簡易檢索 / 詳目顯示

研究生: 何欣諺
Ho, Hsin-Yen
論文名稱: 點帶石斑皮質類固醇接受器1與皮質類固醇接受器2的特性比較分析
Comparative characterization of the glucocorticoid receptor 1 and glucocorticoid receptor 2 in Epinephelus coioides
指導教授: 陳宗嶽
Chen, Tzong-Yueh
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生物科技研究所
Institute of Biotechnology
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 90
中文關鍵詞: 醣皮質醇接受器1醣皮質醇接受器2醣皮質醇緊迫
外文關鍵詞: glucocoticoid receptor 1, glucocoticoid receptor 2, cortisol, stress
相關次數: 點閱:82下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 點帶石斑魚為亞洲養殖業中經濟魚種之一,廣泛分布於熱帶及亞熱帶地區,而在氣候的變化、環境鹽濃度的改變、病原菌感染等,皆可能造成魚類產生生理緊迫,進而影響免疫調節系統下降,增加病毒感染率,使得水產養殖的產量受到衝擊。過去研究指出魚類在緊迫下,內分泌系統會活化調控腎內組織並生成醣皮質醇,當醣皮質醇與醣皮質醇專一受器結合後,會作為轉錄因子調控下游基因的表現,並抑制免疫反應。因此本研究中探討點帶石斑魚免疫相關基因醣皮質醇專一受器1及醣皮質醇專一受器2,發現在緊迫下,包括神經壞死病毒感染、鹽濃度改變及溫度變化,兩者之基因在腦部及鰓組織中較為顯著。並發現在點帶石斑緊迫下的皮質醇途徑可能直接或間接抑制腫瘤壞死因子。當以免疫刺激物、施予高溫條件下及低鹽的環境中,兩者基因表現量皆有提升趨勢。研究中同時發現神經壞死病毒感染下,點帶石斑魚腦部確實有醣皮質醇專一受器的蛋白產生以及表現。透過本研究結果可了解當點帶石斑魚受到緊迫時,抗發炎的皮質醇路徑將會被活化,同時緊迫相關因子醣皮質醇接受器會參與其中,此一結果對於石斑魚的疾病防治可能有所助益。

    Orange-spotted grouper, Epinephelus coioides, is considerable economic valuable fish species widely distributed in in tropical and subtropical Asia aquaculture. NNV infection, temperature change and change in salinity, these stress in groupers could cause immune decreased, mass mortality of groupers and resulted in severe economic loss. Cortisol is the principal glucocorticoid secreted by the interrenal tissue under stress. Cortisol could diffuse freely across the plasma membrane and bind to their intracellular receptor, the glucocorticoid receptor (GR), which as a transcription factor. The aim is to comparative characterization of the glucocorticoid receptor 1 and glucocorticoid receptor 2 in Epinephelus coioides under stress. In this study, two osgGRs genes have tissues specific response in brain and gill. Also, found that osgGRs could direct or indirect inhibit osgTNF1 expression and entered the nucleus under NNV infection. When stimulated by immune-stimulants, low salinity and high temperature change, all two osgGR gene expression up-regulated. Though these results of this study, it is clearer that under various stress including salinity and NNV infection, temperature change, GR might be the major factor that manipulate the immune system of fish. Therefore, it is important to minimize stress for successful aquaculture.

    中文摘要 .......................................................................................................... I 英文摘要 ........................................................................................................ II 誌謝 ................................................................................................................ V 目錄 ............................................................................................................... VI 表目錄 ............................................................................................................ X 圖目錄 ........................................................................................................... XI 附錄目錄 ..................................................................................................... XII 縮寫表 ..................................................................................................... ... XIII 一、研究背景 ................................................................................................. 1 1-1 石斑魚養殖產業 ........................................................................... 1 1-2 石斑魚受環境變異之緊迫 ........................................................... 1 1-3 緊迫下醣皮質醇途徑 .................................................................... 3 1-4 緊迫因子與免疫相關因子之關聯性 .................................. ......... 4 1-5 石斑魚受神經壞死病毒感染之緊迫 ............................................ 6 VII 1-6 研究目的 ...................................................................................... 7 二、材料與方法 ............................................................................................. 8 2-1 組織 RNA 萃取 ............................................................................. 8 2-2 反轉錄聚合酶鏈鎖反應 ............................................................. 9 2-3 聚合脢連鎖反應 ......................................................................... 9 2-4 即時螢光定量 PCR ...................................................................... 10 2-5 Genomic DNA 萃取 ................................................................... 10 2-6 快速擴增 cDNA 末端法 .......................................................... 11 2-7 核酸瓊脂膠體電泳分析 ............................................................ 12 2-8 膠體回收 .................................................................................... 13 2-9 勝任細胞製備 ............................................................................ 13 2-10 限制酵素作用 .......................................................................... 14 2-11 接合反應 .................................................................................. 14 2-12 轉形作用 .................................................................................. 15 2-13 小量質體的萃取 ...................................................................... 15 2-14 菌種保存 .................................................................................. 16 VIII 2-15 osgGR 重組蛋白之表現 ......................................................... 16 2-16 osgGR 重組蛋白之純化 .......................................................... 17 2-17 西方墨點法 .............................................................................. 18 2-18 蛋白質濃度定量 ...................................................................... 19 2-19 點帶石斑魚 GR 多株抗體製備 ................................................. 19 2-20 酵素免疫分析法 ...................................................................... 20 2-21 免疫組織染色法 ...................................................................... 21 2-22 神經壞死病毒病毒液製備 ...................................................... 23 2-23 統計分析 .................................................................................. 24 三、實驗結果 ............................................................................................... 25 3-1 osgGR1 基因選殖及序列比較 ................................................. 25 3-2 osgGR1、osgGR2 親緣關係鑑定之演化樹 .......................... 25 3-3 osgGR1、osgGR2 基因結構分析 ............................................ 27 3-4 點帶石斑魚 osgGR1 及 osgGR2 於各組織基因表現分析 ...... 28 3-5 不同鹽濃度點帶石斑魚 osgGR1 及 osgGR2 基因表現 .......... 29 3-6 不同溫度下,點帶石斑魚 osgGR1 及 osgGR2 基因表現 ...... 30 IX 3-7 點帶石斑魚 GRs 受免疫刺激物誘導之基因表現分析 .......... 30 3-8 病毒感染下 osgGR1、osgGR2 各組織間表現情形 ............... 32 3-9 分析點帶石斑魚腦及鰓部組織 osgGR 之表現 ...................... 32 四、討論 ...................................................................................................... 34 4-1 推測點帶石斑 GR 基因及蛋白之功能 ..................................... 34 4-2 o s g G R s 基因之表現隨溫度變化而影響病毒感染作用 .. . 35 4-3 醣皮質醇途徑與發炎前細胞激素基因基因表現呈相反趨勢 35 4-4 點帶石斑魚受神經壞死病毒感染後會促使 osgGR 入核並 進行轉錄 ..................................................................................... 36 4-5 未來研究方向 ........................................................................... 37 參考文獻 ....................................................................................................... 39 圖表 ............................................................................................................... 56 附錄 ............................................................................................................... 87

    江翰鍇,石斑魚神經壞死病毒及虹彩病毒多價重組次單位疫苗之開發,國立成功大學生物科技研究所碩士論文,2014。

    呂明偉、韓宛娟,石斑魚的病毒性疾病,科學發展 472,66-71,2012。

    李嘉容,點帶石斑魚在緊迫下皮質類固醇/皮質類固醇接受器2途徑參與發炎前細胞激素的調控分析,國立成功大學生物科技研究所碩士論文,2014。

    洪玉靖、陳宗嶽,亞太地區石斑產業發展評估與探討,水產種苗 161,1-15,2011。

    許月娥,海鱺常見之疾病及其防治方法,水試專訊 39,39-40,2005。

    陳宗嶽,分子生物科技如何協助水產養殖產業未來發展,水產種苗 164,6-11,2011。

    陳宗嶽、王廷瑜,防疫大作戰,科學發展 473,26-31,2012。

    陳宗嶽、王廷瑜、徐浩軒,石斑魚的恐怖病毒殺手,科學發展 482,44-48,2013。

    陳宗嶽、洪維君、王廷瑜,石斑魚關鍵生物技術開發現況與趨勢,水產養殖生技 38,1-3,2014。

    陳冠儒,點帶石斑魚干擾素基因選殖與功能分析,國立成功大學生物科技研究所碩士論文,2013。

    楊玉婷、陳葦芋、陳政忻,石斑魚產業概況及趨勢,農業生技產業季刊 19,24-29,2009。

    趙嘉本、鍾虎雲,養殖石斑魚(Ephinephlus Spp.)感染海水自點蟲之研究一Cryptocaryon irritans 生活史及病原性,農委會漁業特刊 46,31-40,1994。

    蔡羽琳,石斑魚NF-κB/IκB複體於神經壞死病毒感染的反應特性分析,國立成功大學生物科技研究所碩士論文,2015。

    謝佩璇,抗病毒蛋白 Mx 在點帶石斑魚細胞之特性分析,國立成功大學生物科技研究所碩士論文,2008。

    Alderman, S. L., McGuire, A., Bernier, N. J., and Vijayan, M. M. Central peripheral glucocorticoid receptors are involved in the plasma cortisol response to an acute stressor in rainbow trout. General and Comparative Endocrinology 176, 79-85, 2012.

    Archer, T. K., Hager, G. L., and Omichinski, J. G. Sequence-specific DNA binding by glucocorticoid receptor" zinc finger peptides". Proceedings of the National Academy of Sciences of the United States of America 87, 7560-7564, 1990.

    Barton, B. A., and Iwama, G. K. Physiological changes in fish from stress in aquaculture with emphasis on the response and effects of corticosteroids. Annual Review of Fish Diseases 1, 3-26, 1991.

    Baschant, U., and Tuckermann, J. The role of the glucocorticoid receptor in inflammation and immunity. The Journal of Steroid Biochemistry and Molecular Biology 120, 69-75, 2010.

    Basu, N., Nakano, T., Grau, E. G., and Iwama, G. K. The effects of cortisol on heat shock protein 70 levels in two fish species. General and Comparative Endocrinology 124, 97-105, 2001.

    Beato, M., and Klug, J. Steroid hormone receptors. Cell 83, 851-857, 1995.

    Bisbal, G. A., and Specker, J. L. Cortisol stimulates hypoosmoregulatory ability in Atlantic salmon, Salmo salar L. Journal of Fish Biology 39, 421-432, 1991.

    Bonga, S. W. The stress response in fish. Physiological Reviews 77, 591-625, 1997.

    Bouma, G., and Strober, W. The immunological and genetic basis of inflammatory bowel disease. Nature Immunology 3, 521-533, 2003.

    Bowden, T. J. Modulation of the immune system of fish by their environment. Fish and Sellfish Immunology 25, 373-383, 2008.

    Bury, N. R., and Sturm, A. Evolution of the corticosteroid receptor signaling pathway in fish. General and Comparative Endocrinology 153, 47-56, 2007.

    Bury, N. R., Sturm, A., Le Rouzic, P., Lethimonier, C., Ducouret, B., Guiguen, Y., and Prunet, P. Evidence for two distinct functional glucocorticoid receptors in teleost fish. Journal of Molecular Endocrinology 31, 141-156, 2003.

    Busillo, J. M., Azzam, K. M., and Cidlowski, J. A. Glucocorticoids sensitize the innate immune system through regulation of the NLRP3 inflammasome. Journal of Biological Chemistry 286, 38703-38713, 2011.

    Carragher, J. F., and Sumpter, J. P. The effect of cortisol on the secretion of sex steroids from cultured ovarian follicles of rainbow trout. General and Comparative Endocrinology 77, 403-407, 1990.

    Castillo, J., Teles, M., Mackenzie, S., and Tort, L. Stress-related hormones modulate cytokine expression in the head kidney of gilthead seabream (Sparus aurata). Fish and Shellfish Immunology 27, 493-499, 2009.

    Castro, R., Zou, J., Secombes, C. J., and Martin, S. A. Cortisol modulates the induction of inflammatory gene expression in a rainbow trout macrophage cell line. Fish and Shellfish Immunology 30, 215-223, 2011.

    Cato, A. C., and Wade, E. Molecular mechanisms of anti-inflammatory action of glucocorticoids. Bioessays 18, 371-378, 1996.

    Chan, D. K., and Woo, N. Effect of cortisol on the metabolism of the eel, Anguilla japonica. General and Comparative Endocrinology 35, 205-215, 1978.

    Charmandari, E., Kino, T., Ichijo, T., and Chrousos, G. P. Generalized glucocorticoid resistance: clinical aspects, molecular mechanisms, and implications of a rare genetic disorder. The Journal of Clinical Endocrinology and Metabolism 93, 1563-1572, 2008.

    Chen, Y. M., Kuo, C. E., Wang, T. Y., Shie, P. S., Wang, W. C., Huang, S. L., and Chen, T. Y. Cloning of an orange-spotted grouper (Epinephelus coioides) heat shock protein 90AB (HSP90AB) and characterization of its expression in response to nodavirus. Fish and Shellfish Immunology 28, 895-904, 2010.

    Chen, Y. M., Su, Y. L., Lin, J. H. Y., Yang, H. L., and Chen, T. Y. Cloning of an orange-spotted grouper (Epinephelus coioides) Mx cDNA and characterisation of its expression in response to nodavirus. Fish and Shellfish Immunology 20, 58-71, 2006.

    Chen, Y. M., Su, Y. L., Shie, P. S., Huang, S. L., Yang, H. L., and Chen, T. Y. Grouper Mx confers resistance to nodavirus and interacts with coat protein. Developmental and Comparative Immunology 32, 825-836, 2008.

    Chou, H. Y., Peng, T. Y., Chang, S. J., Hsu, Y. L., and Wu, J. L. Effect of heavy metal stressors and salinity shock on the susceptibility of grouper (Epinephelus sp.) to infectious pancreatic necrosis virus. Virus Research 63, 121-129, 1999.

    Chrousos, G. P. The hypothalamic-pituitary-adrenal axis and immune-mediated inflammation. New England Journal of Medicine 332, 1351-1363, 1995.

    Cruz, S. A., Chao, P. L., and Hwang, P. P. Cortisol promotes differentiation of epidermal ionocytes through Foxi3 transcription factors in zebrafish (Danio rerio). Comparative Biochemistry and Physiology Part A: Molecular and Integrative Physiology 164, 249-257, 2012.

    Dickerson, H. W., and Dawe, D. L. Ichthyophthirius multifiliis and Cryptocaryon irritans (phylum Ciliophora). Fish Diseases and Disorders 1, 116-153, 2006.

    Diefenbacher, M., Sekula, S., Heilbock, C., Maier, J. V., Litfin, M., van Dam, H., and Kassel, O. Restriction to Fos family members of Trip6-dependent coactivation and glucocorticoid receptor-dependent trans-repression of activator protein-1. Molecular Endocrinology 22, 1767-1780, 2008.

    Ding, X. F., Anderson, C. M., Ma, H., Hong, H., Uht, R. M., Kushner, P. J., and Stallcup, M. R. Nuclear receptor-binding sites of coactivators glucocorticoid receptor interacting protein 1 (GRIP1) and steroid receptor coactivator 1 (SRC-1): multiple motifs with different binding specificities. Molecular Endocrinology 12, 302-313, 1998.

    Diouf, B., Rioux, P., Blier, P. U., and Rajotte, D. Use of brook char (Salvelinus fontinalis) physiological responses to stress as a teaching exercise. Advances in Physiology Education 23, 18-23, 2000.

    Dong, C. W., Zhang, Y. B., Zhang, Q. Y., and Gui, J. F. Differential expression of three Paralichthys olivaceus Hsp40 genes in responses to virus infection and heat shock. Fish and Shellfish Immunology 21, 146-158, 2006.

    Ellis, T., Yildiz, H. Y., Lopez-Olmeda, J., Spedicato, M. T., Tort, L., Overli, O., and Martins, C. I. Cortisol and finfish welfare. Fish Physiology and Biochemistry 38, 163-188, 2012.

    Engelsma, M. Y., Huising, M. O., van Muiswinkel, W. B., Flik, G., Kwang, J., Savelkoul, H. F., and Verburg-van Kemenade, B. M. Neuroendocrine-immune interactions in fish: a role for interleukin-1. Veterinary Immunology and Immunopathology 87, 467-479, 2002.

    Engelsma, M. Y., Stet, R. J., Saeij, J. P., and Lidy Verburg-van Kemenade, B. M. Differential expression and haplotypic variation of two interleukin-1β genes in the common carp (Cyprinus carpio). Cytokine 22, 21-32, 2003.

    Esbaugh, A. J., and Walsh, P. J. Identification of two glucocorticoid response elements in the promoter region of the ubiquitous isoform of glutamine synthetase in gulf toadfish, Opsanus beta. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 297, 1075-1081, 2009.

    Espelid, S., Lokken, G. B., Steiro, K., and Bogwald, J. Effects of cortisol and stress on the immune system in Atlantic Salmon (Salmo salar). Fish and Shellfish Immunology 6, 95-110, 1996.

    Fryer, J. N., and Lederis, K. Control of corticotropin secretion in teleost fishes. American Zoologist 26, 1017-1026, 1986.

    Gadan, K., Marjara, I. S., Sundh, H., Sundell, K., and Evensen, O. Slow release cortisol implants result in impaired innate immune responses and higher infection prevalence following experimental challenge with infectious pancreatic necrosis virus in Atlantic salmon (Salmo salar) parr. Fish and Shellfish Immunology 32, 637-644, 2012.

    Garcia-Castillo, J., Pelegrin, P., Mulero, V., and Meseguer, J. Molecular cloning and expression analysis of tumor necrosis factor α from a marine fish reveal its constitutive expression and ubiquitous nature. Immunogenetics 54, 200-207, 2002.

    Giguere, V., Hollenberg, S. M., Rosenfeld, M. G., and Evans, R. M. Functional domains of the human glucocorticoid receptor. Cell 46, 645-652, 1986.

    Glass, C. K., and Saijo, K. Nuclear receptor transrepression pathways that regulate inflammation in macrophages and T cells. Nature Immunology 10, 365-376, 2010.

    Gorg, A., Postel, W., and Gunther, S. Two-dimensional electrophoresis. The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis 9, 531-546, 1988.

    Grayfer, L., Walsh, J. G., and Belosevic, M. Characterization and functional analysis of goldfish (Carassius auratus) tumor necrosis factor-alpha. Developmental and Comparative Immunology 32, 532-543, 2008.

    Greenwood, A. K., Butler, P. C., White, R. B., DeMarco, U., Pearce, D., and Fernald, R. D. Multiple corticosteroid receptors in a teleost fish: distinct sequences, expression patterns, and transcriptional activities. Endocrinology 144, 4226-4236, 2003.

    Hargreaves, D. C., Horng, T., and Medzhitov, R. Control of inducible gene expression by signal-dependent transcriptional elongation. Cell 138, 129-145, 2009.

    Hemre, G. I., Mommsen, T. P., and Krogdahl, A. Carbohydrates in fish nutrition: effects on growth, glucose metabolism and hepatic enzymes. Aquaculture Nutrition 8, 175-194, 2002.

    Henle, G., and Henle, W. Immunofluorescence in cells derived from Burkitt's lymphoma. Journal of Bacteriology 91, 1248-1256, 1966.

    Hermoso, M. A., Matsuguchi, T., Smoak, K., and Cidlowski, J. A. Glucocorticoids and tumor necrosis factor alpha cooperatively regulate toll-like receptor 2 gene expression. Molecular and Cellular Biology 24, 4743-4756, 2004.

    Hollenberg, S. M., and Evans, R. M. Multiple and cooperative trans-activation domains of the human glucocorticoid receptor. Cell 55, 899-906, 1988.

    Hori, T. S., Gamperl, A. K., Afonso, L. O., Johnson, S. C., Hubert, S., Kimball, J., and Rise, M. L. Heat-shock responsive genes identified and validated in Atlantic cod (Gadus morhua) liver, head kidney and skeletal muscle using genomic techniques. Biomed Central Genomics 11, 72, 2010.

    Hu, J., and Seeger, C. Hsp90 is required for the activity of a hepatitis B virus reverse transcriptase. Proceedings of the National Academy of Sciences of the United States of America 93, 1060-1064, 1996.

    Huang, W. C., Yang, C. C., Chen, I. H., Liu, Y. M. L., Chang, S. J., and Chuang, Y. J. Treatment of glucocorticoids inhibited early immune responses and impaired cardiac repair in adult zebrafish. PLoS One 8, 66613, 2013.

    Ismaili, N., and Garabrdian, M. J. Modulation of glucocorticoid receptor function via phosphorylation. Annals of the New York Academy of Sciences 1024, 86-101, 2004.

    Iwama, G. K., Vijayan, M. M., Forsyth, R. B., & Ackerman, P. A. Heat shock proteins and physiological stress in fish. American Zoologist 39, 901-909, 1999.

    Iwasaki, A., and Medzhitov, R. Toll-like receptor control of the adaptive immune responses. Nature Immunology 5, 987-995, 2004.

    Iwata, E., Mikami, K., Manbo, J., Moriya-Ito, K., and Sasaki, H. Social interaction influences blood cortisol values and brain aromatase genes in the protandrous false clown anemonefish, Amphiprion ocellaris. Zoological Science 29, 849-855, 2012.

    Jaattela, M., Ilvesmaki, V., Voutilainen, R., Stenman, U. H., and Sakseka E. Tumor necrosis factor as a potent inhibitor of adrenocorticotropin-induced cortisol production and steroidogenic P450 enzyme gene expression in cultured human fetal adrenal cells. Endocrinology 128, 623-629, 1991.

    Jeffrey, J. D., and Gilmour, K. M. Programming of the hypothalamic-pituitary-interrenal axis by maternal social status in zebrafish (Danio rerio). Journal of Experimental Biology 219, 1734-1743, 2016.

    Judd, A. M., Call, G. B., Barney, M., Mcilmoil, C. J., Balls, A. G., Adams, A., and Oliveira, G. K. Possible function of IL‐6 and TNF as intraadrenal factors in the regulation of adrenal steroid secretion. Annals of the New York Academy of Sciences 917, 628-637, 2000.

    Kassel, O., Schneider, S., Heilbock, C., Litfin, M., Gottlicher, M., and Herrlich, P. A nuclear isoform of the focal adhesion LIM-domain protein Trip6 integrates activating and repressing signals at AP-1-and NF-κB-regulated promoters. Genes and Development 18, 2518-2528, 2004.

    Kawai, T., and Akira, S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nature Immunology 11, 373-384, 2010.

    Kawai, T., and Akira, S. Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity 34, 637-650, 2011.

    Kino, T., Gragerov, A., Kopp, J. B., Stauber, R. H., Pavlakis, G. N., and Chrousos, G. P. The HIV-1 virion-associated protein vpr is a coactivator of the human glucocorticoid receptor. The Journal of Experimental Medicine 189, 51-62, 1999.

    Kovacs, J. J., Murphy, P. J., Gaillard, S., Zhao, X., Wu, J. T., Nicchitta, C. V., and Yao, T. P. HDAC6 regulates Hsp90 acetylation and chaperone-dependent activation of glucocorticoid receptor. Molecular Cell 18, 601-607, 2005.

    Kubokawa, K., Watanabe, T., Yoshioka, M., and Iwata, M. Effects of acute stress on plasma cortisol, sex steroid hormone and glucose levels in male and female sockeye salmon during the breeding season. Aquaculture 172, 335-349, 1999.

    Kubokawa, K., Yoshioka, M., and Iwata, M. Sex-specific cortisol and sex steroids responses in stressed sockeye salmon during spawning period. Zoological Science 18, 947-954, 2001.

    Kuo, H. C., Hsu, H. H., Chua, C. S., Wang, T. Y., Chen, Y. M., and Chen, T. Y. Development of Pedigree Classification Using Microsatellite and Mitochondrial Markers for Giant Grouper Broodstock (Epinephelus lanceolatus) Management in Taiwan. Marine Drugs 12, 2397-2407, 2014.

    Kuo, H. C., Wang, T. Y., Chen, P. P., Chen, Y. M., Chuang, H. C., and Chen, T. Y. Real-time quantitative PCR assay for monitoring of nervous necrosis virus infection in grouper aquaculture. Journal of Clinical Microbiology 49, 1090-1096, 2011.

    Laiz carrion, R., Martin Del Rio, M. P., Miguez, J. M., Mancera, J. M., and Soengas, J. L. Influence of cortisol on osmoregulation and energy metabolism in gilthead seabream Sparus aurata. Journal of Experimental Zoology Part A: Comparative Experimental Biology 298, 105-118, 2003.

    Lam, F.W.S., Wu, S. Y., Lin, S. J., Lin, C. C., Chen, Y. M., Wang, H. C., and Lin, J. H. Y. The expression of two novel orange-spotted grouper (Epinephelus coioides) TNF genes in peripheral blood leukocytes, various organs, and fish larvae. Fish and Shellfish Immunology 30, 618-629, 2011.

    Lee, S. K., Kim, H. J., Na, S. Y., Kim, T. S., Choi, H. S., Im, S. Y., and Lee, J. W. Steroid receptor coactivator-1 coactivates activating protein-1-mediated transactivations through interaction with the c-Jun and c-Fos subunits. Journal of Biological Chemistry 273, 16651-16654, 1998.

    Lewis, J. G., and Elder, P. A. Fractionation of cortisol antisera by immunoadsorption chromatography: Characterisation and use in an enzyme-linked immunosorbent assay (ELISA). Journal of Steroid Biochemistry 22, 387-390, 1985.

    Li, M., Leatherland, J. F., Vijayan, M. M., King, W. A., and Madan, P. Glucocorticoid receptor activation following elevated oocyte cortisol content is associated with zygote activation, early embryo cell division, and IGF system gene responses in rainbow trout. Journal of Endocrinology 215, 137-149, 2012.

    Li, Y., Sturm, A., Cunningham, P., and Bury, N. R. Evidence for a divergence in function between two glucocorticoid receptors from a basal teleost. Biomed Central Evolutionary Biology 12, 137, 2012.

    Liu, J., and DeFranco, D. B. Chromatin recycling of glucocorticoid receptors: implications for multiple roles of heat shock protein 90. Molecular Endocrinology 13, 355-365, 1999.

    Locksley, R. M., Killeen, N., and Lenardo, M. J. The TNF and TNF receptor superfamilies-integrating mammalian biology. Cell 104, 487-501, 2001.

    Lu, N. Z., and Cidlowski, J. A. Glucocorticoid receptor isoforms generate transcription specificity. Trends in Cell Biology 16, 301-307, 2006.

    Luecke, H. F., and Yamamoto, K. R. The glucocorticoid receptor blocks P-TEFb recruitment by NFκB to effect promoter-specific transcriptional repression. Genes and Development 19, 1116-1127, 2005.

    Martinez-Porchas, M., Martinez-Cordova, L. R., and Ramos-Enriquez, R. Cortisol and glucose: reliable indicators of fish stress. Pan-American Journal of Aquatic Sciences 4, 158-178, 2009.

    Maule, A. G., Schreck, C. B., and Kaattari, S. L. Changes in the immune system of coho salmon (Oncorhynchus kisutch) during the parr-to-smolt transformation and after implantation of cortisol. Canadian Journal of Fisheries and Aquatic Sciences 44, 161-166, 1987.

    Meduri, G. U., Muthiah, M. P., Carratù, P., Eltorky, M., and Chrousos, G. P.
    Nuclear Factor-ĸB-and Glucocorticoid Receptor α-Mediated Mechanisms in the Regulation of Systemic and Pulmonary Inflammation during Sepsis and Acute Respiratory Distress Syndrome. Neuroimmunomodulation 12, 321-338, 2005.

    Medintz, I. L., Clapp, A. R., Mattoussi, H., Goldman, E. R., Fisher, B., and Mauro, J. M. Self-assembled nanoscale biosensors based on quantum dot FRET donors. Nature Materials 2, 630-638, 2003.

    Mancera, J. M., Carrión, R. L., and Rı́o, M. D. P. M. Osmoregulatory action of PRL, GH, and cortisol in the gilthead seabream (Sparus aurata). General and Comparative Endocrinology 129, 95-103, 2002.

    Milligan, C. L. A regulatory role for cortisol in muscle glycogen metabolism in rainbow trout Oncorhynchus mykiss Walbaum. Journal of Experimental Biology 206, 3167-3173, 2003.

    Mommsen, T. P., Vijayan, M. M., and Moon, T. W. Cortisol in teleosts: dynamics, mechanisms of action, and metabolic regulation. Reviews in Fish Biology and Fisheries 9, 211-268, 1999.

    Morrison, R. N., Zou, J., Secombes, C. J., Scapigliati, G., Adams, M. B., and Nowak, B. F. Molecular cloning and expression analysis of tumour necrosis factor-α in amoebic gill disease (AGD)-affected Atlantic salmon (Salmo salar). Fish and Shellfish Immunology 23, 1015-1031, 2007.

    Munro, S., and Pelham, H. R. An Hsp70-like protein in the ER: identity with the 78 kD glucose-regulated protein and immunoglobulin heavy chain binding protein. Cell 46, 291-300, 1986.

    Murphy, P. J., Morishima, Y., Chen, H., Galigniana, M. D., Mansfield, J. F., Simons, S. S., and Pratt, W. B. Visualization and mechanism of assembly of a glucocorticoid receptor Hsp70 complex that is primed for subsequent hsp90-dependent opening of the steroid binding cleft. Journal of Biological Chemistry 278, 34764-34773, 2003.

    Mylonas, C. C., Fostier, A., and Zanuy, S. Broodstock management and hormonal manipulations of fish reproduction. General and Comparative Endocrinology 165, 516-534, 2010.

    Nader, N., Chrousos, G. P., and Kino, T. Circadian rhythm transcription factor clock regulates the transcriptional activity of the glucocorticoid receptor by acetylating its hinge region lysine cluster: potential physiological implications. Federation of American Societies for Experimental Biology 23, 1572-1583, 2009.

    Nascimento, D. S., Pereira, P. J., Reis, M. I., do Vale, A., Zou, J., Silva, M. T., and dos Santos, N. Molecular cloning and expression analysis of sea bass (Dicentrarchus labrax L.) tumor necrosis factor-α (TNF-α). Fish and Shellfish Immunology 23, 701-710, 2007.

    Nesan, D., and Vijayan, M. M. Maternal cortisol mediates hypothalamus-pituitary-interrenal axis development in zebrafish. Scientific Reports, 6, 2016.

    Nesan, D., Kamkar, M., Burrows, J., Scott, I. C., Marsden, M., and Vijayan, M. M. Glucocorticoid receptor signaling is essential for mesoderm formation and muscle development in zebrafish. Endocrinology 153, 1288-1300, 2012.

    Newton, R., and Holden, N. S. Separating transrepression and transactivation: a distressing divorce for the glucocorticoid receptor. Molecular Pharmacology 72, 799-809, 2007.

    Nixon, M., Andrew, R., and Chapman, K. E. It takes two to tango: dimerisation of glucocorticoid receptor and its anti-inflammatory functions. Steroids 78, 59-68, 2013.

    O'Connor, C. M., Rodela, T. M., Mileva, V. R., Balshine, S., and Gilmour, K. M. Corticosteroid receptor gene expression is related to sex and social behaviour in a social fish. Comparative Biochemistry and Physiology Part A: Molecular and Integrative Physiology 164, 438-446, 2012.

    Ogawa, S., Lozach, J., Benner, C., Pascual, G., Tangirala, R. K., Westin, S., and Glass, C. K. Molecular determinants of crosstalk between nuclear receptors and toll-like receptors. Cell 122, 707-721, 2005.
    Padgett, D. A., and Glaser, R. How stress influences the immune response. Trends in Immunology 24, 444-448, 2003.

    Pariante, C. M. The glucocorticoid receptor: part of the solution or part of the problem. Journal of Psychopharmacology 20, 79-84, 2006.

    Pariante, C. M., Pearce, B. D., Pisell, T. L., Owens, M. J., and Miller, A. H. Steroid-independent translocation of the glucocorticoid receptor by the antidepressant desipramine. Molecular Pharmacology 52, 571-581, 1997.

    Peter, M. C. The role of thyroid hormones in stress response of fish. General and Comparative Endocrinology 172, 198-210, 2011.

    Philip, A. M., Daniel Kim, S., and Vijayan, M. M. Cortisol modulates the expression of cytokines and suppressors of cytokine signaling (SOCS) in rainbow trout hepatocytes. Developmental and Comparative Immunology 38, 360-367, 2012.

    Picard, D., and Yamamoto, K. R. Two signals mediate hormone-dependent nuclear localization of the glucocorticoid receptor. The European Molecular Biology Organization Journal 6, 3333, 1987.

    Picard, D., Salser, S. J., and Yamamoto, K. R. A movable and regulable inactivation function within the steroid binding domain of the glucocorticoid receptor. Cell 54, 1073-1080, 1988.

    Pickering, A. D., and Christie, P. Changes in the concentrations of plasma cortisol and thyroxine during sexual maturation of the hatchery-reared brown trout, Salmo trutta L. General and Comparative Endocrinology 44, 487-496, 1981.

    Pratt, W. B., Morishima, Y., Murphy, M., and Harrell, M. Chaperoning of glucocorticoid receptors. Springer Berlin Heidelberg 172, 111-138, 2006.

    Prigent, H., Maxime, V., and Annane, D. Science review: mechanisms of impaired adrenal function in sepsis and molecular actions of glucocorticoids. Critical Care-London 8, 243-252, 2004.

    Prunet, P., Sturm, A., and Milla, S. Multiple corticosteroid receptors in fish: from old ideas to new concepts. General and Comparative Endocrinology 147, 17-23, 2006.

    Richman III, N. H., and Zaugg, W. S. Effects of cortisol and growth hormone on osmoregulation in pre-and desmoltified coho salmon (Oncorhynchus kisutch). General and Comparative Endocrinology 65, 189-198, 1987.

    Roca, F. J., Mulero, I., Lopez-Munoz, A., Sepulcre, M. P., Renshaw, S. A., Meseguer, J., and Mulero, V. Evolution of the inflammatory response in vertebrates: Fish TNF-α is a powerful activator of endothelial cells but hardly activates phagocytes. The Journal of Immunology 181, 5071-5081, 2008.

    Rogatsky, I., Luecke, H. F., Leitman, D. C., and Yamamoto, K. R. Alternate surfaces of transcriptional coregulator GRIP1 function in different glucocorticoid receptor activation and repression contexts. Proceedings of the National Academy of Sciences of the United States of America 99, 16701-16706, 2002.

    Rottmann, R. W., Francis-Floyd, R., and Durborow, R. The role of stress in fish disease. Southern Regional Aquaculture Center 474, 1-4, 1992.

    Savory, J. G., Prefontaine, G. G., Lamprecht, C., Liao, M., Walther, R. F., Lefebvre, Y. A., and Hache, R. J. Glucocorticoid receptor homodimers and glucocorticoid-mineralocorticoid receptor heterodimers form in the cytoplasm through alternative dimerization interfaces. Molecular and Cellular Biology 21, 781-793, 2001.

    Scherrer, L. C., Dalman, F. C., Massa, E., Meshinchi, S., and Pratt, W. B. Structural and functional reconstitution of the glucocorticoid receptor-hsp90 complex. Journal of Biological Chemistry 265, 21397-21400, 1990.

    Schoneveld, O. J., Gaemers, I. C., and Lamers, W. H. Mechanisms of glucocorticoid signalling. Biochimica et Biophysica Acta-Gene Structure and Expression, 1680, 114-128, 2004.

    Secombes, C. Will advances in fish immunology change vaccination strategies. Fish and Shellfish Immunology 25, 409-416, 2008.

    Silverman, M. N., and Sternberg, E. M. Glucocorticoid regulation of inflammation and its functional correlates: from HPA axis to glucocorticoid receptor dysfunction. Annals of the New York Academy of Sciences 1261, 55-63, 2012.

    Simms, D., Cizdziel, P. E., and Chomczynski, P. TRIzol: A new reagent for optimal single-step isolation of RNA. Focus 15, 532-535, 1993.

    Staufenbiel, S. M., Penninx, B. W., Spijker, A. T., Elzinga, B. M., and van Rossum, E. F. Hair cortisol, stress exposure, and mental health in humans: a systematic review. Psychoneuroendocrinology 38, 1220-1235, 2013.

    Steer, J. H., Kroeger, K. M., Abraham, L. J., and Joyce, D.A. Glucocorticoids suppress tumor necrosis factor-alpha expression by human monocytic THP-1 cells by suppressing transactivation through adjacent NF-kappa B and c-Jun-activating transcription factor-2 binding sites in the promoter. The Journal of Biology Chemistry 275, 18432-18440, 2000.

    Stolte, E. H., van Kemenade, B. L. V., Savelkoul, H. F., and Flik, G. Evolution of glucocorticoid receptors with different glucocorticoid sensitivity. Journal of Endocrinology 190, 17-28, 2006.

    Sunyer, J. O. Fishing for mammalian paradigms in the teleost immune system. Nature Immunology 14, 320-326, 2013.

    Takeuchi, O., and Akira, S. Pattern recognition receptors and inflammation. Cell 140, 805-820, 2010.

    Tan, C., Huang, B., Chang, S. F., Ngoh, G. H., Munday, B., Chen, S. C., and Kwang, J. Determination of the complete nucleotide sequences of RNA1 and RNA2 from greasy grouper (Epinephelus tauvina) nervous necrosis virus, Singapore strain. Journal of General Virology 82, 647-653, 2001.

    Toledo, J. D., Caberoy, N. B., Quinitio, G. F., Choresca, C. H., and Nakagawa, H. Effects of salinity, aeration and light intensity on oil globule absorption, feeding incidence, growth and survival of early‐stage grouper Epinephelus coioides larvae. Fisheries science 68, 478-483, 2002.

    Tsui, W. C., Chen, J. C., and Cheng, S. Y. The effects of a sudden salinity change on cortisol, glucose, lactate, and osmolality levels in grouper Epinephelus malabaricus. Fish Physiology and Biochemistry 38, 1323-1329, 2012.

    Uribe, C., Folch, H., Enriquez, R., and Moran, G. Innate and adaptive immunity in teleost fish: a review. Veterinarni Medicina 56, 486-503, 2011.

    Van Bogaert, T., De Bosscher, K., and Libert, C. Crosstalk between TNF and glucocorticoid receptor signaling pathways. Cytokine and Growth Factor Reviews 21, 275-286, 2010.

    Van Bogaert, T., Vandevyver, S., Dejager, L., Van Hauwermeiren, F., Pinheiro, I., Petta, I., and Libert, C. Tumor necrosis factor inhibits glucocorticoid receptor function in mice a strong signal toward lethal shock. Journal of Biological Chemistry 286, 26555-26567, 2011.

    Vandevyver, S., Dejager, L., Van Bogaert, T., Kleyman, A., Liu, Y., Tuckermann, J., and Libert, C. Glucocorticoid receptor dimerization induces MKP1 to protect against TNF-induced inflammation. The Journal of Clinical Investigation 122, 2130, 2012.

    Vazzana, M., Vizzini, A., Salerno, G., Di Bella, M. L., Celi, M., and Parrinello, N. Expression of a glucocorticoid receptor (DlGR1) in several tissues of the teleost fish (Dicentrarchus labrax). Tissue and Cell 40, 89-94, 2008.

    Verhoog, N. J., Du Toit, A., Avenant, C., and Hapgood, J. P. Glucocorticoid-independent repression of tumor necrosis factor (TNF) α-stimulated interleukin (IL)-6 expression by the glucocorticoid receptor a potential mechanism for protection against an excessive inflammatory response. Journal of Biological Chemistry 286, 19297-19310, 2011.

    Vijayan, M. M., Raptis, S., and Sathiyaa, R. Cortisol treatment affects glucocorticoid receptor and glucocorticoid-responsive genes in the liver of rainbow trout. General and Comparative Endocrinology 132, 256-263, 2003.

    Wu, Y., and Zhou, B. P. TNF-α/NF-κB/Snail pathway in cancer cell migration and invasion. British Journal of Cancer 102, 639-644, 2010.

    Xu, J., Lupu, F., and Esmon, C. T. Inflammation, innate immunity and blood coagulation. Hamostaseologie 30, 5, 2010.

    Yazawa, R., Hirono, I., Ohira, T., and Aoki, T. Functional analysis of tumor necrosis factor gene promoter from Japanese flounder, Paralichthys olivaceus, using fish cell lines. Developmental and Comparative Immunology 29, 73-81, 2005.

    Yokoyama, S., Koshio, S., Takakura, N., Oshida, K., Ishikawa, M., Gallardo-Cigarroa, F. J., and Teshima, S. I. Effect of dietary bovine lactoferrin on growth response, tolerance to air exposure and low salinity stress conditions in orange spotted grouper Epinephelus coioides. Aquaculture 255, 507-513, 2006.

    Yoshikoshi, K., & Inoue, K. Viral nervous necrosis in hatchery‐reared larvae and juveniles of Japanese parrotfish, Oplegnathus fasciatus (Temminck & Schlegel). Journal of Fish Diseases, 13, 69-77, 1990.

    Young, H. A., Scolnick, E. M., and Parks, W. P. Glucocorticoid-receptor interaction and induction of murine mammary tumor virus. Journal of Biological Chemistry 250, 3337-3343, 1975.

    Zhang, L., Zhou, R., Li, X., Ursano, R. J., and Li, H. Stress-induced change of mitochondria membrane potential regulated by genomic and non-genomic GR signaling: a possible mechanism for hippocampus atrophy in PTSD. Medical Hypotheses 66, 1205-1208, 2006.

    Zou, J., Peddie, S., Scapigliati, G., Zhang, Y., Bols, N. C., Ellis, A. E., and Secombes, C. J. Functional characterisation of the recombinant tumor necrosis factors in rainbow trout, Oncorhynchus mykiss. Developmental and Comparative Immunology 27, 813-822, 2003.

    無法下載圖示 校內:2022-02-14公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE