spectrometry.” Thin Solid Films, 345(1999) 108-112

    [89]A. Richter, H.-J. Scheibe, W. Pompe, K.-W. Brzezinka, I. Mühling. “About the structure and bonding of laser generated carbon films by raman and electron energy loss spectroscopy.” Journal of Non-Crystalline Solids, 88( 1986) 131-144

    [90]E.P. O'Reilly, J. Robertson, D. Beeman. “Electronic structure of amorphous carbon.” Journal of Non-Crystalline Solids, 77–78(1985) 83-86

    無法下載圖示 校內:2018-08-28公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE