簡易檢索 / 詳目顯示

研究生: 許哲維
Hsu, Je-Wei
論文名稱: 太陽光驅動2D碳催化劑同時產生雙氧水及有機物氧化之研究
Simultaneous solar-driven H2O-to-H2O2 and oxidation of organic pollutants by 2D carbon photocatalysts
指導教授: 王鴻博
Wang, Hong-Paul
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 130
中文關鍵詞: 原位紫外/可見光譜反應動力光觸媒碳化氮碳點酚醛樹酯高級氧化法雙氧水
外文關鍵詞: in situ UV/Vis, reaction kinetic, photocatalysts, carbon nitride, carbon dot, phenolic resin, advance oxidation processes, hydrogen peroxide
相關次數: 點閱:137下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 水污染日趨嚴重,高級氧化法應用於有機廢水處理受到廣泛注意。雙氧水為綠色化學氧化劑,可誘導高反應性物質(例如:∙OH)生成。但目前商業化製造雙氧水之蒽醌法受制於複雜操作、安全顧慮及有機溶劑二次污染等問題。因此本研究重點包括: (1)利用原位紫外/可見光譜即時監測代表性有機物之反應動力學;(2)發展新穎平面碳點修飾之碳氮複合物(GCN/PDI/CDs)應用於光驅動同時產生雙氧水及有機物氧化;及(3)利用改良之熱縮合法,將富氮單體併入酚醛樹酯,以提升太陽光驅動生成雙氧水之產率。建立原位紫外/可見光譜的量測方法,可達到同時氧化及監測有機物之目的,但廢水代表性有機污染物:苯、氯苯、萘、布洛酚及亞甲藍與雙氧水吸光度部分重疊干擾,採一階動力修正方法使之達到最小化,以獲得之反應動力參數:擬一階反應動力常數(kt)介於0.0026~0.0338 min-1,二階反應動力常數(k·OH)介於1.756×1011~1.78×1012 M-1min-1。經由簡單的熱沉浸法製備新穎平面GCN/PDI/CDs,改質之碳氮複合物於5小時可見光照射可以生成252 μM之雙氧水,此外,亞甲藍經3小時可見光照射,可有效光催化氧化,碳點具有優良的電子傳遞能力,可以有效降低電子與電洞再結合率,並活化雙氧水產生高反應性物質。另外,透過簡單酸化程序,將蜜勒單體與間苯二酚進行共聚合製備新穎球型富氮樹酯(RFM)促進光驅動雙氧水生成反應發生,吸收光譜分析顯示富氮樹酯可吸收可見光達700 nm、能隙約為1.8-2 eV。富氮樹酯經5小時可見光照射下可以生成195 μM之雙氧水,此外,相較於三嗪單體,庚嗪單體具有更好的導電性及光反應活性位置,結果清楚顯示此新型有機聚合物可應用於光驅動雙氧水生成及有機物氧化。所開發之原位紫外/可見光譜法可以提高有機物動力學研究之便捷性,並提供反應程序設計之重要參考依據,新穎碳催化劑具低成本及環境友善之優勢,可應用於有機物廢水處理。

    Advanced oxidation processes (AOPs) for organic wastewater treatments have received widely attention. Hydrogen peroxide (H2O2), being a green oxidant, is an important precursor to induce formation of highly reactive species (such as ∙OH) for AOPs. However, H2O2 has been produced by anthraquinone (AO) process which has many disadvantages such as complicated operation, high safety risk, and organic solvents pollution. Regardless of the high H2O2 yield rate in the AO process, high energy consumption is still the main challenge for the tolerable cost for AOPs. Thus, the major objectives of this study were: (1) Real-time determination for photocatalytic oxidation kinetic of presentative organic pollutants by in situ UV/Vis spectroscopy; (2) Simultaneously photocatalytic generation of H2O2 and on-site utilization for AOP by the new 2D planar carbon dot dispersed carbon nitride composite (GCN/PDI/CDs); (3) Photocatalytic H2O-to-H2O2 by the novel melem incorporated 3D spherical nitrogen-enriched resin photocatalysts by incorporation of melem into phenolic resin. An in situ UV/Vis spectroscopic cell was used to simultaneous monitor the oxidation of representative organic pollutants such as benzene, chlorobenzene, naphthalene, methylene blue and ibuprofen in wastewater. The interference of the UV/Vis absorption overlap between H2O2 and representative organic pollutants was minimized by justified raw kinetic data. The pseudo first-order rate constants (kt) were in the range of 0.0026-0.0338 min-1. The second-order rate constants (k·OH) for the reaction between representative organic pollutants and hydroxyl free radicals were 1.756×1011-1.78×1012 M-1min-1. The new 2D planar carbon dot (CD) dispersed carbon nitride (GCN/PDI/CD) composites were prepared by the facile impregnation-thermal method. Accumulated 252 μM of H2O2 were yielded in a 5-h visible light irradiation in the presence of the GCN/PDI/CD composites. Additionally, methylene blue could be photocatalytically oxidized within a 3-h visible light irradiation. Carbon dot, being an excellent electrons conductor, can effectively reduce the recombination of photo-excited electron and hole, and activate H2O2 to yield high reactive species such as ·OH.
    The novel 3D spherical nitrogen-enriched resin photocatalyst was prepared by copolymerization of resorcinol and melem via a simple acidification process for facilitating the photocatalytic H2O-to-H2O2 reaction. Their UV/Vis spectra show that the nitrogen-enriched resin have a strong absorbance between 200-700 nm, corresponding to a band gap energy of 1.8-2 eV under the visible light irradiation. Accumulated 195 μM of H2O2 can be yielded in a 5-h irradiation by the resin photocatalysts. In addition, the phenolic resin copolymerized with heptazine possessing a better conductivity and more photo-active sites has a high photocatalytic effectiveness. The developed in situ UV/Vis spectroscopic method can provide a fast reaction kinetic study for processes design. The novel carbon photocatalysts, having the advantages of a relatively low-cost and eco-friendly, can be used for the treatments of organic wastewater.

    摘要…………………………………………………………………..………..Ⅰ ABSTRACT……………………………………………………….………….Ⅱ 致謝……………………………………………………………………….…Ⅳ CONTENT…………………………………………………………………...Ⅴ LIST OF TABLES………………………………………………………….Ⅶ LIST OF FIGURES………………………………………………………..Ⅷ CHAPTER 1 INTRODUCTION 1 CHAPTER 2 LITERATURE REVIEW 4 2.1 Hydrogen peroxide (H2O2) 4 2.2 Photocatalytic H2O-to-H2O2 12 2.3 Photocatalysts development of graphitic carbon nitride 15 2.4 Phenolic resin photocatalysts 23 2.5 Application of carbon dots in water purification 25 CHAPTER 3 EXPERIMENT METHODS 28 3.1 Experimental overview 28 3.2 Reaction kinetic studies 31 3.3 Preparation of the carbon nitride based photocatalysts 31 3.3.1 Carbon dots 31 3.3.2 Graphitic carbon nitride (g-C3N4) 32 3.3.3 Modified carbon nitride composites 32 3.4 Preparation of resin based photocatalysts 33 3.4.1 Resorcin-formaldehyde resin 33 3.4.2 Resorcin-Formaldehyde-Melamine resin 33 3.4.3 Resorcin-Formaldehyde-Melem resin 33 3.5 Photocatalytic performance studies 34 3.5.1 Photocatalytic generation of H2O2 34 3.5.2 Photocatalytic oxidation of organic pollutants 35 3.6 Photocatalyst characterization methods 37 CHAPTER 4 RESULTS AND DISCUSSION 40 4.1 Reaction kinetic studies for photocatalytic oxidation of representative organic pollutants in wastewater with H2O2 40 4.2 Carbon dot dispersed g-C3N4 composites for photocatalytic oxidation of methylene blue 58 4.3 Solar-driven generation of H2O2 using resorcinol-formaldehyde-melem resins for photocatalytic oxidation of organic pollutants 83 CHAPTER 5 CONCLUSIONS 109 REFERENCES 110

    Ahmed, S. N., & Haider, W. J. N. (2018). Heterogeneous photocatalysis and its potential applications in water and wastewater treatment: a review. Nanotechnology, 29(34), 342001.
    Asghar, A., Raman, A. A. A., & Daud, W. M. A. W. J. J. o. c. p. (2015a). Advanced oxidation processes for in-situ production of hydrogen peroxide/hydroxyl radical for textile wastewater treatment: a review. Journal of cleaner production, 87, 826-838.
    Asghar, A., Raman, A. A. A., & Daud, W. M. A. W. J. J. o. c. p. (2015b). Advanced oxidation processes for in-situ production of hydrogen peroxide/hydroxyl radical for textile wastewater treatment: a review. Journal of cleaner production, 87, 826-838.
    Attallah, M., Borai, E., Shady, S. J. J. o. R., & Chemistry, N. (2014). Kinetic investigation for sorption of europium and samarium from aqueous solution using resorcinol–formaldehyde polymeric resin. Journal of Radioanalytical and Nuclear Chemistry, 299(3), 1927-1933.
    Babuponnusami, A., & Muthukumar, K. J. J. o. E. C. E. (2014). A review on Fenton and improvements to the Fenton process for wastewater treatment. Journal of Environmental Chemical Engineering, 2(1), 557-572.
    Baran, T., Wojtyła, S., Minguzzi, A., Rondinini, S., & Vertova, A. J. A. C. B. E. (2019). Achieving efficient H2O2 production by a visible-light absorbing, highly stable photosensitized TiO2. Applied Catalysis B: Environmental, 244, 303-312.
    Boczkaj, G., & Fernandes, A. J. C. E. J. (2017). Wastewater treatment by means of advanced oxidation processes at basic pH conditions: a review. Chemical Engineering Journal, 320, 608-633.
    Bourgin, M., Borowska, E., Helbing, J., Hollender, J., Kaiser, H.-P., Kienle, C., . . . Von Gunten, U. J. W. r. (2017). Effect of operational and water quality parameters on conventional ozonation and the advanced oxidation process O3/H2O2: kinetics of micropollutant abatement, transformation product and bromate formation in a surface water. Bourgin, 122, 234-245.
    Brandhuber, P., & Korshin, G. V. (2009). Methods for the Detection of Residual Concentations of Hydrogen Peroxide in Advanced Oxidation Processes: WateReuse Foundation.
    Buxton, G. V., Greenstock, C. L., Helman, W. P., Ross, A. B. J. J. o. p., & data, c. r. (1988). Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (⋅ OH/⋅ O− in aqueous solution. Journal of physical and chemical reference data, 17(2), 513-886.
    Campos, Martin, M, J., Blanco‐Brieva, G., & Fierro, J. L. J. A. C. I. E. (2006). Hydrogen peroxide synthesis: an outlook beyond the anthraquinone process. Angewandte Chemie, 45(42), 6962-6984.
    Cao, S., Low, J., Yu, J., & Jaroniec, M. J. A. M. (2015). Polymeric photocatalysts based on graphitic carbon nitride. Advanced Materials, 27(13), 2150-2176.
    Chen, Jibin, Che, H., Huang, K., Liu, C., & Shi, W. J. A. C. B. E. (2016). Fabrication of a ternary plasmonic photocatalyst CQDs/Ag/Ag2O to harness charge flow for photocatalytic elimination of pollutants. Applied Catalysis B: Environmental, 192, 134-144.
    Chen, Jingling, Hong, Z., Chen, Y., Lin, B., & Gao, B. J. M. L. (2015). One-step synthesis of sulfur-doped and nitrogen-deficient g-C3N4 photocatalyst for enhanced hydrogen evolution under visible light. Materials Letters, 145, 129-132.
    Chen, Ping, Wang, F., Chen, Z.-F., Zhang, Q., Su, Y., . . . Lv, W. J. A. C. B. E. (2017). Study on the photocatalytic mechanism and detoxicity of gemfibrozil by a sunlight-driven TiO2/carbon dots photocatalyst: The significant roles of reactive oxygen species. Applied Catalysis B: Environmental, 204, 250-259.
    Chen, J., Yao, B., Li, C., & Shi, G. J. C. (2013). An improved Hummers method for eco-friendly synthesis of graphene oxide. Carbon, 64, 225-229.
    Chu, Sheng, Wang Ying, Wang Cuicui, Yang Juncheng, & Zou, Z. J. I. j. o. h. e. (2013). Bandgap modulation of polyimide photocatalyst for optimum H2 production activity under visible light irradiation. International journal of hydrogen energy, 38(25), 10768-10772.
    Chu, Wang, Y., Guo, Y., Feng, J., Wang, C., Luo, W., . . . Zou, Z. J. A. C. (2013). Band structure engineering of carbon nitride: in search of a polymer photocatalyst with high photooxidation property. Acs Catalysis, 3(5), 912-919.
    Clarizia, L., Russo, D., Di Somma, I., Marotta, R., & Andreozzi, R. J. A. C. B. E. (2017). Homogeneous photo-Fenton processes at near neutral pH: a review. Applied Catalysis B: Environmental, 209, 358-371.
    Cole, C. A., Ochs, L. D., & Funnell, F. C. J. J. (1974). Hydrogen peroxide as a supplemental oxygen source. Journal (Water Pollution Control Federation), 2579-2592.
    Cui, Y., Ding, Z., Liu, P., Antonietti, M., Fu, X., & Wang, X. J. P. c. c. p. (2012). Metal-free activation of H2O2 by g-C3N4 under visible light irradiation for the degradation of organic pollutants. Physical chemistry, 14(4), 1455-1462.
    Daghrir, R., Drogui, P., Robert, D. J. I., & Research, E. C. (2013). Modified TiO2 for environmental photocatalytic applications: a review. Industrial & Engineering Chemistry Research, 52(10), 3581-3599.
    Dai, H., Shi, Y., Wang, Y., Sun, Y., Hu, J., Ni, P., . . . Chemical, A. B. (2014). A carbon dot based biosensor for melamine detection by fluorescence resonance energy transfer. Sensors and Actuators B: Chemical, 202, 201-208.
    Deng, W., Zhao, H., Pan, F., Feng, X., Jung, B., Abdel-Wahab, A., . . . technology. (2017). Visible-light-driven photocatalytic degradation of organic water pollutants promoted by sulfite addition. Environmental science & technology, 51(22), 13372-13379.
    Devi, P., Das, U., & Dalai, A. K. J. S. o. t. T. E. (2016). In-situ chemical oxidation: principle and applications of peroxide and persulfate treatments in wastewater systems. Science of the Total Environment, 571, 643-657.
    Di, J., Xia, J., Ge, Y., Li, H., Ji, H., Xu, H., . . . Li, M. J. A. C. B. E. (2015). Novel visible-light-driven CQDs/Bi2WO6 hybrid materials with enhanced photocatalytic activity toward organic pollutants degradation and mechanism insight. Applied Catalysis B: Environmental, 168, 51-61.
    Ding, Z., Chen, X., Antonietti, M., & Wang, X. J. C. (2011). Synthesis of transition metal‐modified carbon nitride polymers for selective hydrocarbon oxidation. ChemSusChem, 4(2), 274-281.
    Dong, F., Wang, Z., Sun, Y., Ho, W.-K., Zhang, H. J. J. o. c., & science, i. (2013). Engineering the nanoarchitecture and texture of polymeric carbon nitride semiconductor for enhanced visible light photocatalytic activity. Journal of colloid and interface science, 401, 70-79.
    Egorin, A., Tutov, M., Didenko, N., Slobodyuk, A., Marinin, D., Avramenko, V. J. J. o. R., & Chemistry, N. (2015). Effect of parameters of thermal treatment of resorcinol–formaldehyde resins on their chemical stability and 137 Cs uptake efficiency. Journal of Radioanalytical and Nuclear Chemistry, 304(1), 281-286.
    ElKhatat, A. M., & Al‐Muhtaseb, S. A. J. A. m. (2011). Advances in tailoring resorcinol‐formaldehyde organic and carbon gels. Advanced Materials, 23(26), 2887-2903.
    Elmolla, E. S., & Chaudhuri, M. J. D. (2010). Photocatalytic degradation of amoxicillin, ampicillin and cloxacillin antibiotics in aqueous solution using UV/TiO2 and UV/H2O2/TiO2 photocatalysis. Desalination, 252(1-3), 46-52.
    Escobar, J. A. P., Moctezuma, E., & Rosales, B. S. J. I. J. o. C. R. E. (2020). Heterojunctions for Photocatalytic Wastewater Treatment: Positive Holes, Hydroxyl Radicals and Activation Mechanism under UV and Visible Light. International Journal of Chemical Reactor Engineering, 1(ahead-of-print).
    Fan, X., Zhang, L., Cheng, R., Wang, M., Li, M., Zhou, Y., & Shi, J. J. A. C. (2015). Construction of graphitic C3N4-based intramolecular donor–acceptor conjugated copolymers for photocatalytic hydrogen evolution. Acs Catalysis, 5(9), 5008-5015.
    Fang, Shun, Xia, Y., Lv, K., Li, Q., Sun, J., & Li, M. J. A. C. B. E. (2016). Effect of carbon-dots modification on the structure and photocatalytic activity of g-C3N4. Applied Catalysis B: Environmental, 185, 225-232.
    Fang, Xiaoliang, Liu, S., Zang, J., Xu, C., Zheng, M.-S., . . . Zheng, N. J. N. (2013). Precisely controlled resorcinol–formaldehyde resin coating for fabricating core–shell, hollow, and yolk–shell carbon nanostructures. Nanoscale, 5(15), 6908-6916.
    Fischbacher, A., von Sonntag, C., & Schmidt, T. C. J. C. (2017). Hydroxyl radical yields in the Fenton process under various pH, ligand concentrations and hydrogen peroxide/Fe (II) ratios. Chemosphere, 182, 738-744.
    Fukuzumi, S., & Yamada, Y. J. C. (2016). Hydrogen peroxide used as a solar fuel in one‐compartment fuel cells. ChemElectroChem, 3(12), 1978-1989.
    Gao, H., Yan, S., Wang, J., Huang, Y. A., Wang, P., Li, Z., & Zou, Z. J. P. C. C. P. (2013). Towards efficient solar hydrogen production by intercalated carbon nitride photocatalyst. Physical chemistry, 15(41), 18077-18084.
    Gemo, N., Menegazzo, F., Biasi, P., Sarkar, A., Samikannu, A., Raut, D. G., . . . Boström, D. J. R. A. (2016). TiO 2 nanoparticles vs. TiO 2 nanowires as support in hydrogen peroxide direct synthesis: the influence of N and Au doping. RSC advances, 6(105), 103311-103319.
    Gomis, Berenguer, Alicia, Velasco, L. F., Velo-Gala, I., Ania, C. O. J. J. o. c., & science, i. (2017). Photochemistry of nanoporous carbons: Perspectives in energy conversion and environmental remediation. Journal of colloid and interface science, 490, 879-901.
    Gruenewald, M., Schirra, L. K., Winget, P., Kozlik, M., Ndione, P. F., Sigdel, A. K., . . . Fritz, T. J. T. J. o. P. C. C. (2015). Integer charge transfer and hybridization at an organic semiconductor/conductive oxide interface. The Journal of Physical Chemistry C, 119(9), 4865-4873.
    Hage, R., & Lienke, A. J. A. C. I. E. (2006). Applications of transition‐metal catalysts to textile and wood‐pulp bleaching. Angewandte Chemie, 45(2), 206-222.
    Hajian, R., Shams, N., & Parvin, A. J. C. J. o. C. (2009). DNA‐binding Studies of Daunorubicin in the Presence of Methylene Blue by Spectroscopy and Voltammetry Techniques. Chinese Journal of Chemistry, 27(6), 1055-1060.
    Hirakawa, H., Shiota, S., Shiraishi, Y., Sakamoto, H., Ichikawa, S., & Hirai, T. J. A. C. (2016). Au nanoparticles supported on BiVO4: effective inorganic photocatalysts for H2O2 production from water and O2 under visible light. ACS Catalysis, 6(8), 4976-4982.
    Hirano, K., Asami, M. J. R., & Polymers, F. (2013). Phenolic resins—100 years of progress and their future. Reactive and Functional Polymers, 73(2), 256-269.
    Hou, H., Zeng, X., & Zhang, X. J. A. C. I. E. (2019). Production of hydrogen peroxide through photocatalytic processes: a critical review of recent advances. Angewandte Chemie.
    Hsu, P.-C., Shih, Z.-Y., Lee, C.-H., & Chang, H.-T. J. G. C. (2012). Synthesis and analytical applications of photoluminescent carbon nanodots. Green Chemistry, 14(4), 917-920.
    Hu, Q., Ji, M., Di, J., Wang, B., Xia, J., Zhao, Y., . . . science, i. (2018). Ionic liquid-induced double regulation of carbon quantum dots modified bismuth oxychloride/bismuth oxybromide nanosheets with enhanced visible-light photocatalytic activity. Journal of colloid and interface science, 519, 263-272.
    Jürgens, B., Irran, E., Senker, J., Kroll, P., Müller, H., & Schnick, W. J. J. o. t. A. C. S. (2003). Melem (2, 5, 8-triamino-tri-s-triazine), an important intermediate during condensation of melamine rings to graphitic carbon nitride: Synthesis, structure determination by X-ray powder diffractometry, solid-state NMR, and theoretical studies. Journal of the American Chemical Society, 125(34), 10288-10300.
    Jeon, D., Kim, N., Bae, S., Han, Y., Ryu, J. J. A. a. m., & interfaces. (2018). WO3/conducting polymer heterojunction photoanodes for efficient and stable photoelectrochemical water splitting. ACS applied materials & interfaces, 10(9), 8036-8044.
    Jo, C. H., Dietrich, A. M., & Tanko, J. M. J. W. r. (2011). Simultaneous degradation of disinfection byproducts and earthy-musty odorants by the UV/H2O2 advanced oxidation process. Water research, 45(8), 2507-2516.
    Joy, J., Mathew, J., & George, S. C. J. i. j. o. h. e. (2018). Nanomaterials for photoelectrochemical water splitting–review. International journal of hydrogen energy, 43(10), 4804-4817.
    Köck-Schulmeyer, M., Villagrasa, M., de Alda, M. L., Céspedes-Sánchez, R., Ventura, F., & Barceló, D. J. S. o. t. t. e. (2013). Occurrence and behavior of pesticides in wastewater treatment plants and their environmental impact. Science of the total environment, 458, 466-476.
    Kan, M., Qian, X., Zhang, T., Yue, D., Zhao, Y. J. A. S. C., & Engineering. (2017). Highly Active IrO x Nanoparticles/Black Si Electrode for Efficient Water Splitting with Conformal TiO2 Interface Engineering. ACS Sustainable Chemistry & Engineering, 5(11), 10940-10946.
    Kim, M. G., Amos, L. W., & Barnes, E. E. J. J. o. P. S. P. A. P. C. (1993). Investigation of a resorcinol–formaldehyde resin by 13C‐NMR spectroscopy and intrinsic viscosity measurement. Journal of Polymer Science Part A: Polymer Chemistry, 31(7), 1871-1877.
    Kosaka, K., Yamada, H., Matsui, S., Echigo, S., Shishida, K. J. E. s., & technology. (1998). Comparison among the methods for hydrogen peroxide measurements to evaluate advanced oxidation processes: application of a spectrophotometric method using copper (II) ion and 2, 9-dimethyl-1, 10-phenanthroline. Environmental science & technology, 32(23), 3821-3824.
    Kosaka, K., Yamada, H., Shishida, K., Echigo, S., Minear, R. A., Tsuno, H., & Matsui, S. J. W. R. (2001). Evaluation of the treatment performance of a multistage ozone/hydrogen peroxide process by decomposition by-products. Water research, 35(15), 3587-3594.
    Kou, J., Lu, C., Wang, J., Chen, Y., Xu, Z., & Varma, R. S. J. C. r. (2017). Selectivity enhancement in heterogeneous photocatalytic transformations. Chemical reviews, 117(3), 1445-1514.
    Kumar, S., Baruah, A., Tonda, S., Kumar, B., Shanker, V., & Sreedhar, B. J. N. (2014). Cost-effective and eco-friendly synthesis of novel and stable N-doped ZnO/gC 3 N 4 core–shell nanoplates with excellent visible-light responsive photocatalysis. Nanoscale, 6(9), 4830-4842.
    Löwenberg, J., Wintgens, T. J. C. R. i. E. S., & Technology. (2017). PAC/UF processes: Current application, potentials, bottlenecks and fundamentals: A Review. Critical Reviews in Environmental Science and Technology, 47(19), 1783-1835.
    Lam, S.-M., Sin, J.-C., Abdullah, A. Z., Mohamed, A. R. J. D., & Treatment, W. (2012). Degradation of wastewaters containing organic dyes photocatalysed by zinc oxide: a review. Desalination and Water Treatment, 41(1-3), 131-169.
    Lester, Y., Avisar, D., & Mamane, H. J. E. t. (2010). Photodegradation of the antibiotic sulphamethoxazole in water with UV/H2O2 advanced oxidation process. Environmental technology, 31(2), 175-183.
    Lhotský, O., Krákorová, E., Mašín, P., Žebrák, R., Linhartová, L., Křesinová, Z., . . . Filipová, A. J. W. r. (2017). Pharmaceuticals, benzene, toluene and chlorobenzene removal from contaminated groundwater by combined UV/H2O2 photo-oxidation and aeration. Water research, 120, 245-255.
    Li, Jun, Wang, X., Wang, Y., Huang, Q., Dai, C., . . . Sebastian, P. J. J. o. N.-C. S. (2008). Structure and electrochemical properties of carbon aerogels synthesized at ambient temperatures as supercapacitors. Journal of Non-Crystalline Solids, 354(1), 19-24.
    Li, Xiaoming, Rui, M., Song, J., Shen, Z., & Zeng, H. J. A. F. M. (2015). Carbon and graphene quantum dots for optoelectronic and energy devices: a review. Advanced Functional Materials, 25(31), 4929-4947.
    Li, H., Zheng, B., Pan, Z., Zong, B., Qiao, M. J. F. o. C. S., & Engineering. (2018). Advances in the slurry reactor technology of the anthraquinone process for H 2 O 2 production. Frontiers of Chemical Science and Engineering, 12(1), 124-131.
    Li, X., Yu, J., Wageh, S., Al‐Ghamdi, A. A., & Xie, J. J. S. (2016). Graphene in photocatalysis: a review. Small, 12(48), 6640-6696.
    Lin, L., Ou, H., Zhang, Y., & Wang, X. J. A. C. (2016). Tri-s-triazine-based crystalline graphitic carbon nitrides for highly efficient hydrogen evolution photocatalysis. Acs Catalysis, 6(6), 3921-3931.
    Liu, Gang, Niu, P., Yin, L., & Cheng, H.-M. J. J. o. t. A. C. S. (2012). α-Sulfur crystals as a visible-light-active photocatalyst. Journal of the American Chemical Society, 134(22), 9070-9073.
    Liu, Xichuan, Li, S., Mei, J., Lau, W.-M., Mi, R., . . . Liu, L. J. J. o. M. C. A. (2014). From melamine–resorcinol–formaldehyde to nitrogen-doped carbon xerogels with micro-and meso-pores for lithium batteries. Journal of Materials Chemistry A, 2(35), 14429-14438.
    Liu, Yang, S., Zhang, S., Wang, H., Yu, H., Cao, Y., & Peng, F. J. I. J. o. H. E. (2018). Design of cocatalyst loading position for photocatalytic water splitting into hydrogen in electrolyte solutions. International journal of hydrogen energy, 43(11), 5551-5560.
    Liu, Ying, Yu, Y.-X., Zhang, W.-D. J. J. o. a., & compounds. (2013). Carbon quantum dots-doped CdS microspheres with enhanced photocatalytic performance. Journal of alloys and compounds, 569, 102-110.
    Liu, Zhongda, Shen, Q., Zhou, C., Fang, L., Yang, M., & Xia, T. J. C. (2018). Kinetic and mechanistic study on catalytic decomposition of hydrogen peroxide on carbon-nanodots/graphitic carbon nitride composite. Catalysts, 8(10), 445.
    Lousada, C. M., Yang, M., Nilsson, K., & Jonsson, M. J. J. o. M. C. A. C. (2013). Catalytic decomposition of hydrogen peroxide on transition metal and lanthanide oxides. Journal of Molecular Catalysis A: Chemical, 379, 178-184.
    Low, J., Cheng, B., & Yu, J. J. A. S. S. (2017). Surface modification and enhanced photocatalytic CO2 reduction performance of TiO2: a review. Applied Surface Science, 392, 658-686.
    Ma, L., Fan, H., Fu, K., Lei, S., Hu, Q., Huang, H., . . . Engineering. (2017a). Protonation of graphitic carbon nitride (g-C3N4) for an electrostatically self-assembling carbon@ g-C3N4 core–shell nanostructure toward high hydrogen evolution. ACS Sustainable Chemistry & Engineering, 5(8), 7093-7103.
    Ma, L., Fan, H., Fu, K., Lei, S., Hu, Q., Huang, H., . . . Engineering. (2017b). Protonation of graphitic carbon nitride (g-C3N4) for an electrostatically self-assembling carbon@ g-C3N4 core–shell nanostructure toward high hydrogen evolution. ACS Sustainable Chemistry & Engineering, 5(8), 7093-7103.
    Marschall, R. J. A. F. M. (2014). Semiconductor composites: strategies for enhancing charge carrier separation to improve photocatalytic activity. Advanced Functional Materials, 24(17), 2421-2440.
    Mase, K., Yoneda, M., Yamada, Y., & Fukuzumi, S. J. N. c. (2016). Seawater usable for production and consumption of hydrogen peroxide as a solar fuel. Nature communications, 7, 11470.
    Masih, D., Ma, Y., & Rohani, S. J. A. C. B. E. (2017). Graphitic C3N4 based noble-metal-free photocatalyst systems: a review. Applied Catalysis B: Environmental, 206, 556-588.
    Matilainen, A., & Sillanpää, M. J. C. (2010). Removal of natural organic matter from drinking water by advanced oxidation processes. Chemosphere, 80(4), 351-365.
    Miklos, D. B., Remy, C., Jekel, M., Linden, K. G., Drewes, J. E., & Hübner, U. J. W. r. (2018). Evaluation of advanced oxidation processes for water and wastewater treatment–A critical review. water research, 139, 118-131.
    Ming, Guangtian, Duan, H., Meng, X., Sun, G., Sun, W., . . . Lucia, L. J. C. E. J. (2016). A novel fabrication of monodisperse melamine–formaldehyde resin microspheres to adsorb lead (II). Chemical Engineering Journal, 288, 745-757.
    Ming, Hai, Ma, Z., Liu, Y., Pan, K., Yu, H., . . . Kang, Z. J. D. T. (2012). Large scale electrochemical synthesis of high quality carbon nanodots and their photocatalytic property. Dalton Transactions, 41(31), 9526-9531.
    Mishra, A., Mehta, A., Basu, S., Shetti, N. P., Reddy, K. R., & Aminabhavi, T. M. J. C. (2019). Graphitic carbon nitride (g–C3N4)–based metal-free photocatalysts for water splitting: a review. Carbon.
    Moniz, S. J., Shevlin, S. A., Martin, D. J., Guo, Z.-X., Tang, J. J. E., & Science, E. (2015). Visible-light driven heterojunction photocatalysts for water splitting–a critical review. Energy & Environmental Science, 8(3), 731-759.
    Moon, G.-h., Fujitsuka, M., Kim, S., Majima, T., Wang, X., & Choi, W. J. A. C. (2017). Eco-friendly photochemical production of H2O2 through O2 reduction over carbon nitride frameworks incorporated with multiple heteroelements. Acs Catalysis, 7(4), 2886-2895.
    Moon, G.-h., Kim, W., Bokare, A. D., Sung, N.-e., Choi, W. J. E., & Science, E. (2014). Solar production of H2O2 on reduced graphene oxide–TiO2 hybrid photocatalysts consisting of earth-abundant elements only. Energy & Environmental Science, 7(12), 4023-4028.
    Musker, A. (2003). Highly stabilised hydrogen peroxide as a rocket propellant. Paper presented at the 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit.
    Muthulingam, S., Lee, I.-H., Uthirakumar, P. J. J. o. c., & science, i. (2015). Highly efficient degradation of dyes by carbon quantum dots/N-doped zinc oxide (CQD/N-ZnO) photocatalyst and its compatibility on three different commercial dyes under daylight. Journal of colloid and interface science, 455, 101-109.
    Niu, P., Yin, L. C., Yang, Y. Q., Liu, G., & Cheng, H. M. J. A. M. (2014). Increasing the visible light absorption of graphitic carbon nitride (Melon) photocatalysts by homogeneous self‐modification with nitrogen vacancies. Advanced Materials, 26(47), 8046-8052.
    Niu, P., Zhang, L., Liu, G., & Cheng, H. M. J. A. F. M. (2012). Graphene‐like carbon nitride nanosheets for improved photocatalytic activities. Advanced Functional Materials, 22(22), 4763-4770.
    Nourmoradi, H., Nikaeen, M., & Khiadani, M. J. C. E. J. (2012). Removal of benzene, toluene, ethylbenzene and xylene (BTEX) from aqueous solutions by montmorillonite modified with nonionic surfactant: Equilibrium, kinetic and thermodynamic study. Chemical Engineering Journal, 191, 341-348.
    Paju, J., Pehk, T., & Christjanson, P. J. P. o. t. E. A. o. S. (2009). Structure of phenol-formaldehyde polycondensates. Proceedings of the Estonian Academy of Sciences, 58(1).
    Pan, H., Zhang, Y.-W., Shenoy, V. B., & Gao, H. J. A. C. (2011). Ab initio study on a novel photocatalyst: functionalized graphitic carbon nitride nanotube. Acs Catalysis, 1(2), 99-104.
    Pinto, C. F., Oliveira, R. d., Cavalli, V., & Giannini, M. J. B. O. R. (2004). Peroxide bleaching agent effects on enamel surface microhardness, roughness and morphology. Brazilian Oral Research, 18(4), 306-311.
    Pirsaheb, M., Moradi, S., Shahlaei, M., & Farhadian, N. J. J. o. h. m. (2018). Application of carbon dots as efficient catalyst for the green oxidation of phenol: Kinetic study of the degradation and optimization using response surface methodology. Journal of hazardous materials, 353, 444-453.
    Qunlai, C. (2008). Development of an anthraquinone process for the production of hydrogen peroxide in a trickle bed reactor—From bench scale to industrial scale. Chemical Engineering and Processing: Process Intensification, 47(5), 787-792.
    Rao, Y., Chu, W., & Wang, Y. J. A. C. A. G. (2013). Photocatalytic oxidation of carbamazepine in triclinic-WO3 suspension: Role of alcohol and sulfate radicals in the degradation pathway. Applied Catalysis A: General, 468, 240-249.
    Sargin, I., Yanalak, G., Arslan, G., & Patir, I. H. J. I. J. o. H. E. (2019). Green synthesized carbon quantum dots as TiO2 sensitizers for photocatalytic hydrogen evolution. International journal of hydrogen energy, 44(39), 21781-21789.
    Seo, J.-H., & Kim, H.-J. J. U. s. (2015). Effect of H2O2 bleaching with ultrasonication on the properties of thermomechanical pulp and unbleached kraft pulp. Ultrasonics sonochemistry, 23, 347-353.
    Sharma, S., Dutta, V., Singh, P., Raizada, P., Rahmani-Sani, A., Hosseini-Bandegharaei, A., & Thakur, V. K. J. J. o. C. P. (2019). Carbon quantum dot supported semiconductor photocatalysts for efficient degradation of organic pollutants in water: a review. Journal of cleaner production.
    Shen, J., Zhu, Y., Yang, X., & Li, C. J. C. c. (2012). Graphene quantum dots: emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices. Chemical communications, 48(31), 3686-3699.
    Shiraishi, Yasuhiro, Kanazawa, S., Kofuji, Y., Sakamoto, H., Ichikawa, S., . . . Hirai, T. J. A. C. I. E. (2014). Sunlight‐driven hydrogen peroxide production from water and molecular oxygen by metal‐free photocatalysts. Angewandte Chemie, 53(49), 13454-13459.
    Shiraishi, Y., Kanazawa, S., Sugano, Y., Tsukamoto, D., Sakamoto, H., Ichikawa, S., & Hirai, T. J. A. C. (2014). Highly selective production of hydrogen peroxide on graphitic carbon nitride (g-C3N4) photocatalyst activated by visible light. Acs Catalysis, 4(3), 774-780.
    Shiraishi, Y., Kanazawa, S., Tsukamoto, D., Shiro, A., Sugano, Y., & Hirai, T. J. A. C. (2013). Selective hydrogen peroxide formation by titanium dioxide photocatalysis with benzylic alcohols and molecular oxygen in water. Acs Catalysis, 3(10), 2222-2227.
    Shiraishi, Y., Sugano, Y., Ichikawa, S., Hirai, T. J. C. S., & Technology. (2012). Visible light-induced partial oxidation of cyclohexane on WO3 loaded with Pt nanoparticles. Catalysis Science & Technology, 2(2), 400-405.
    Shiraishi, Y., Takii, T., Hagi, T., Mori, S., Kofuji, Y., Kitagawa, Y., . . . Hirai, T. J. N. m. (2019). Resorcinol–formaldehyde resins as metal-free semiconductor photocatalysts for solar-to-hydrogen peroxide energy conversion. Nature materials, 18(9), 985-993.
    Shu, Z., Bolton, J. R., Belosevic, M., & El Din, M. G. J. W. R. (2013). Photodegradation of emerging micropollutants using the medium-pressure UV/H2O2 advanced oxidation process. Water research, 47(8), 2881-2889.
    Soni, H., & Pamidimukkala, P. S. J. M. R. B. (2018). Green synthesis of N, S co-doped carbon quantum dots from triflic acid treated palm shell waste and their application in nitrophenol sensing. Materials Research Bulletin, 108, 250-254.
    Su, J., Guo, L., Bao, N., & Grimes, C. A. J. N. l. (2011). Nanostructured WO3/BiVO4 heterojunction films for efficient photoelectrochemical water splitting. Nano letters, 11(5), 1928-1933.
    Suzuki, H., Araki, S., & Yamamoto, H. J. J. o. W. P. E. (2015). Evaluation of advanced oxidation processes (AOP) using O3, UV, and TiO2 for the degradation of phenol in water. Journal of Water Process Engineering, 7, 54-60.
    Tartakovsky, B., & Guiot, S. R. J. B. p. (2006). A comparison of air and hydrogen peroxide oxygenated microbial fuel cell reactors. Biotechnology progress, 22(1), 241-246.
    Teranishi, M., Naya, S.-i., & Tada, H. J. J. o. t. A. C. S. (2010). In situ liquid phase synthesis of hydrogen peroxide from molecular oxygen using gold nanoparticle-loaded titanium (IV) dioxide photocatalyst. Journal of the American Chemical Society, 132(23), 7850-7851.
    Teranishi, M., Naya, S.-i., & Tada, H. J. T. J. o. P. C. C. (2016). Temperature-and pH-dependence of hydrogen peroxide formation from molecular oxygen by gold nanoparticle-loaded titanium (IV) oxide photocatalyst. The Journal of Physical Chemistry C, 120(2), 1083-1088.
    Tsukamoto, D., Shiro, A., Shiraishi, Y., Sugano, Y., Ichikawa, S., Tanaka, S., & Hirai, T. J. A. c. (2012). Photocatalytic H2O2 production from ethanol/O2 system using TiO2 loaded with Au–Ag bimetallic alloy nanoparticles. Acs catalysis, 2(4), 599-603.
    Velasco, L. F., Lima, J. C., & Ania, C. J. A. C. I. E. (2014). Visible‐light photochemical activity of nanoporous carbons under monochromatic light. Angewandte Chemie, 53(16), 4146-4148.
    Wan, X., Liu, Y., Chai, X.-S., Li, Y., Guo, C. J. S. A. P. A. M., & Spectroscopy, B. (2017). A quint-wavelength UV spectroscopy for simultaneous determination of dichlorobenzene, chlorobenzene, and benzene in simulated water reduced by nanoscale zero-valent Fe/Ni bimetal. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 181, 55-59.
    Wang, , K., Li, Q., Liu, B., Cheng, B., Ho, W., & Yu, J. J. A. C. B. E. (2015). Sulfur-doped g-C3N4 with enhanced photocatalytic CO2-reduction performance. Applied Catalysis B: Environmental, 176, 44-52.
    Wang, Danjun, Guo, L., Zhen, Y., Yue, L., Xue, G., & Fu, F. J. J. o. M. C. A. (2014). AgBr quantum dots decorated mesoporous Bi 2 WO 6 architectures with enhanced photocatalytic activities for methylene blue. Journal of Materials Chemistry A, 2(30), 11716-11727.
    Wang, & Hu, A. J. J. o. M. C. C. (2014). Carbon quantum dots: synthesis, properties and applications. Journal of Materials Chemistry C, 2(34), 6921-6939.
    Wang, Long, J., Xu, L. J. J. C. r. i. e. s., & technology. (2012). Advanced oxidation processes for wastewater treatment: formation of hydroxyl radical and application. Critical Reviews in Environmental Science and Technology, 42(3), 251-325.
    Wang, Xinchen, Maeda, K., Thomas, A., Takanabe, K., Xin, G., . . . Antonietti, M. J. N. m. (2009). A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nature materials, 8(1), 76-80.
    Wang, Yang, Wu, N., Liu, C., Albolkany, M. K., Wang, M., . . . Liu, B. J. M. H. (2019). Stimuli-responsive anisotropic actuation of melem-formaldehyde polymer. Materials Horizons.
    Wang, Yang, Wu, N., Liu, C., Albolkany, M. K., Wang, M., . . . Liu, B. J. M. H. (2020). Stimuli-responsive anisotropic actuation of melem-formaldehyde polymer. Materials Horizons.
    Wang, & Zhang, P. J. J. o. h. m. (2011). Photocatalytic decomposition of perfluorooctanoic acid (PFOA) by TiO2 in the presence of oxalic acid. Journal of hazardous materials, 192(3), 1869-1875.
    Wang, K., Zhang, G., Li, J., Li, Y., Wu, X. J. A. a. m., & interfaces. (2017). 0D/2D Z-scheme heterojunctions of bismuth tantalate quantum dots/ultrathin g-C3N4 nanosheets for highly efficient visible light photocatalytic degradation of antibiotics. ACS applied materials & interfaces, 9(50), 43704-43715.
    Wen, J., Xie, J., Chen, X., & Li, X. J. A. s. s. (2017). A review on g-C3N4-based photocatalysts. Applied Surface Science, 391, 72-123.
    Xiang, Y., Fang, J., & Shang, C. J. W. r. (2016). Kinetics and pathways of ibuprofen degradation by the UV/chlorine advanced oxidation process. Water research, 90, 301-308.
    Xu, Hua, Yang, X., Li, G., Zhao, C., Liao, X. J. J. o. a., & chemistry, f. (2015). Green synthesis of fluorescent carbon dots for selective detection of tartrazine in food samples. Journal of agricultural and food chemistry, 63(30), 6707-6714.
    Xu, Xiaoyou, Ray, R., Gu, Y., Ploehn, H. J., Gearheart, L., . . . Scrivens, W. A. J. J. o. t. A. C. S. (2004). Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. Journal of the American Chemical Society, 126(40), 12736-12737.
    Yamada, Y., Yoneda, M., Fukuzumi, S. J. E., & Science, E. (2015). High and robust performance of H 2 O 2 fuel cells in the presence of scandium ion. Energy & Environmental Science, 8(6), 1698-1701.
    Yan, J., Wu, H., Chen, H., Zhang, Y., Zhang, F., & Liu, S. F. J. A. C. B. E. (2016). Fabrication of TiO2/C3N4 heterostructure for enhanced photocatalytic Z-scheme overall water splitting. Applied Catalysis B: Environmental, 191, 130-137.
    Yang, , L., Dong, G., Jacobs, D. L., Wang, Y., Zang, L., & Wang, C. J. J. o. c. (2017). Two-channel photocatalytic production of H2O2 over g-C3N4 nanosheets modified with perylene imides. Journal of catalysis, 352, 274-281.
    Yang, , S., Gong, Y., Zhang, J., Zhan, L., Ma, L., . . . Ajayan, P. M. J. A. m. (2013). Exfoliated graphitic carbon nitride nanosheets as efficient catalysts for hydrogen evolution under visible light. Advanced Materials, 25(17), 2452-2456.
    Ye, S., Wang, R., Wu, M.-Z., & Yuan, Y.-P. J. A. S. S. (2015). A review on g-C3N4 for photocatalytic water splitting and CO2 reduction. Applied Surface Science, 358, 15-27.
    Yu, W., Xu, D., & Peng, T. J. J. o. M. C. A. (2015). Enhanced photocatalytic activity of gC 3 N 4 for selective CO 2 reduction to CH 3 OH via facile coupling of ZnO: a direct Z-scheme mechanism. Journal of Materials Chemistry A, 3(39), 19936-19947.
    Zangeneh, H., Zinatizadeh, A., Habibi, M., Akia, M., Isa, M. H. J. J. o. I., & Chemistry, E. (2015). Photocatalytic oxidation of organic dyes and pollutants in wastewater using different modified titanium dioxides: A comparative review. Journal of Industrial and Engineering Chemistry, 26, 1-36.
    Zappi, M., White, K., Hwang, H.-M., Bajpai, R., Qasim, M. J. J. o. t. A., & Association, W. M. (2000). The fate of hydrogen peroxide as an oxygen source for bioremediation activities within saturated aquifer systems. Journal of the Air & Waste Management Association, 50(10), 1818-1830.
    Zeng, X., Wang, Z., Meng, N., McCarthy, D. T., Deletic, A., Pan, J.-h., & Zhang, X. J. A. C. B. E. (2017). Highly dispersed TiO2 nanocrystals and carbon dots on reduced graphene oxide: Ternary nanocomposites for accelerated photocatalytic water disinfection. Applied Catalysis B: Environmental, 202, 33-41.
    Zhang, , J., Zhang, M., Yang, C., & Wang, X. J. A. m. (2014). Nanospherical carbon nitride frameworks with sharp edges accelerating charge collection and separation at a soft photocatalytic interface. Advanced Materials, 26(24), 4121-4126.
    Zhang, Guan, Ni, C., Liu, L., Zhao, G., Fina, F., & Irvine, J. T. J. J. o. M. C. A. (2015). Macro-mesoporous resorcinol–formaldehyde polymer resins as amorphous metal-free visible light photocatalysts. Journal of Materials Chemistry A, 3(30), 15413-15419.
    Zhang, Hui, Zhao, L., Geng, F., Guo, L.-H., Wan, B., & Yang, Y. J. A. C. B. E. (2016). Carbon dots decorated graphitic carbon nitride as an efficient metal-free photocatalyst for phenol degradation. Applied Catalysis B: Environmental, 180, 656-662.
    Zhang, Jinshui, Sun, J., Maeda, K., Domen, K., Liu, P., . . . Science, E. (2011). Sulfur-mediated synthesis of carbon nitride: band-gap engineering and improved functions for photocatalysis. Energy & Environmental Science, 4(3), 675-678.
    Zheng, HB, Chen, W., Gao, H., Wang, Y., Guo, H., . . . Zhang, J. J. J. o. M. C. C. (2017). Melem: an efficient metal-free luminescent material. Journal of Materials Chemistry C, 5(41), 10746-10753.
    Zheng, Ting, X., Ananthanarayanan, A., Luo, K. Q., & Chen, P. J. S. (2015). Glowing graphene quantum dots and carbon dots: properties, syntheses, and biological applications. Small, 11(14), 1620-1636.
    Zhou, Hongtao, Wei, C., Zhang, F., Liao, J., Hu, Y., & Wu, H. J. J. o. C. P. (2018). Energy-saving optimization of coking wastewater treated by aerobic bio-treatment integrating two-stage activated carbon adsorption. Journal of cleaner production, 175, 467-476.
    Zhou, Huanhuan, Xu, S., Su, H., Wang, M., Qiao, W., . . . Long, D. J. C. c. (2013). Facile preparation and ultra-microporous structure of melamine–resorcinol–formaldehyde polymeric microspheres. Chemical communications, 49(36), 3763-3765.
    Zhu, X., & Logan, B. E. J. J. o. h. m. (2013). Using single-chamber microbial fuel cells as renewable power sources of electro-Fenton reactors for organic pollutant treatment. Journal of hazardous materials, 252, 198-203.

    無法下載圖示 校內:2025-05-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE