簡易檢索 / 詳目顯示

研究生: 石孟崢
Shih, Meng-Cheng
論文名稱: 智慧路邊停車導引系統創新服務之探索性研究─以臺南市為例
Exploratory Research on Innovative Service of Smart Roadside Parking Guidance System: A Case Study of Tainan City
指導教授: 魏健宏
Wei, Chien-Hung
學位類別: 碩士
Master
系所名稱: 管理學院 - 交通管理科學系
Department of Transportation and Communication Management Science
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 109
中文關鍵詞: 智慧路邊停車差別訂價需求預測使用者偏好交通管理交通模擬
外文關鍵詞: Smart Roadside Parking, Price Discrimination, Demand Forecasting, User Preference, Traffic Management, Traffic Simulation
相關次數: 點閱:144下載:57
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著經濟行為活絡與生活水準提升,台灣地區的私人運具持有率仍持續增加,由於停車供給增加不易,因此都會區時常面臨嚴重的停車供給不足問題。路邊停車格係政府提供的公共財,有其存在之必要,因此當出現停車供需失衡的情況,需要透過適當之交通管理的手段加以改善,良好的路邊停車管理可以避免因為停車需求競爭而導致的交通壅塞與燃料耗費。
    「路邊車格收費」乃政府針對使用公共財之行為進行收費及管理而施行之政策,然而當前收費方式多採單一且低價機制,長時間占用停車格的情況屢見不鮮,停車格周轉率低落之停車環境使欲停車者持續繞行於車流中。若納入時間及空間效用因素之特性,導入差別訂價策略,在離峰時段或無人停放區域降低費率,尖峰時段及周轉率較低區域提升費率,利用價格因素導引民眾選擇停車位置,使停車格能更加平均的被使用,不僅離峰時段可從低價受益,也能提升尖峰時段獲得停車位之可能性。
    台南市為台灣主要都市中,智慧停車服務建置最為完善的城市,因此選擇台南市作為研究的地點,進行創新服務的展示。主要理念係改良現有之智慧停車APP服務內容與效能,繪製服務藍圖並藉由差別訂價以及需求預測方式,創新智慧路邊停車導引服務。利用智慧停車系統取得之即時停車數據建構需求預測模式,預測各時段停放情形用以研擬差別定價,並發放問卷了解消費者對於差別訂價的偏好,整合需求預測結果與問卷分析結果,建構一套智慧停車服務系統,納入會員管理系統進行服務失效等相關補償措施,成為貼近消費者需求與偏好的服務平台。此外透過VISSIM軟體進行交通模擬,預估本服務對於市區道路交通之效益。本研究探索此服務中重要子系統的可能性,期望能夠使公共停車資源得以有效利用,同時達成改善都市交通管理之政策目標。

    With the increase in economic behavior the private vehicles continue to grow in Taiwan. However, it is not easy to increase parking supply especially in metropolitan area. Therefore, people often faced with the problem of imbalance between parking supply and demand. When there is a parking supply and demand problem it needs to be improved by intelligent traffic management method. Great roadside parking management can avoid traffic congestion and fuel consumption.
    “On-street parking fee" is a policy implemented by the government to charge and manage the use of public goods. However, the current charging method mostly adopts a single and low-cost method. Therefore, it is common for parking spaces to be occupied for a long time and the turnover rate of parking spaces is low. The parking environment makes those who want to park continue to detour in the traffic. Introduce a differential pricing strategy to reduce rates during off-peak hours or where no one parks and increase rates during peak hours and areas with low turnover rates. It can use price factors to guide people to choose parking locations, so that parking grids can be used more evenly.
    Tainan City is the city with the most complete smart parking services among the major cities in Taiwan. Therefore, Tainan City was chosen as the research location to showcase innovative services. The main idea is to improve the service content and efficiency of the existing smart parking APP. Draw a service blueprint and innovate smart roadside parking guidance services by means of differential pricing and demand forecasting. Use the real-time parking data to construct a demand forecast model and issue questionnaires to understand consumers' preferences for differential pricing. Construct a smart parking service system based on the above concepts and add a member management system to compensate for service failures in order to become a service platform that meets the needs and preferences of consumers. In addition, the benefits of this service to urban road traffic are estimated through traffic simulation. This study explores the potential of this important subsystem of services, with the hope that it will enable the efficient use of public parking resources while achieving the policy goal of improving urban traffic management.

    第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 2 1.3 研究流程 3 第二章 文獻回顧 5 2.1 服務設計與藍圖 5 2.1.1 服務設計 5 2.1.2 服務藍圖 6 2.2 營收管理 8 2.2.1 需求預測 9 2.2.2 差別訂價 11 2.3 行銷管理 13 2.3.1 消費者行為的定義 13 2.3.2 消費者行為模式 14 2.4 國內現有之路邊停車系統 15 2.5 交通模擬 17 第三章 研究方法 19 3.1 服務藍圖 19 3.1.1 服務藍圖建立之步驟 19 3.1.2 服務藍圖架構 20 3.2 需求預測 21 3.2.1 線性迴歸法 21 3.2.2 自我迴歸法模型架構 23 3.3 問卷設計方法 23 3.3.1 敘述性偏好法 24 3.3.2 願付價格 26 3.4 問卷分析方法 28 3.4.1 個體選擇模式 28 3.4.2 多項羅吉特模式 28 3.4.3 模式檢定 29 3.4.4 彈性分析 30 3.5 交通模擬分析 30 第四章 研究實驗設計 32 4.1 研究實驗地點選擇與服務藍圖建置 32 4.1.1 研究時間與空間選擇 32 4.1.2 建置服務藍圖 33 4.1.3 服務藍圖接觸點說明 34 4.2 需求預測模式建構計畫 37 4.2.1 研究區域基本資料 37 4.2.2 需求預測模式建立 39 4.3 問卷設計 40 4.3.1 問卷設計方式與內容 40 4.3.2 問卷受測對象與範圍 40 4.3.3 假設情境水準 41 4.3.4 問卷屬性之直交表設計 42 第五章 研究實驗結果分析 44 5.1 服務藍圖分析 44 5.1.1 使用案例圖分析 44 5.1.2 差別訂價系統 47 5.1.3 會員管理系統 47 5.1.4 補償系統 48 5.2 需求預測結果分析 49 5.2.1 原始資料處理 50 5.2.2 需求預測模型建構 51 5.2.3 需求預測模型結果分析 54 5.3 問卷結果分析 55 5.3.1 變數選取說明 56 5.3.2 問卷樣本特性分析 57 5.3.3 多項羅吉特模式問卷結果分析 62 5.3.4 彈性分析結果 66 第六章 交通模擬 70 6.1 VISSIM道路環境設定 70 6.1.1 道路繪製與道路參數設定 70 6.1.2 車流匯入與路徑設定 72 6.1.3 號誌設定 73 6.1.4 驗證道路環境設計 74 6.2 VISSIM模擬情境設定 75 6.2.1 並排停車 75 6.2.2 巡遊車流(繞行) 76 6.2.3 巡遊車流(迴轉) 76 6.3 VISSIM模擬結果分析 77 6.3.1 平均停等延滯時間 77 6.3.2 平均排隊長度 77 6.3.3平均旅行時間 78 6.3.4小結 78 第七章 結論與建議 79 7.1 結論 79 7.2 建議 81 參考文獻 83 附錄一 各路段需求預測模擬結果 86 附錄二 路邊停車格彈性費率與停車導引服務之偏好調查問卷 106

    江宇柔(2019),停車服務設計之研究,大同大學工業設計研究所碩士論文。
    何舒軒、宋同正(2014),「綜論服務設計學術研究發展」 設計學報 ,第十九卷第二期,頁 53-74。
    宋同正(2014),「序-服務設計的本質內涵和流程工具」 設計學報 ,第十九卷第二期,頁 1-8。
    李元恕(2009),「服務失誤情境、服務補救與顧客認知公平對顧客關係回應之影響」, 顧客滿意學刊 ,第五卷第二期,頁 37-60。
    李香怡(2005),時間差別定價對台北捷運乘客旅運行為之影響,國立交通大學交通運輸研究所碩士論文。
    林東慶(2007),以灰色理論和類神經網路預測航空客、貨運量之變化,國立成功大學民用航空所碩士論文。
    林筱涵(2016),台北市巷道停車格收費對停車行為與特 性之影響 -以文山內湖為例,國立陽明交通大學運輸與物流管理學系研究所碩士論文。
    侯相境(2014),應用服務藍圖在三鐵共構車站之服務品質與顧客滿意度之研究 -以板橋車站為例,國立台北科技大學機電整合研究所碩士論文。
    柯明政(2012),應用灰色預測模型於短期剩餘可停車位之研究,國立高雄第一科技大學系統資訊與控制研究所碩士論文。
    胡凱傑、杜家妤(2014),「航空公司服務失誤與服務補救之類型分析 :應用服務藍圖與關鍵事件技術」, 運輸計劃季刊 ,第四十三卷第二期,頁 205-236。
    許言、朱俊漢(2014),「觀光旅館業之資訊服務設計:以 DSIS為例」, 設計學報 ,第十九卷第二期,頁 9-28。
    曾琬歆(2017),應用需求差別訂價於停車場營運管理之研究,國立成功大學交通管理科學研究所碩士論文。
    游智元(2006),時間序列方法於台鐵短期旅運需求預測之研究,國立成功大學交通管理科學研究所碩士論文。
    蔡富凱(2009),應用類神經網路於票價之訂定 —以臺灣高鐵為例,朝陽科技大學工業工程與管理系碩士論文。
    盧玫君(2002),企業網站揭露財務資訊對股價的影響,國立成功大學會計學系研究所碩士論文。
    賴泰元(2000),利用時間序列 模式探討台鐵旅運需求 ─以高雄站為例,國立成功大學交通管理科學研究所碩士論文。
    魏健宏、蔡宗憲、施智婷(2014),「服務需求預測與旅客票種偏好之研究 ─以某國道客運公司為例」,運輸學刊運輸學刊,第二十六卷第一期,頁,第二十六卷第一期,頁89-116。。
    Engel, J. F., Blackwell, R. D. and Kollat, D. T. (1993), Consumer Behavior, New York: Dryden Press.
    Go, M., & Kim, I. (2018). In-flight NCCI management by combining the Kano model with the service blueprint: A comparison of frequent and infrequent flyers. Tourism Management, Vol. 69, pp. 471-486.
    Holguín-Veras, J. and Allen, B. (2013), “Time of day pricing and its multi-dimensional impacts: A stated preference analysis,” Transportation Research Part A: Policy and Practice, Vol.55, pp. 12-26.
    Hössinger, R., Link, C., Sonntag, A. and Stark, J. (2017), “Estimating the price elasticity of fuel demand with stated preferences derived from a situational approach,” Transportation Research Part A: Policy and Practice, Vol. 103, pp. 154-171.
    Kelley, S. W. and Davis, M. A. (1994), “Antecedents to customer expectations for service recovery,” Journal of the Academy of Marketing Science, Vol. 22, No. 1, pp. 52-61.
    Lee, C. H., Wang, Y. H. and Trappey, A. J. C. (2015), “Service design for intelligent parking based on theory of inventive problem solving and service blueprint,” Advanced Engineering Informatics, Vol. 29, No. 3, pp. 295-306.
    Lin, D., Yang, X. and Gao, C. (2013), “VISSIM-based Simulation Analysis on Road Network of CBD in Beijing, China,” Procedia - Social and Behavioral Sciences, Vol. 96, No. 6, pp. 461-472.
    Lin, H. and Wang, Y. (2009), “Competition and Price Discrimination: Evidence from the Parking Garage Industry,” Journal of Industrial Economics, Vol. 63, No. 3, pp. 522-548.
    Lin, L. C., Cheng, C. Y. and Chen, H. Y. (2019), “A real-time parking service with proxy re-encryption in vehicular cloud computing,” Engineering Applications of Artificial Intelligence, Vol. 85, pp. 208-213.
    Lu, X., Ma, C. and Qiao, Y. (2021), “Short-term demand forecasting for online car-hailing using ConvLSTM networks,” Physica A: Statistical Mechanics and its Applications, Vol. 570, No.15, pp. 153838.
    Luo, H., Cai, J., Zhang, K., Xie, R. and Zheng, L. (2021), “A multi-task deep learning model for short-term taxi demand forecasting considering spatiotemporal dependences,” Journal of Traffic and Transportation Engineering (English Edition), Vol. 8, pp. 83-94.
    Mark, T. L. and Swait, J. (2004), “Using Stated Preference and Revealed Preference Modeling to Evaluate Prescribing Decisions,” Health Economics, Vol. 13, pp. 563-573.
    McGill, J. I. and G. J. van Ryzin (1999), "Revenue Management: Research Overview and Prospects." TRANSPORTATION SCIENCE, Vol. 33(2), pp. 233-256.
    Naim, I., Mahara, T. and Idrisi, A. R. (2018), “Effective Short-Term Forecasting for Daily Time Series with Complex Seasonal Patterns,” Procedia Computer Science, Vol. 132, pp.1832-1841.
    Nicosia, F. M. (1966), Consumer Decision Processes-Marketing and Advertising Implications, New Jersey: Prentice-Hall.
    Pierce, G., Willson, H. and Shoup, D. (2015), “Optimizing the use of public garages: Pricing parking by demand,” Transport Policy, Vol. 44, pp. 89-95.
    Pierce, G., Willson, H. and Shoup, D. (2015), “Optimizing the use of public garages: Pricing parking by demand,” Transport Policy, Vol. 44, pp. 89-95.
    Ren, L., Zhu, Bin. and Xu, Z. (2021), “Robust consumer preference analysis with a social network,” Information Sciences, Vol. 566, pp. 379-400.
    Shostack, G. L. (1982), “How to design a service,” European Journal of Marketing, Vol. 16, No. 1, pp. 49-63.
    Shostack, G. L. (1987), “Service positioning through structural change,” Journal of Marketing, Vol. 51, No. 1, pp. 34-43.
    Smith, A. K., Bolton, R. N. and Wagner, J. (1999), “A Model of Customer Satisfaction with Service Encounters Involving Failure and Recovery,” Journal of Marketing Research, Vol. 26, No. 4, pp. 356-372.
    Stickdorn, M. and Schneider, J. (2011), This is service design thinking: Basics, tools, cases, The Netherlands: BIS Publishers.
    Wang, J., Lv, W., Jiang, Y., Qin, S. and Li, J. (2021), “A multi-agent based cellular automata model for intersection traffic control simulation,” Physica A: Statistical Mechanics and its Applications, Vol. 584, pp. *-**.
    Wang, H., Li, R., Wang, X. and Shang, P. (2020), “Effect of on-street parking pricing policies on parking characteristics: A case study of Nanning,” Transportation Research Part A, Vol. 137, pp. 65-78.
    Williams, C. and Buswell, J. (2003), Service Quality in Leisure and Tourism, UK: CABI Publishing.
    Zeithaml, V. A., and Bitner, N. J. (1996), Service Marketing, New York: McGraw Hill.
    Zeithaml, V. A., Bitner, M. J., & Gremler, D. D. (2006). Service marketing: Integrating customer focus across the firm (4th ed.), New York: McGraw-Hill/Irwin.
    Zhou, K., Zhao, P. and Hu, F. (2019), “Research on Product Service System Design Based on Activity and Function — Take the Household Water Purifier as an Example,” Procedia CIRP, Vol. 83, pp. 495-500.
    Zhu, L., Tang, Y. and Yang, D. (2019), “Cellular automata-based modeling and simulation of the mixed traffic flow of vehicle platoon and normal vehicles,” Physica A: Statistical Mechanics and its Applications, Vol. 584, pp. *-**.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE