簡易檢索 / 詳目顯示

研究生: 岳晏慈
Yueh, Yen-Tzu
論文名稱: 無樁式電動滑板車共享微移動服務系統之眾包運補與充電策略研究
Crowdsourced Repositioning and Recharging Strategies for Shared Micromobility Services by Free Floating E-scooter Sharing Systems
指導教授: 王逸琳
Wang, I-Ling
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業與資訊管理學系
Department of Industrial and Information Management
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 55
中文關鍵詞: 無樁式共享電動滑板車動態運補眾包運補整數規劃
外文關鍵詞: Free-floating, E-scooter Sharing, Dynamic Repositioning, Crowdsourcing, Integer Programming
相關次數: 點閱:94下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 「微移動」為一種低速的個人移動模式,可有效解決都會中通勤或物流需求最棘手的「最初及最後一哩路」問題,同時可達成節能滅碳的效果。近年來,無樁式共享之電動滑板車因其體積、動力方式與機動性皆優於自行車,逐漸成為大都會區中新一代流行的共享微移動服務系統。該類系統成功與否的重要關鍵,在於能否有效地執行載具運補任務,亦即將合宜數量的滿電載具適時地佈署在合宜地區。若以傳統的貨車運補方式來處理,勢必將因電動滑板車體積較小且四散各處而導致運補效率不彰。據此,本研究建議以群眾外包的「眾包」方式來處理無樁式共享電動滑板車之運補及充換電作業,藉由作業研究手法,找出最適的群眾外包運補與充換電作業配對方式,以達成群眾藉由改善系統服務水準且亦能同時賺取外快的雙贏效果。
    無樁式系統的分析策略上,本研究以「虛擬站點」方式將原先的營運區域分成數區、一區以單一虛擬站點來整合並簡化該區同一時段的租還需求。我們先探討在無運補作業的情境下,如何同時考慮載具之電力消耗與各區的各期歷史租借需求,計算出各虛擬站點應佈署的「期初電動滑板車數」,以極大化被滿足之租車需求量為目標。
    良好的期初車輛配置僅能保障當天前幾期的租借需求較能被滿足,然而租車需求通常依時地而變動,若無合宜的運補策略,需求尖峰時期仍常會發生缺車,因此本研究將探討週期性的「動態運補機制」,在固定系統總車數的情境下,決定期初車數配置與運補工作,改善供給不均以提升服務水準。並設定以下三種運補情境,分別建立三個數學規劃模式以實作日間車輛動態運補工作:(1)「動態車輛分區統籌運補模式」:營運公司利用現有的運補車與員工進行運補;(2)「動態車輛眾包運補模式」:將運補工作分派給具合作關係的群眾;(3)「動態車輛眾包運補之群眾招募模式」:招募新群眾以完成運補工作。最後將以前兩部分計算出的期初車輛佈署為基準,探討其「靜態隔夜運補機制」雇用並指揮有空閒的群眾,依指示沿路搜集閒置且待充換電的電動滑板車,將之帶回其家中充換電,並指揮其在隔日清晨將滿電之滑板車佈署合宜數量在合宜的地點上。本研究針對上述之靜態運補機制,將分為兩階段探討,第一階段將運補工作分派給曾有運補紀錄的群眾後,第二階段再將剩餘未完成之運補工作以招募新群眾而完成,設計並實作兩階段個別的整數規劃模式,以擬定最能滿足租借需求的靜態運補策略。

    A Micromobility sharing service, such as an e-scooter sharing system, can well solve the first and last mile problem in an urban area. This thesis focused on issues related to the free-floating e-scooter sharing system. We first investigate the initial vehicle deployment problem to deploy appropriate quantities and locations of e-scooters at the beginning of the operation and then discuss dynamic and static repositioning strategies conducted by crowdsourcing. We introduce the "virtual station" that represents a virtual center to consolidate all the vehicle rentals and returns in that region so that we can simplify the operations in a free-floating system as a station-based system.
    We discuss the quantity and location of the deployed e-cooters for each virtual station to maximize the satisfied rental demand. We also consider the battery consumption of e-scooters and the historical rental demand under the situation of no repositioning work.
    We explore the periodic "dynamic repositioning" in the context of the fixed e-scooter fleet size to improve the service level. This includes the initial vehicle deployment and daytime repositioning to improve the imbalanced fleet distribution. We set up three repositioning scenarios and establish three mathematical models to implement the daytime vehicle dynamic repositioning.
    The initial vehicle deployment calculated in the previous two parts was used as a benchmark to explore its "static overnight repositioning mechanism." We consider two stages for the static repositioning mechanism. In the first stage, after assigning the repositioning work to some experienced crowds, the remaining repositioning work will be completed by the newly recruited crowds in the second stage. And then, we design and implement a two-stage integer programming model to formulate a static repositioning strategy that best meets the rental demand.

    目錄 摘要 I 誌謝 VII 目錄 VIII 表目錄 XI 圖目錄 XII 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機 2 1.3 研究目的 3 1.4 論文架構 5 第二章 文獻回顧 6 2.1載具共享微移動服務系統之相關文獻 6 2.1.1共享微移動 6 2.1.2期初車輛佈署 7 2.1.3靜態運補 7 2.1.4 動態運補 9 2.2 眾包運送之相關文獻 12 第三章 無樁式電動滑板車共享系統期初車輛佈署研究 15 3.1資料前處理-設置虛擬站點 15 3.2車輛佈署數學模式 15 3.2.1問題描述 15 3.2.2問題假設 17 3.2.3數學模式 17 3.3 數值測試與分析 22 3.3.1測試資料 22 3.3.2參數設定 22 3.3.3數值測試 23 第四章 無樁式電動滑板車共享系統動態運補研究 26 4.1資料前處理 (與3.1節提及之資料前處理所使用的方法相同) 26 4.2動態車輛分區統籌運補數學模式 26 4.2.1問題描述 26 4.2.2問題假設 26 4.2.3數學模式 27 4.3動態車輛眾包運補數學模式 30 4.3.1問題描述 30 4.3.2問題假設 32 4.3.3數學模式 32 4.4動態車輛眾包運補群眾招募問題之數學模式 36 4.4.1問題描述 36 4.4.2問題假設 36 4.4.3數學模式 37 4.5 數值測試與分析 39 4.5.1測試資料 39 4.5.2參數設定 40 4.5.3數值測試 40 第五章 無樁式電動滑板車共享系統靜態眾包運補研究 43 5.1資料前處理 43 5.1.1虛擬站點(虛擬站點轉化與3.1資料前處理章節所使用的方法相同) 43 5.1.2虛擬站點期初佈署車數 43 5.2靜態車輛眾包運補數學模式 43 5.2.1問題描述 43 5.2.2問題假設 44 5.2.3數學模式 44 5.3靜態車輛眾包運補群眾招募問題之數學模式 45 5.3.1問題描述 45 5.3.2問題假設 46 5.3.3數學模式 46 5.4 數值測試與分析 48 5.4.1測試資料 48 5.4.3數值測試 48 第六章 結論與未來研究方向 50 6.1 結論 50 6.2 未來研究方向 51 參考文獻 53

    Benchimol, M., Benchimol, P., Chappert, B., De La Taille, A., Laroche, F., Meunier, F., & Robinet, L. (2011). Balancing the stations of a self service “bike hire” system. RAIRO-Operations Research, 45(1), 37-61.
    Bulhões, T., Subramanian, A., Erdoğan, G., & Laporte, G. (2018). The static bike relocation problem with multiple vehicles and visits. European Journal of Operational Research, 264(2), 508-523.
    Caggiani, L., Camporeale, R., Ottomanelli, M., & Szeto, W. Y. (2018). A modeling framework for the dynamic management of free-floating bike-sharing systems. Transportation Research Part C: Emerging Technologies, 87, 159-182.
    Cheng, M. M. (2016). Sharing economy: A review and agenda for future research. International Journal of Hospitality Management, 57, 60-70. Retrieved from <Go to ISI>://WOS:000383010200007.
    Cheng, S. F., Chen, C., Kandappu, T., Lau, H. C., Misra, A., Jaiman, N., ... & Koh, D. (2018). Scalable urban mobile crowdsourcing: Handling uncertainty in worker movement. ACM Transactions on Intelligent Systems and Technology (TIST), 9(3), 26.
    Clewlow, R. R. (2019). The Micro-Mobility Revolution: The Introduction and Adoption of Electric Scooters in the United States. Proceedings of the Transportation Research Board 98th Annual Meeting (2019), p.13
    Contardo, C., Morency, C., & Rousseau, L.-M. (2012). Balancing a dynamic public bike-sharing system (Vol. 4): Cirrelt Montreal, Canada.
    Dayarian, I., & Savelsbergh, M. (2017). Crowdshipping and same-day delivery: Employing in-store customers to deliver online orders. Optimization Online, 07-6142.
    Ghosh, S., & Varakantham, P. (2017). Incentivizing the use of bike trailers for dynamic repositioning in bike sharing systems. Paper presented at the Twenty-Seventh International Conference on Automated Planning and Scheduling.
    Howe, J. (2006). The rise of crowdsourcing. Wired magazine, 14(6), 1-4.
    Jorge, D., Correia, G. H., & Barnhart, C. (2014). Comparing optimal relocation operations with simulated relocation policies in one-way carsharing systems. IEEE Transactions on Intelligent Transportation Systems, 15(4), 1667-1675.
    Masoud, M., Elhenawy, M., Almannaa, M. H., Liu, S. Q., Glaser, S., & Rakotonirainy, A. (2019). Heuristic approaches to solve e-scooter assignment problem. IEEE Access, 7, 175093-175105.
    Mladenow, A., Bauer, C., & Strauss, C. (2015). Crowdsourcing in logistics: concepts and applications using the social crowd. Paper presented at the Proceedings of the 17th International Conference on Information Integration and Web-based Applications & Services, New York, NY, USA.
    Abstract retrieved from https://dl.acm.org/citation.cfm?id=2837242
    Nourinejad, M., Zhu, S., Bahrami, S., & Roorda, M. J. (2015). Vehicle relocation and staff rebalancing in one-way carsharing systems. Transportation Research Part E: Logistics and Transportation Review, 81, 98-113.
    Pal, A., & Zhang, Y. (2017). Free-floating bike sharing: Solving real-life large-scale static rebalancing problems. Transportation Research Part C: Emerging Technologies, 80, 92-116.
    Raviv, T., Tzur, M., & Forma, I. A. (2013). Static repositioning in a bike-sharing system: models and solution approaches. EURO Journal on Transportation and Logistics, 2(3), 187-229.
    Regue, R., & Recker, W. (2014). Proactive vehicle routing with inferred demand to solve the bikesharing rebalancing problem. Transportation Research Part E: Logistics and Transportation Review, 72, 192-209.
    Sampaio Oliveira, A. H., Savelsbergh, M. W. P., Veelenturf, L. P., & van Woensel, T. (2017). Crowd-based city logistics. SCL Report Series, (17-02).
    Shaheen, S., & Cohen, A. (2019). Shared Micromoblity Policy Toolkit: Docked and Dockless Bike and Scooter Sharing. UC Berkeley: Transportation Sustainability Research Center. http://dx.doi.org/10.7922/G2TH8JW7 Retrieved from https://escholarship.org/uc/item/00k897b5
    Shu, J., Chou, M. C., Liu, Q., Teo, C. P., & Wang, I. L. (2013). Models for effective deployment and redistribution of bicycles within public bicycle-sharing systems. Operations Research, 61(6), 1346-1359.
    Weikl, S., & Bogenberger, K. (2013). Relocation strategies and algorithms for free-floating car sharing systems. IEEE Intelligent Transportation Systems Magazine, 5(4), 100-111.
    Yildiz, B., & Savelsbergh, M. (2019a). Provably high-quality solutions for the meal delivery routing problem. Transportation Science, 53(5), 1372-1388.
    Yildiz, B., & Savelsbergh, M. (2019b). Service and capacity planning in crowd-sourced delivery. Transportation Research Part C: Emerging Technologies, 100, 177-199.
    周佰賢(2015)。考慮需求變化狀況及增設臨停區之公共自行車共享系統租借站分群與車輛調度策略研究(國立成功大學碩士學位論文)。取自http://ir.lib.ncku.edu.tw/handle/987654321/156012
    洪菁蓬(2011)。公共自行車租借系統之最佳租借站位址設置及車輛運補策略之研究(國立成功大學碩士學位論文)。取自http://ir.lib.ncku.edu.tw/handle/987654321/114086
    侯貞泰(2016)。公共自行車共享系統之群眾運補策略數學模式與資料視覺化工具設計研究(國立成功大學碩士學位論文)。取自http://ir.lib.ncku.edu.tw/handle/987654321/170193
    孫雪湄(2019)。無樁式電動機車共享系統之最佳動態運補與眾包運送任務規劃研究(國立成功大學碩士學位論文)。取自http://ir.lib.ncku.edu.tw/handle/987654321/186545
    張立蓁(2010)。都會區公共自行車租借系統之設計與營運方式研究(國立成功大學碩士學位論文)。 取自http://ir.lib.ncku.edu.tw/handle/987654321/107471
    梁瑜庭(2013)。公共電動機車共享系統之最佳車輛佈署策略研究(國立成功大學碩士學位論文)。 取自http://ir.lib.ncku.edu.tw/handle/987654321/134438
    廖敏婷(2012)。考慮需求比例及暫時人力配置之公共自行車租借系統管理策略研究(國立成功大學碩士學位論文)。取自http://ir.lib.ncku.edu.tw/handle/987654321/122542

    下載圖示 校內:2025-08-01公開
    校外:2025-08-01公開
    QR CODE